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1. Introduction. Let K be a connected compact Lie group and H a
closed subgroup of K. Suppose a connected Lie subgroup G of K acts simply
transitively on the coset space K/H by the left translation. Then the com-
position mapping

F: GxH-*K

defined by F(g, h)=gh (g^G, h^H) gives rise to a diffeomorphism of the
product manifold GxH onto K. Consequently, for their Lie algebras, we have

I = g+t) (direct sum of vector spaces).

We shall prove in this paper the following :

Theorem 1. Let I be a compact Lie algebra. Suppose there exist two sub-

algebras cj and £) of f such that

f = g+£) (direct sum of vector spaces).

Then there exist a direct sum decomposition

of Lie algebras and Lie algebra homomorphisms

φ: 8!-̂  and ^V^Si

with the following properties :

(i) β=

(iii) ψoφ has no non- zero fixed vector.

As a result we see that the Lie algebra f is isomorphic with the direct
sum cj5)f) of Lie algebras. This theorem gives us an infinitesimal characteriza-
tion of a homogeneous space of the type mentioned in the above. Some
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application and remarks will be added after its proof.

Such a homogeneous space is related with a study of isometries of a compact
group manifold. Let G be a connected compact Lie group and choose a left
invariant Riemannian metric ds2 on G. Denote by K the identity component
of the isometry group of (G, ds2). We identify an element g of G with its left
translation Lg on G. Ochiai-Takahashi [2] proved that if G is simple then G is
normal in K. Their theorem follows immediately from our Theorem 1. The
conclusion of their theorem does not hold in general if G is not simple, as our
example shows. However, our Theorem 3 asserts that if G is simply connected
then we have a similar conclusion by a suitable change of the action of G on
the space.

2. Recall that a Lie algebra f is said to be compact if it can be represented
as a Lie algebra of a compact Lie group. For a compact Lie algebra f , we denote
by c(ϊ) its center and by s(ϊ) its maximal semi-simple ideal, so that we have
s(!)=p, f] and

ϊ = s(f)Θc(f)

(direct sum of Lie algebras). The same notation will be used for a connected Lie
group K when the Lie algebra f of K is compact. c(K) and s(&) are the connected
Lie subgroups of K corresponding to Lie subalgebras c(ϊ) and s(ϊ) respectively.

Note that a connected Lie group K has a compact Lie algebra if and only if
K has a bi-invariant Riemannian metric and also that any subalgebra of a compact
Lie algebra is compact. In the sequel, for a Lie group homomorphism, the

induced Lie algebra homomorphism is denoted by the same symbol.

Lemma 1. Let K, G and H be connected Lie groups with Lie algebras ϊ, g
and ί) respectively. Suppose I is compact. Let φ: G-+K and ^: H->K be Lie
group homomorphίsms such that the induced homomorphίsms φ: cj-»ϊ and Λ/Γ: ίj— >ϊ
are both injectίve and

ϊ = φ(β)+'Ψ"(l}) (direct sum of vector spaces).

Then the composition mapping

F: GxH->K

defined by F(g, h)=φ(g) ψ(h) is a covering map.

Proof. In general, we denote the left translation and the right translation

of a group induced by an element x in it by Lx and Rx respectively. Then, for
the mapping F, we have the following commutative diagram:
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MA)(Lgy Rh) j I Lφ(g)°Rφ

for (g, h)e GxH. This gives an indentity

Taking the differentials, we have

We identify T(e>e>(GxH) with Γ,(G)+Γβ(#)=a+ϊj (direct sum of vector
spaces). Since (dF)(ete}\T€(G)=φ and (dF)(βte)\Te(H)=ψy our assumption in
the lemma implies that (dF}(e>e} gives an isomorphism of T(e^(GχH) onto
Te(K)—t. By the above identity, we see that (dF)(gth) is isomorphic at each
point (g, h) of G X H. Since ϊ is compact, we can choose a bi-invariant Riemen-
nian metric ds2 on K. Then d$2=F*(ds2) gives a Riemannian metric on the
manifold GxH, which is locally isometric with (K, ds2) via jF. In virtue of the
first commutative diagram, the Riemannian metric ds2 on GxH is L(G) and
/?(//)-invariant, and hence it is complete. Thus we see that F is a locally iso-
metric mapping of a complete Riemannian manifold (GxH, d$2) into (Ky ds2).
This proves that F is a covering map. q.e.d.

Lemma 2. Let I be a compact Lie algebra, and let g and f) be two subalgebras
of ϊ such that

I = g+f) (direct sum of vector spaces).

Then, f is isomorphic with the direct sum g©f) of Lie algebras, consequently, we have

dim c(f) = dim c(g)+dim c(f)) .

Proof. For g, fy and ί, choose simply connected Lie groups G, H and K
with the corresponding Lie algebras respectively. Let

φ: g->ϊ and ψ>: £)- ϊ̂

be the inclusion mappings. They induce Lie group homomorphisms

φ: G-+K and ψ: H-+K .

The composition mapping F of the product manifold GxH into K defined by

is a covering map by Lemma 1. Since K is assumed to be simply connected, we
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have a diffeomorphism of G X H onto K. f is compact and hence g and ί) are
compact. Since G, H and K are simply connected and their Lie algebras are

compact, we see G-s(G) x c(G), H=s(H) x c(H) and K=s(K) X c(K). Since F

is a diffeomorphism of the product manifold GxH onto K we see

dim c(K) = dim c(G)+dim c(H)

and hence

dim c(ϊ) — dim c(g)+dim c(fj) .

Note that s(K) is a maximal compact subgroup of K. Also we see that F induces

a homotopy equivalence between s(G)xs(/f) and s(K).
A theorem in homotopy theory ([3], [4]) states that if two simply connected

compact Lie groups are homotopicall equivalent then they are isomorphic as Lie
groups. Thus, we see that the Lie group s(K) is isomorphic with the direct

product s(G) X s(H) of Lie groups. Finally we can conclude that the Lie algebra

ϊ is isomorphic with the direct sum g0f) of Lie algebras. q.e.d.

Corollary 1. Under the same assumption as above, we have

s(ϊ) — s(g)+s(§) (direct sum of vector spaces).

Proof. Since ϊ and g®£) are isomorphic, s(ϊ) and s(g)@s(f)) are isomorphic.
Especially, we have

dim s(f) — dim s(g)+dim s(ΐ)) .

On the other hand, we know

s(f) = [ί, ϊ], s(β) = [a, fl], βθ&) = [M].

Thus, we have

s(ϊ)lDs(g) and

The assumption ϊ— g+ί) (direct sum of vector spaces) shows that s(g)-f s(ί))

is a direct sum of vector spaces in s(ϊ). The first equality on dimension proves

our corollary. q.e.d.

3. Theorem 1 will follow easily from the following:

Proposition 1. Let I be a compact Lie algebra and let g and f) be its sub-
algebras such that

t = g+f) (direct sum of vector spaces).

Then ϊ has a direct sum decomposition of Lie algebras
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f =
with the following properties:

(i) The projection π o f l onto I with respect to the above decomposition induces
an isomorphism of g onto I.

(ii) ϊ— ϊ+ϊj (direct sum of vector spaces).

Proof. We prove the propoosition by induction on dim ϊ. When dim 1= 1,
the proposition holds since ϊ— g or f— §. Now assume that the proposition
holds when dim 1<N. Let dim f — N. To simplify the targument we prepare
the following:

Sublemma. Suppose f has a non-trivial proper ideal ϊx such that

Ί= (fl Π ϊι)+(ί) Π ti) (direct sum of vector spaces).

Then the assertion of Proposition 1 holds for f, g and £).

Proof. For ϊj, we choose a complementary ideal Ϊ2 so that we have a direct
sum decomposition

f = liθt .

Let τr2 be the projection of ϊ onto Ϊ2. We have

dim g = dim g Π ϊi+dim

dim f) — dim £) Π ϊi+dim τr2(g) .

Thus,

dim Ϊ2 = dim ϊ— dim ϊj

= dim τr2(g)+dim τr2(£)) .

Since ϊ=g-f-f), ϊ2=^2(ϊ) is spanned by τr2(g) and τr2(^), and hence we have

ττ2(ή) (direct sum of vector spaces).

Consider ϊj and its subalgebras g Π ϊi and ί) Π ϊi and also Ϊ2 and its subalgebras τr2(g)
and τr2(f)). By the inductive hypothesis, we have direct sum decompositions

I^I^V and f2-I2ΘI/

with the properties :
i. The projections g Π ϊi— *Ii and /τ2(g)^ϊ2 are isomorphisms.

ϋ. fj^rίj-f-ή pi ϊi, Ϊ2r:r: 12+^2(6) (direct sums of vector spaces).
Let

and I/ = I1

/0V.
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We claim that the direct sum decomposition

ϊ - ΪΘΓ

satisfies the required properties.

First suppose X eg Π I'. Then π2(X)^πz(Q) ΓϊI2' However ^
{0} from the assumption. Thus 7Γ2(J£)=0, and hence X&t^ Then

X e (g Π f i) Π I/ = {0} . Consequently we have g Γi I' = {0} . This shows that the
projection of g into I with respect to IφΓ is injective. Since they have the same

dimension, we have the property (i). Next suppose I Π $^X. π2(X)^π2(fy Π Ϊ2=

{0}, and hence X^lv We see that JCe^nOίnliH {0}. Thus, we have
Ini)={0}. Since dim f=dim I+dim§, we see ϊ=I+ί) (direct sum of vector
spaces). Thus we have the property (ii) also. q.e.d.

We continue our proof of Proposition 1. First consider easy cases.

(1) Suppose I is abelian.

Then ϊ=g and l'= § satisfy the required properties.

(2) Suppose ϊ is simple.

Then, by Lemma 2 we see ϊ=g or f=f). Thus our assertion holds
trivially.

(3) Suppose g contains a non-trivial proper ideal, say f l 7 of ϊ.
Then choose a complementary ideal Ϊ2 of f l in ϊ, so that we have

ϊ = ^θfa .

Clearly, I1nβ==ίι> ϊ iΠΐϊCgnf^ίO}. Applying the above sublemma we see that
Proposition 1 holds in this case.

(4) Suppose ί) contains a non-trivial proper ideal, say 119 of ϊ.

Then again we have ϊιίΊg={0}, and ϊ1Πf) :=Iι. Thus we can apply the
sublemma in this case also.

(5) Suppose ϊ is not semi-simple.
We may suppose ϊ is not abelian. Then the semi-simple part s(ϊ) is a non-

trivial proper ideal of ϊ. By Corollary 1, we have

s(f)=s(g)+s(^) (direct sum of vector spaces).

Since s(g) eg ns(I),s(^)c^ns(f) and (g n s(ϊ)) Π φ Π s(!))= {0} , we have s(g)=

g n s(ϊ) and s(ϊj)=I) Π s(ί). Thus

is a direct sum of vector spaces, and hence we can apply our sublemma.
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The above argument shows that we may suppose f is semi-simple and not
simple.

(6) Suppose I is semi-simple and all simple factors of f are mutually isomorphic
with each other.

In this case we shall show that either g or ή contains a proper ideal of ϊ, so
that the proposition holds by (3) or (4). Suppose neither g nor Ij contains a non
trivial proper ideal of f . Let

be the decompositions of ϊ, g and § into simple factors. By the present assump-
tion, all ϊ/s are mutually isomorphic. By Lemma 2, we see also that all gy's,

ϊj/s and ϊ/s are mutually isomorphic, and that

where | | indicates the number of elements.

Denote by πt the projection of ϊ onto I,. One sees that

= , or

*,&) = !, or {0}

for all /, /, k. Put

for each j<=J and k<ΞK. Letjl9j2Gj, and jΊφή, Then [τr, (gyι), ^(Qh)]=Q.
Thus AjιΓ\Aj2=φ. Hence A/s are mutually disjoint and so are Bk's.

Suppose AJ consists of exactly one element, say i. Then we see g; =ϊί and
hence g contains a non trivial proper ideal. This is a contradiction. Thus each

Aj contains at least two elements. Similarly we have \Bk\ >2. Thus we have

On the other hand,

Σl^ l ^ l / l and

Combining together, we see

\A.\ = | f i , |=2

for every j&J and
By an elementary combinatorial argument one can decompose the index set

/ into two disjoint subsets /j and I2 such that, for every j, A, the sets A. Π/i,



526 H. OZEKI

A } Π I2y Bk n /i and Bk D /2 are all non empty. Let

αi = Σ I* and α2 - Σ I, ,

so that we have Ϊ=α1φα2. Denote by pt the projection of ϊ ontoα, (for ί=l, 2).

It follows from our construction that the homomorphisms pl \ g, p2 \ g, pi \ ίj and

^>2|ί) are all onto isomorphisms. Using the decomposition f=α1φα2, we can
write

and

by suitable onto isomorphisms φ: α^c^ and ψ: c^-^d!. Consider an automor-
phism Λ/roφ of αλ. By a result due to Borel and Mostow [1], every automorphism
of a semi-simple Lie algebra has a non-zero fixed vector. Thus, we have an
element X in ̂  such that X3=Q and ψ(φ(X))=X. Then we have

(X, φ(X)) = (ψ(ΦW)> φ(X)) eβn$ = {0} .

This is a contradiction. Thus, in this case, either g or f) contains a proper ideal

o f f .

(7) Suppose ϊ is semi-simple and ϊ contains at least two simple ideals which are

not isomorphic.
Choose a simple ideal α of f such that dim α is minimal among the simple

ideals of f . Let Ϊ0 be the direct sum of all simple ideals isomorphic to α, and ϊj

the complementary ideal, so that we have

f = ϊoθϊi

Similarly, decompose g and § as

ι and f) =

where g0 (resp. £)0) is the direct sum of all simple ideals in g (resp. t)) isomorphic

to α.
In virtue of Lemma 2, we see that Ϊ0 and f x are isomorphic with g0Φ^0

 and

9ιθf)ι respectively. We claim that the ideal ί1 satisfies the required condition in
the sublemma. Let τr0 and πl be the projections of ϊ onto f0 and ϊ j respectively.

Consider τr0: g^ίo- From the definitions of gx and Ϊ0, we see

Thus, g.-Cij. Similarly we have ^clj. Thus, ϊiDJh+IJ!. Since
and dim ϊj—dim gj-f-dim ^1? we conclude that

tl = g^fli (direct sum of vector spaces).
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Since ϊ— g+f) is a direct sum of vector spaces, we see that ( f j Π fl) Π (f i U ξ))— {0} .

On the other hand, ϊ i ίΊfl-ίQi and ϊ^nΐjl^ϊ)!, and also ΐλ =g1+l?ι (direct sum of
vector spaces). It follows that 9ι=g Γϊ ϊi and f)ι=Έ) Π ϊi and hence

ϊj— (g pi ί^+ίίl Π ΐi) (direct sum of vector spaces).

This proves our claim.
Thus we have completed the proof of Proposition 1.

4. Now we can prove Theorem 1

Proof of Theorem 1. First assume that f is semi-simple. Apply Proposi-

tion 1 to ϊ, g and §. We get a direct sum decomposition

with the properties:

(i) The projection of ϊ onto ϊ with respect to the above decomposition induces
an isomorphism of g onto I.

(ii) ϊ — I+ί) (direct sum of vector spaces).

Again apply Proposition 1 to ϊ, § and I. We have a direct sum decom-
position

ϊ = mφm'

with the properties:
(i') The projection of ϊ onto m with respect to this decomposition induces an

isomorphisms of ϊ) onto m.

(ϋ') f — m+ϊ (direct sum of vector spaces).

Since m and I are both ideals of ϊ, we have a direct sum

of Lie algebras. The assumption that f is semi-simple implies tn=ϊ'. Thus,
with respect to the direct sum

ϊ = I©!'

we see that the projections of ϊ onto I and Γ induce isomorphisms of g and §

onto ϊ and V respectively. Setting c^= I, and ξ)ι=ϊ/, we see that the decom-

position

satisfies the first two properties. The third property follows from g Π §= {0} .
In fact, suppose ψ(φ(JϊΓ))=J5Γ for Xf=&. Then, (X, φ(X))=(ψ(φ(X))9
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= {0} . Thus X=Q.

Consider the general case. By Corollary 1, we have

s(ϊ) = s(g)H-s(ίj) (direct sum of vector spaces).

Also by Lemma 1, dimc(f)=dim c(g)+dim c(£)). It is easily seen that the pro-

jection 7Γ of ϊ onto c(ϊ) induces

c(f) = 7z (c(g))+τr(c(ϊ))) (direct sum of vector spaces).

From the first rgument, we can choose a direct sum decomposition

s(l) =

such that the projections of s(f) onto g/ and £)/ induce isomorphisms of s(g) and
s(ί)) onto g/ and ϊj/ respectively. Now put

and

we have a direct sum decomposition

ϊ =

We claim that this decomposition satisfies the required properties in Theorem 1.

The first two are easy. The last one follows from the first two and g Π §= {0} .

Q.E.D.

REMARK 1. The converse of Theorem 1 holds. Let gx and ^ be Lie

algebras, and let φ Qι-*$ι and i/r: §ι~-*Ql be Lie algebra homomorphisms such that
ψoφ has no non-zero fixed vector. In the direct sum ^©^=1 of Lie algebras,

define g and ί) by (i) and (ii). Then g and § are subalgebras and we have

f =g+ϊ) (direct sum of vector spaces).

REMARK 2. Suppose M=K/H is a homogeneous space space of the type

mentioned in the introduction. Then the action of K on K/H is almost effective

if and only if ψ is injective.

REMARK 3. Let M=KJH be as above. By the theorem of Borel-Mostow

cited before, the Lie algebra homomorphism ψoφ=0 if g is simple. Thus we

see that if G is simple and the J^-action on K\H is almost effective then G is
normal. Thus, Ochiai-TakahashΓs theorem follows from Theorem 1.

5. Now we consider a homogeneous space of the type mentioned in the
introduction. Let M=K/H be a homogeneous space of a connected compact



TRANSITIVE TRANSFORMATION GROUP 529

Lie group K. We assume that a connected Lie subgroup G acts simply transi-
tively on K/H. Since K/H is compact, G is necessarily compact. The com-

position mapping

is a diffeomorphism, so that we have

f == g-j-ϊj (direct sum of vector spaces),

for their Lie algebras. Applying Theorem 1, we have a direct sum decomposition

and homomorphisms φ: &— >§! and Λ/Γ: ^-^Qi such that we have

), F) I

Further, as we see from the proof of Theorem 1, we can assume that

where TT denotes the projection of ϊ onto its center.

Let G1 be the connected Lie subgroup of K corresponding to the subalgebra

glβ Since QI is an ideal of ϊ, G1 is a normal subgroup of K. Next we claim that

G1 is compact. sίG^) is closed in K since it is semi-simple. Thus it suffices to
show that c(G1) is compact. However, from our construction, c(g1)=τr(c(g)).

Consider the Lie group homomorphism τt\ K-*K/s(K). π\c(K) is a finite

covering map. Thus c(Gj) is closed in c(K) if and only if τr(c(G1)) is closed.

On the other hand, c(G) is compact, and hence τ?(c(G)) is compact. c(g1)=τr(c(fl))

implies that π(c(G1))==?f(c(G)). Thus, c^) is closed, and hence Gλ is compact.

From the property that f=fl1Φ§1 and §={(^(Y), Y) | Fe^}, we have

f =§!-}-§ (direct sum of vector spaces).

By Lemma 1, the composition mapping

defines a covering map. Consequently, Gλ acts transitively on the coset space
K/H. Furthermore, fix a point p in KIH. Then the mapping

defined by g-^g(p) is a covering map. Thus, if G(^K/H) is simply connected,
then Gl is also simply connected. Thus we have proved the following:
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Theorem 2. Let Kbea connected compact Lie group and H a closed subgroup
of K. Assume that a connected Lie subgroup G acts simply transitively on the
homogeneous space K/H by the left translation. Then there exists a connected
closed normal subgroup G± of K such that Gl acts transitively on KjH and G1 is
locally isomorphic with G as Lie groups.

Theorem 3. Under the same assumption as in Theorem 2, assume further that
G is simply connected. Then there exists a connected closed normal subgroup Gl

of K such that Gl is isomorphic with G as Lie groups and Gl acts simply transitively
on K/H.

6. We give here two examples. The first one shows that the conclusion of
Ochiai-Takahashi's theorem does not hold any more if G is not simple.

EXAMPLE 1. Let A be a connected compact semi-simple Lie group and α
its Lie algebra. We put

K = AxAxA,

H is a closed subgroup of K. Consider the homogeneous space KjH. We see

easily that G acts simply transitively on K/H. G is compact semi-simple and
not simple. Choose a ^-invariant Riemannian metric ds2 on KjH. Since KfH
can be identified with G, ds2 is a left -invariant Riemannian metric on G. From
the definition, K is contained in the identity-component of isometrics of
(K/H=G, ds2). G is not nomal in K> thus G is not normal in the identity-
component of isometries.

For this example, an explicit description of Theorem 1 is as follows:

Let βl = {(Xy Y90)\X,

fc = {(0,0,Z)|Z€Ξa}.

Define φ: &->§! by

φ((X, Y, 0)) = (0, 0, X)

and ψ : ̂ -^^ by

ΛH(0, 0, Z)) = (0, Z, 0) .

Then we have



TRANSTIIVE TRANSFORMATION GROUP 531

The next example shows that the conclusion of Theorem 3 does not hold if

G is not simply connected.

EXAMPLE 2. We choose two simply connected compact Lie groups A and B
with the following properties :
1 . There exists an injective homomorphism j of A into B.
2. The center Z(A) of A is non-trivial and

j(Z(A))nZ(B)={e}.

For instance, choose positive integers m and n such that n>m>2. Then
A=SU(m), B=SU(n) and the canonical injection of SU(m) into SU(n) satisfy
the required properties.

Let

K = AxBxA,

G^AxBx {e} ,

G = {(a, i, ά)\atΞA, b <Ξ#} ,

Γ = {(x,e,x)\x

The Lie algebras of A and B are denoted by α and b respectively. Γ is a finite
group contained in the center of K. We consider the quotient group K=K/T,
and denote by π the canonical projection of K onto R. H=π(H) is a closed
subgroup of K. Consider K/H. One can easily show that the group G—τr(G)
acts simply transitively on K/H. We claim that no normal subgroup of K acts
simply transitively on R/fϊ. Suppose a normal subgroup G/ of K acts simply
transitively on K\Ή. Then its Lie algebra g/ satisfies

ϊ—βi'+S (direct sum of vector spaces),

where r}={(0, j(X\ X)\X&a}. Since g/ is an ideal of ϊ, we see g/=g1=
{(X, Y, 0)| -Yea, Feb}. It follows that ;r(G1)=G1

/. However, ^(GJ ί is
simply connected because 7r(Gl)—G1/(G1 ΠΓ^Gj. This is a contradiction.
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