ON SYMMETRIC SETS OF UNIMODULAR SYMMETRIC MATRICES

Yasuhiko IKEDA and Nobuo NOBUSAWA

(Received June 17, 1976)

1. Introduction

A binary system A is called a symmetric set if (1) $a \circ a=a$, (2) $(a \circ b) \circ b=a$ and (3) $(a \circ b) \circ c=(a \circ c) \circ(b \circ c)$ for elements a, b and c in A. Define a mapping S_{a} of A for an element a in A by $S_{a}(x)=x \circ a$. As in [2], [3] and [4], we denote $S_{a}(x)$ by $x S_{a}$. $\quad S_{a}$ is a homomorphism of A due to (3), and is an automorphism of A due to (2). Every group is a symmetric set by a definition: $a \circ b=b a^{-1} b$. A subset of a group which is closed under this operation is also a symmetric set. In this paper, we consider a symmetric set which is a subset of the group $S L_{n}(K)$ consisting of all unimodular symmetric matrices. We denote it by $S M_{n}(K)$. For a symmetric set A, we consider a subgroup of the group of automorphisms of A generated by all $S_{a} S_{b}(a$ and b in A), and call it the group of displacements of A. We can show that the group of displacements of $S M_{n}(K)$ is isomorphic to $S L_{n}(K) /\{ \pm 1\}$ if $n \geq 3$ or $n \geq 2$ when $K \neq F_{3}$ (Theorem 5). Also we can show that $P S M_{n}(K)$, which is defined in a similar way that $\operatorname{PSL}\left({ }_{n} K\right)$ is defined, has its group of displacements isomorphic to $P S L_{n}(K)$ under the above condition (Theorem 6). A symmetric set A is called transitive if $A=a H$, where a is an element of A and H is the group of displacements. A subset B of A is called an ideal if $B S_{a} \subseteq B$ for every element a in A. For an element a in $A, a H$ is an ideal since $a H S_{x}=a S_{x} H=a S_{a} S_{x} H=a H$ for every element x in A. Therefore, A is transitive if and only if A has no ideal other than itself. Let F_{q} be a finite field of q elements $\left(q=p^{m}\right)$. We can show that $S M_{n}\left(F_{q}\right)$ is transitive if $p \neq 2$ or if n is odd, and that $S M_{n}\left(F_{q}\right)$ consists of two disjoint ideals both of which are transitive if n is even and $p=2$ (Theorem 7).

A symmetric subset B of A is called quasi-normal if $B T \cap B=B$ or ϕ for every element T of the group of displacements. When A has no proper quasinormal symmetric subset, we say that A is simple. In [4], it was shown that if A is simple (in this case, A is transitive as noted above) then the group of displacements is either a simple group or a direct product of two isomorphic simple groups. In 4, we show some examples of $\operatorname{PSM}_{n}\left(F_{q}\right)$. The first example is $\operatorname{PSM}_{3}\left(F_{2}\right)$, which is shown to be a simple symmetric set of 28 elements.

The second example is $\operatorname{PSM}_{2}\left(F_{7}\right)$, which we show consists of 21 elements and is not simple. We analize the structure of it and show that $P S L_{2}\left(F_{7}\right)$ (which is isomorphic to $P S L_{3}\left(F_{2}\right)$ and is simple) is a subgroup of A_{7}. The third example is one of ideals of $\operatorname{PSM}_{4}\left(F_{2}\right)$ which consists of unimodular symmetric matrices with zero diagonal. It has 28 elements and we can show that it is isomorphic to a symmetric set of all transpositions in S_{8}. This reestablishes the well known theorem that $P S L_{4}\left(F_{2}\right)$ is isomorphic to A_{8}.

2. Unimodular symmetric matrices

Theorem 1. $S L_{n}(K)$ is generated by unimodular symmetric matrices if $n \geq 3$ or $n \geq 2$ when $K \neq F_{3}$.

Proof. Consider a subgroup of $S L_{n}(K)$ generated by all unimodular symmetric matrices. It is a normal subgroup because if s is a symmetric matrix and u is a non singular matrix then $u^{-1} s u=\left(u^{t} u\right)^{-1}\left(u^{t} s u\right)$ which is a product of symmetric matrices. The subgroup clearly contains the center of $S L_{n}(K)$ properly so that it must coincide with $S L_{n}(K)$ if $n \geq 3$ or $n \geq 2$ when $K \neq F_{2}$ or F_{3}, since $P S L_{n}(K)$ is simple. If $n=2$ and $K=F_{2}$, Theorem 1 follows directly from $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right] . \quad$ If $n=2$ and $K=F_{3}$, Theorem 1 does not hold since $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ is not expressed as a product of unimodular symmetric matrices.

Two matrices a and b are said to be congruent if $b=u^{t} a u$ with a non singular matrix u. Suppose that a is congruent to 1 (the identity matrix) and that $\operatorname{det} a=1$. Then $1=u^{t} a u$, where we may assume that $\operatorname{det} u=1$, because otherwise $\operatorname{det} u=-1$ and then we can replace u by $u v$ with $v=\left[\begin{array}{ccc}-1 & & 0 \\ & 1 & \\ & \ddots & \\ 0 & & 1\end{array}\right]$.

Theorem 2. Suppose that $n \geq 2$ and $p \neq 2$. Then every unimodular symmetric matrix in $S L_{n}\left(F_{q}\right)$ is congruent to 1 .

Theorem 2 is known. ([1], p. 16)
Theorem 3. Suppose that $n \geq 2$ and $q=2^{m}$. If n is odd, every unimodular symmetric matrix in $S L_{n}\left(F_{q}\right)$ is congruent to 1 . If n is even, every unimodular symmetric matrix in $S L_{n}\left(F_{q}\right)$ is congruent either to 1 or to $J \oplus J \oplus \cdots \rightarrow J$, where $J=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. The latter occurs if and only if every diagonal entry of the symmetric matrix is zero.

Proof. First, we show a lemma.

Lemma. Suppose that the characteristic of K is 2 . If every diagonal entry of a symmetric matrix s over K is zero, then u^{t} su has the same property where u is any matrix over K.

Proof. Let $s=\left(a_{i j}\right), u=\left(b_{i j}\right)$ and $u^{t} s u=\left(c_{i j}\right)$. Then $a_{i j}=a_{j i}$ and $a_{i i}=0$. We have $c_{i i}=\sum_{k, j} b_{k i} a_{k j} b_{j i}=\sum_{k<j} b_{k i}\left(a_{k j}+a_{j k}\right) b_{j i}=0$ since $a_{k j}+a_{j k}=2 a_{k j}=0$.

Now we return to the proof of Theorem 3. Let $s=\left(a_{i j}\right)$ be a symmetric matrix in $S L_{n}\left(F_{q}\right)$. Suppose that $a_{i i}=0$ for all i. Then $a_{1 k} \neq 0$ for some k. Taking a product of elementary matrices for u, we have that, in $u^{t} s u=\left(b_{i j}\right), b_{12} \neq$ 0 and $b_{1 j}=0$ for all $j \neq 2$. Since $b_{21}=b_{12} \neq 0$, we can apply the same argument to the second row (and hence to the second column at the same time) to get a matrix $\left(c_{i j}\right)$ congruent to s such that $\left(c_{i j}\right)=\left[\begin{array}{ll}0 & c \\ c & 0\end{array}\right] \oplus s^{\prime}$, where s^{\prime} is a symmetric matrix of $(n-2) \times(n-2)$. Then take an element d in F_{q} such that $d^{2}=c^{-1}$, and let $u=\left[\begin{array}{ll}d & 0 \\ 0 & d\end{array}\right] \oplus I_{n-2}$, where I_{n-2} is the identity matrix of $(n-2) \times(n-2)$. Thusfar, we have seen that s is congruent to $J \oplus s^{\prime}$. By Lemma, s^{\prime} has the zero diagonal. Proceeding inductively, we can get $J \oplus J \oplus \cdots \oplus J$ which is congruent to s, if s has the zero diagonal. In this case, n must be even. Next, suppose that $a_{i i} \neq 0$ for some i. As in above, we can find u such that $u^{t} s u=[1] \oplus s^{\prime}$, where s^{\prime} is of $(n-1) \times(n-1)$. By induction, s^{\prime} is congruent either to I_{n-1} or to $J \oplus J \oplus \cdots \oplus J$. In the former case, s is congruent to $1=I$. In the latter case, we just observe that

$$
[1] \oplus J=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \text { and }\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

So, we can reduce s to the identity matrix by congruence.
Theorem 4. Suppose that n is even and $q=2^{m}$. Then $S L_{n}\left(F_{q}\right)$ is generated by $a^{-1} b$ where a and b are unimodular symmetric matrices with zero diagonal. Also, $S L_{n}\left(F_{q}\right)$ is generated by $c^{-1} d$ where c and d are unimodular symmetric matrices which have at least one non zero entry in diagonal.

Proof. For a and b in Theorem 4, we have $s^{-1}\left(a^{-1} b\right) s=(s a s)^{-1}(s b s)$, where s is a symmetric matrix in $S L_{n}\left(F_{q}\right)$. By Lemma, sas and sbs have zero diagonal. Since $S L_{n}\left(F_{q}\right)$ is generated by symmetric matrices by Theorem 1 , the above fact implies that the subgroup of $S L_{n}\left(F_{q}\right)$ generated by all $a^{-1} b$ is a normal subgroup. On the other hand, the center of $S L_{n}\left(F_{q}\right)$ consists of $z I$ where z is an element of F_{q} such that $z^{n}=1$. Since $z I=a^{-1}(z a)$, the center of $S L_{n}\left(F_{q}\right)$ is contained in the subgroup generated by $a^{-1} b$. It is also easy to see that the subgroup contains an element which is not contained in the center. Again, by the simplicity of $P S L_{n}$
$\left(F_{q}\right)$, the subgroup must coincide with the total group. The second part of Theorem 4 is proved in the same way.

3. Symmetric sets of unimodular matrices

Theorem 5. The group of displacements of $S M_{n}(K)$ is isomorphic to $S L_{n}(K) /$ $\{ \pm 1\}$ if $n \geq 3$ or $n \geq 2$ when $K \neq F_{3}$.

Proof. For $w \in S L_{n}(K)$ and $a \in S M_{n}(K)$, we define a mapping T_{w} of $S M_{n}(K)$ by $a T_{w}=w^{t} a w . \quad T_{w}$ is an automorphism of $S M_{n}(K)$ since $w^{t}\left(b a^{-1} b\right) w=\left(w^{t} b w\right)$ $\left(w^{t} a w\right)^{-1}\left(w^{t} b w\right)$. If especially $w=s_{1} s_{2}$ with s_{1} and s_{2} in $S M_{n}(K)$, then $a T_{w}=$ $s_{2}\left(s_{1}^{-1} a^{-1} s_{1}^{-1}\right)^{-1} s_{2}=a S_{s_{1}} S_{s_{2}}$, and hence $T_{w}=S_{s_{1}} S_{s_{2}}$. By Theorem 1, w is a product (of even number) of s_{i} in $S M_{n}(K)$. Thus $w \rightarrow T_{w}$ gives a homomorphism of $S L_{n}(K)$ onto the group of displacements of $S M_{n}(K) . \quad w$ is in the kernel of the homomorphism if and only if $w^{t} a w=a$ for every element a in $S M_{n}(K)$. In this case, especially we have $w^{t} w=1$ or $w^{t}=w^{-1}$. Then $w^{-1} a w=a$, or $w a=a w$. Since $S L_{n}(K)$ is generated by a, the above implies that w must be in the center of $S L_{n}(K)$. So, $w=z I$ with z in K. Then $w^{t} w=1$ implies $w^{2}=1$, or $z= \pm 1$. This completes the proof of Theorem 4.

To define $P S M_{n}(K)$, we identify elements a and $z a$ in $S M_{n}(K)$, where z is an element in K such that $z^{n}=1$. The set of all classes defined in this way is a symmetric set in a natural way, and we denote it by $\operatorname{PSM}_{n}(K)$.

Theorem 6. The group of displacements of $\operatorname{PSM}_{n}(K)$ is isomorphic to $P S L_{n}(K)$ if $n \geq 3$ or $n \geq 2$ when $K \neq F_{3}$.

Proof. Denote by \bar{a} an element of $\operatorname{PSM}_{n}(K)$ represented by a in $S M_{n}(K)$. For w in $S L_{n}(K)$, we define $T_{w}: \bar{a} \rightarrow \overline{w^{t} a w}$. As before, $w \rightarrow T_{w}$ gives a homomorphism of $S L_{n}(K)$ onto the group of displacements of $P S M_{n}(K) . \quad T_{w}=1$ if and only if $\overline{w^{t} a w}=\bar{a}$ for every a. If w is in the center of $S L_{n}(K)$, then clearly $T_{w}=$ 1. So, the kernel of the homomorphism contains the center. On the other hand, we have $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$, which indicates that $w=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \oplus I_{n-2}$ is not contained in the kernel. Therefore, the kernel must coincide with the center due to the simplicity of $P S L_{n}(K)$. This completes the proof of Theorem 6.

Theorem 7. Suppose that $n \geq 3$ or $n \geq 2$ if $K \neq F_{3}$. If $p \neq 2$ or if n is odd, then $S M_{n}\left(F_{q}\right)$ is transitive. If $p=2$ and n is even, then $S M_{n}\left(F_{q}\right)$ consists of two disjoint ideals, which are transitive.

Proof. First suppose that $p \neq 2$ or n is odd. Then by Theorems 2 and 3, every unimodular symmetric matrix a is congruent to 1 , i.e., $a=u^{t} u$ with a uni-
modular matrix u. By Theorem $1, u$ is a product of even number of unimodular symmetric matrices: $u=s_{1} \cdots s_{2 i}$. Then $T_{u}=S_{s_{1}^{-1}} S_{s_{2}} \cdots S_{s_{2 i}}$ as in Theorem 6. Then $a=1 T_{u} \in 1 H$, where H is the group of displacements. Thus $S M_{n}\left(F_{q}\right)$ is transitive in this case. Next suppose that $p=2$ and n is even. Let B_{0} be the set of all unimodular symmetric matrices with zero diagonal. Elements of B_{0} are congruent to $j=J \oplus J \oplus \cdots \oplus J$. So, for an element a in B_{0}, there exists u such that $u^{t} a u=j$. Here det $u=1$ since $p=2$. By Theorem 4, u is a product of elements $a^{-1} b$ where a and b are in B_{0}. For a, b and c in B_{0}, we have $\left(b^{-1} c\right)^{t} a\left(b^{-1} c\right)=a S_{b} S_{c}$, from which we can conclude that $a H\left(B_{0}\right)$, where $H\left(B_{0}\right)$ is the group of displacements of B_{0}, contains j, and hence $a \in j H\left(B_{0}\right)$. Thus, B_{0} is transitive. It is also clear that B_{0} is an ideal of $S M_{n}\left(F_{q}\right)$ by Theorems 4 and 5 . In the same way, we can show that the complementary set of B_{0} in $S M_{n}\left(F_{q}\right)$ is an ideal of $S M_{n}\left(F_{q}\right)$ and is transitive as a symmetric set.

4. Examples

First of all, we recall the definition of cycles in a finite symmetric set (see [3]). Let a and b be elements in a finite symmetric set such that $a S_{b} \neq a$. Then we call a symmetric subset generated by a and b a cycle. To indicate the structure of a cycle, we use an expression: $a_{1}-a_{2}-\cdots$, where $a_{1}=a, a_{2}=b$ and $a_{i+1}=$ $a_{i-1} S_{a_{i}}\left(i \geq 2\right.$). If a symmetric set is effective (i.e. $S_{c} \neq S_{d}$ whenever $c \neq d$), the above sequence is repetions of some number of different elements (Theorem 2, [3]). For example, $a_{1}-a_{2}-\cdots-a_{n}-a_{1}-a_{2}-\cdots$ where $a_{i} \neq a_{j}(1 \leq i \neq j \leq n)$. In this case, we denote the cycle by $a_{1}-a_{2}-\cdots-a_{n}$ and call n the length of the cycle.

Example 1. $\quad \operatorname{PSM}_{3}\left(F_{2}\right)\left(=\operatorname{SM}_{3}\left(F_{2}\right)\right)$.
$S M_{3}\left(F_{2}\right)$ consists of the following 28 elements.

$$
\begin{aligned}
& a_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], a_{2}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], a_{3}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], a_{4}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \\
& a_{5}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 1
\end{array}\right], a_{6}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right], a_{7}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 1
\end{array}\right], a_{8}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right], \\
& a_{9}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right], a_{10}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], a_{11}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], a_{12}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right], \\
& a_{13}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], a_{14}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right], a_{15}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], a_{16}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], \\
& a_{17}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right], a_{18}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], a_{19}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right], a_{20}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right],
\end{aligned}
$$

$$
\begin{aligned}
& a_{21}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], a_{22}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right], a_{23}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right], a_{24}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right], \\
& a_{25}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right], a_{26}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right], a_{27}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right], a_{28}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

We denote $S_{a_{i}}$ by S_{i}, and a transposition $\left(a_{i}, a_{j}\right)$ by (i, j). Then each S_{i} is a product of 12 transpositions as follows.
$S_{1}=(3,4)(5,8)(6,7)(9,28)(11,12)(13,16)(14,15)(17,27)(19,20)(21,24)$
$(22,23)(25,26), S_{2}=(5,7)(6,8)(9,28)(10,18)(11,20)(12,19)(13,24)(14,23)$
$(15,22)(16,21)(17,26)(25,27), S_{3}=(1,4)(5,7)(6,28)(8,9)(10,22)(11,24)$
$(12,17)(13,20)(15,18)(16,25)(19,26)(21,27), S_{4}=(1,3)(5,28)(6,8)(7,9)$
$(10,23)(11,27)(12,21)(13,26)(14,18)(16,19)(17,24)(20,25), \quad S_{5}=(1,14)$
$(2,3)(4,23)(6,11)(8,24)(9,13)(10,25)(12,26)(15,21)(16,18)(20,28)(22,27)$,
$S_{6}=(1,22)(2,4)(3,15)(5,19)(7,16)(9,21)(10,24)(12,28)(13,23)(14,26)$
$(17,18)(20,27), S_{7}=(1,23)(2,3)(4,14)(6,13)(8,20)(9,11)(10,21)(15,25)$
$(16,22)(17,19)(18,27)(24,28), S_{8}=(1,15)(2,4)(3,22)(5,21)(7,12)(9,19)$
$(10,26)(11,25)(13,18)(14,24)(16,28)(17,23), \quad S_{9}=(1,2)(3,10)(4,18)(5,17)$
$(6,25)(7,27)(8,26)(11,14)(12,23)(15,20)(16,24)(19,22), S_{10}=(2,18)(3,19)$
$(4,20)(5,23)(6,24)(7,21)(8,22)(9,26)(13,15)(14,16)(17,27)(25,28), S_{11}=$ $(1,12)(2,21)(3,23)(4,9)(5,19)(7,18)(8,25)(13,15)(14,27)(16,17)(20,26)$ $(22,28), S_{12}=(1,11)(2,24)(3,28)(4,22)(5,26)(6,18)(8,20)(9,23)(13,27)$ $(14,16)(15,17)(19,25), S_{13}=(1,6)(2,25)(3,14)(4,26)(5,17)(7,22)(8,18)$ $(10,11)(12,24)(16,23)(19,27)(21,28), S_{14}=(1,21)(2,23)(4,27)(5,24)(6,26)$ $(7,11)(8,15)(9,18)(10,12)(13,20)(17,22)(19,28), S_{15}=(1,24)(2,22)(3,17)$ $(5,14)(6,12)(7,25)(8,21)(9,20)(10,11)(16,19)(18,28)(23,27), S_{16}=(1,7)$ $(2,26)(3,25)(4,15)(5,18)(6,23)(8,27)(9,24)(10,12)(11,21)(13,22)(17,20)$, $S_{17}=(1,10)(2,11)(3,6)(4,24)(7,19)(8,23)(9,13)(12,18)(14,25)(15,28)$ $(16,26)(20,21), S_{18}=(2,10)(3,12)(4,11)(5,16)(6,15)(7,14)(8,13)(9,27)$ $(17,28)(21,23)(22,24)(25,26), S_{19}=(1,20)(2,13)(3,9)(4,15)(6,11)(7,17)$ $(8,10)(12,27)(14,28)(21,23)(22,26)(24,25), S_{20}=(1,19)(2,16)(3,14)$ $(4,28)(5,10)(6,27)(7,12)(9,15)(11,17)(21,26)(22,24)(23,25), S_{21}=(1,5)$ $(2,17)(3,27)(4,22)(6,25)(7,10)(8,14)(11,26)(13,28)(15,24)(16,20)$ $(18,19), S_{22}=(1,13)(2,15)(3,26)(5,27)(6,16)(7,23)(8,19)(9,10)(11,28)$ $(12,21)(14,25)(18,20), S_{23}=(1,16)(2,14)(4,25)(5,20)(6,22)(7,13)(8,17)$ $(9,12)(10,28)(11,24)(15,26)(18,19), S_{24}=(1,8)(2,27)(3,23)(4,17)(5,15)$ $(6,10)(7,26)(9,16)(12,25)(13,19)(14,21)(18,20), S_{25}=(1,18)(2,19)$ $(3,16)(4,5)(7,15)(8,11)(9,21)(10,20)(12,13)(17,22)(23,28)(24,27)$, $S_{26}=(1,18)(2,20)(3,8)(4,13)(5,12)(6,14)(9,22)(10,19)(11,16)(17,21)$ $(23,27)(24,28), S_{27}=(1,10)(2,12)(3,21)(4,7)(5,22)(6,20)(9,14)(11,18)$
$(13,25)(15,26)(16,28)(19,24), S_{28}=(1,2)(3,18)(4,10)(5,25)(6,17)(7,26)$ $(8,27)(11,22)(12,15)(13,21)(14,19)(20,23)$.

From the above, we can find that for a fixed element there exist two cycles of length 7 , three cycles of length 4 and three cycles of length 3 which contain the given element. Also we can find that there are exactly 8 cycles of length 7 in the set given by $C_{1}: 1-5-14-24-21-15-8, C_{2}: 1-6-22-16-13-23-7$, $C_{3}: 22-19-26-10-9-3-8, C_{4}: 13-27-25-24-12-2-19, C_{5}: 23-5-$ $4-28-10-25-20, C_{6}: 11-26-16-2-21-17-20, \quad C_{7}: 6-17-3-12-$ $28-15-18$ and $C_{8}: 7-18-14-9-11-4-27$. By observation we see that every element is contained in exactly two of C_{i} and that conversely any two of C_{i} have exactly one element in common. Clearly S_{i} induces a permutation of C_{j}, $j=1,2, \cdots, 8$, and S_{i} is uniquely determined by its effect on C_{j}. Now we are going to show that $S M_{3}\left(F_{2}\right)$ is a simple symmetric set. First, we note that if $t \notin C_{i}$, then there exists t^{\prime} in C_{i} such that $t^{\prime} S_{t}=t^{\prime}$. Let B be a quasi-normal symmetric subset. We may assume that B contains $1\left(=a_{1}\right)$. Suppose that B contains one of C_{1} or C_{2}, say, C_{1}. For $C_{i} \neq C_{1}$, let $s_{i}=C_{1} \cap C_{i}$ and let t_{i} be such that $t_{i} \in C_{i}$ and $t_{i} \nsubseteq C_{1}$. Since there exists $t_{i}{ }^{\prime}$ in C_{1} such that $t_{i}{ }^{\prime} S_{t_{i}}=t_{i}{ }^{\prime}$, we have that $B S_{t_{i}}=B$ by the definition of quasi-normality of B. Then $s_{i} S_{t_{i}}$ is contained in B, which implies that two elements of C_{i} are contained in $B . B$ is a symmetric subset and the length of C_{i} is 7 (prime), and hence all of the elements in C_{i} must be in B. Thus B must coincide with the total symmetric set. To discuss the general case, we consider all cycles of length 4 and 3 containing 1: $D_{1}: 1-9-2-$ $28, D_{2}: 1-26-18-25, D_{3}: 1-27-10-17, E_{1}: 1-3-4, E_{2}: 1-11-12, E_{3}: 1-$ 19-20. Clearly, S_{2}, S_{10} and S_{18} fix the element 1, and we see that $D_{1} S_{10}=D_{2}$, $D_{1} S_{18}=D_{3}, D_{2} S_{2}=D_{3}, E_{1} S_{18}=E_{2}, E_{1} S_{10}=E_{3}$ and $E_{2} S_{2}=E_{3}$. Therefore, if B contains one of D_{i}, it contains all of D_{i}, and similarly if B contains one of E_{i}, it contains all of E_{i}, In this case, we can verify that B contains one of C_{i} and hence B must coincide with the total set. Lastly suppose that B which contains 1 contains one of 2,10 and 18 , say, 2 . Then $B=B S_{10}$ must contain $2 S_{10}=18$, and similarly B contains 10 . It is concluded that if B contains one of 2,10 and 18 then B contains all of them. In this case, $2 S_{4}=2$ implies that $B S_{4}=B$. So, B contains $1 S_{4}=3$. Thus B contains E_{1}, and then B coincides with the total set. We have completed the proof that $S M_{3}\left(F_{2}\right)$ is simple.

Example 2. $\quad P S M_{2}\left(F_{7}\right)\left(=S M_{2}\left(F_{7}\right) /\{ \pm 1\}\right)$.
This symmetric set consists of the following 21 elements $(\bmod \{ \pm 1\})$.

$$
\begin{aligned}
& a_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], a_{2}=\left[\begin{array}{rr}
2 & 0 \\
0 & -3
\end{array}\right], a_{3}=\left[\begin{array}{rr}
3 & 0 \\
0 & -2
\end{array}\right], a_{4}=\left[\begin{array}{rr}
1 & 1 \\
1 & 2
\end{array}\right], \\
& a_{5}=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right], a_{6}=\left[\begin{array}{lr}
3 & 1 \\
1 & 3
\end{array}\right], a_{7}=\left[\begin{array}{rr}
-3 & 1 \\
1 & -3
\end{array}\right], a_{8}=\left[\begin{array}{rr}
-1 & 1 \\
1 & -2
\end{array}\right],
\end{aligned}
$$

$$
\begin{aligned}
& a_{9}=\left[\begin{array}{rr}
-2 & 1 \\
1 & -1
\end{array}\right], a_{10}=\left[\begin{array}{rr}
1 & 2 \\
2 & -2
\end{array}\right], a_{11}=\left[\begin{array}{rr}
-2 & 2 \\
2 & 1
\end{array}\right], a_{12}=\left[\begin{array}{rr}
-1 & 2 \\
2 & 2
\end{array}\right], \\
& a_{13}=\left[\begin{array}{rr}
2 & 2 \\
2 & -1
\end{array}\right], a_{14}=\left[\begin{array}{rr}
3 & 2 \\
2 & -3
\end{array}\right], a_{15}=\left[\begin{array}{rr}
-3 & 2 \\
2 & 3
\end{array}\right], a_{16}=\left[\begin{array}{ll}
1 & 3 \\
3 & 3
\end{array}\right], \\
& a_{17}=\left[\begin{array}{rr}
3 & 3 \\
3 & 1
\end{array}\right], a_{18}=\left[\begin{array}{rr}
-1 & 3 \\
3 & -3
\end{array}\right], a_{19}=\left[\begin{array}{rr}
-3 & 3 \\
3 & -1
\end{array}\right], a_{20}=\left[\begin{array}{rr}
2 & 3 \\
3 & -2
\end{array}\right], \\
& a_{21}=\left[\begin{array}{rr}
-2 & 3 \\
3 & 2
\end{array}\right] .
\end{aligned}
$$

As in Example 1, S_{i} stands for $S_{a_{i}}$ and (i, j) for $\left(a_{i}, a_{j}\right)$ Then we have
$S_{1}=(2,3)(4,9)(5,8)(6,7)(10,13)(11,12)(16,19)(17,18), S_{2}=(1,3)(4,8)$ $(5,6)(7,9)(11,14)(13,15)(16,20)(18,21), S_{3}=(1,2)(4,6)(5,9)(7,8)(10,15)$ $(12,14)(17,21)(19,20), S_{4}=(1,20)(2,8)(3,18)(5,10)(7,12)(13,17)(14,19)$ $(16,21), S_{5}=(1,21)(2,19)(3,9)(4,11)(7,13)(12,16)(15,18)(17,20), S_{6}=$ $(1,7)(2,19)(3,18)(8,14)(9,15)(12,20)(13,21)(16,17), S_{7}=(1,6)(2,17)$ $(3,16)(4,15)(5,14)(10,21)(11,20)(18,19), S_{8}=(1,21)(2,4)(3,16)(6,10)$ $(9,12)(11,19)(15,17)(18,20), S_{9}=(1,20)(2,17)(3,5)(6,11)(8,13)(10,18)$ $(14,16)(19,21), S_{10}=(1,13)(3,15)(4,11)(7,21)(8,14)(9,18)(12,17)(16,20)$, $S_{11}=(1,12)(2,14)(5,10)(7,20)(8,19)(9,15)(13,16)(17,21), \quad S_{12}=(1,11)$ $(3,14)(4,15)(5,16)(6,20)(8,13)(10,19)(18,21), S_{13}=(1,10)(2,15)(4,17)$ $(5,14)(6,21)(9,12)(11,18)(19,20), S_{14}=(2,11)(3,12)(4,19)(6,10)(7,13)$ $(9,16)(15,20)(17,18), S_{15}=(2,13)(3,10)(5,18)(6,11)(7,12)(8,17)(14,21)$ $(16,19), S_{16}=(1,15)(2,10)(4,21)(5,12)(6,17)(7,8)(9,14)(11,18), S_{17}=$ $(1,14)(3,11)(4,13)(5,20)(6,16)(7,9)(8,15)(10,19), S_{18}=(1,14)(2,12)$ $(4,6)(5,15)(7,19)(8,20)(9,10)(13,16), S_{19}=(1,15)(3,13)(4,14)(5,6)$ $(7,18)(8,11)(9,21)(12,17), \quad S_{20}=(2,10)(3,13)(4,9)(5,17)(6,12)(7,11)$ $(8,18)(14,21), S_{21}=(2,12)(3,11)(4,16)(5,8)(6,13)(7,10)(9,19)(15,20)$.

It can be verified that we have the following quasi-normal symmetric subsets B_{i} which are mapped each other by S_{j}. $B_{1}=\left\{a_{1}, a_{14}, a_{21}\right\}, B_{2}=\left\{a_{3}, a_{11}, a_{18}\right\}, B_{3}=$ $\left\{a_{2}, a_{12}, a_{17}\right\}, B_{4}=\left\{a_{20}, a_{19}, a_{16}\right\}, B_{5}=\left\{a_{7}, a_{8}, a_{13}\right\}, B_{6}=\left\{a_{6}, a_{5}, a_{10}\right\}$, and $B_{7}=\left\{a_{15}\right.$, $\left.a_{9}, a_{4}\right\}$. Then we have a homomorphism ϕ of the group generated by all S_{i} to the symmetric group of 7 objects $B_{j}(j=1,2, \cdots, 7)$. For example, since $B_{2} S_{1}=$ $B_{3}, B_{5} S_{1}=B_{6}$ and $B_{k} S_{1}=B_{k}(k \neq 2,3,5,6)$, we have $\phi\left(S_{1}\right)=\left(B_{2}, B_{3}\right)\left(B_{5}, B_{6}\right)$. Moreover we can see that the mhoomorphism is into A_{7} (the alternating group). Naturally the homomorphism induces a homomorphism of $P S L_{2}\left(F_{7}\right)(=$ the group of displacements of $\left.\operatorname{PSM}_{2}\left(F_{7}\right)\right)$ into A_{7}. Since the former is a simple group, it is an isomorphism onto a subgroup of A_{7}. Thus we have shown that $P S L_{2}\left(F_{7}\right)$ is a subgroup of A_{7}.

Example 3. An ideal in $S M_{4}\left(F_{2}\right)$.
We consider the set of all unimodular symmetric matrices of 4×4 over F_{2} that
have zero diagonal. It is a symmetric set (an ideal of $S M_{4}\left(F_{2}\right)$) and consists of the following 28 elements. In the following, $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $J=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

$$
\begin{aligned}
& a_{1}=\left[\begin{array}{ll}
J & 0 \\
0 & J
\end{array}\right], a_{2}=\left[\begin{array}{lll}
J & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & J
\end{array}\right], a_{3}=\left[\begin{array}{ccc}
J & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & J
\end{array}\right], a_{4}=\left[\begin{array}{ccc}
J & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & J
\end{array}\right], \\
& a_{5}=\left[\begin{array}{lll}
J & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & J
\end{array}\right], a_{6}=\left[\begin{array}{lll}
J & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & J
\end{array}\right], a_{7}=\left[\begin{array}{ccc}
J & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & J
\end{array}\right], a_{8}=\left[\begin{array}{ccc}
J & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & J
\end{array}\right], \\
& a_{9}=\left[\begin{array}{lll}
J & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & J
\end{array}\right], a_{10}=\left[\begin{array}{lll}
J & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & J
\end{array}\right], a_{11}=\left[\begin{array}{cc}
0 & I \\
I & 0
\end{array}\right], a_{12}=\left[\begin{array}{ll}
0 & J \\
J & 0
\end{array}\right], \\
& a_{13}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right], a_{14}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right], a_{15}=\left[\begin{array}{ccc}
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], a_{16}=\left[\begin{array}{ccc}
0 & 1 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right], \\
& a_{17}=\left[\begin{array}{lll}
0 & I \\
I & J
\end{array}\right], a_{18}=\left[\begin{array}{ccc}
0 & J \\
J & J
\end{array}\right], a_{19}=\left[\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & J
\end{array}\right], a_{20}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 1 & J \\
0 & 1 & J
\end{array}\right], \\
& a_{21}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 1 & J \\
1 & 0 & J
\end{array}\right], a_{22}=\left[\begin{array}{ccc}
0 & 1 & 1 \\
0 & 1 & \\
1 & 1 & J
\end{array}\right], a_{23}=\left[\begin{array}{cc}
J & I \\
I & 0
\end{array}\right], a_{24}=\left[\begin{array}{cc}
J & J \\
J & 0
\end{array}\right], \\
& a_{25}=\left[\begin{array}{lll}
J & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right], a_{26}=\left[\begin{array}{ccc}
J & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right], a_{27}=\left[\begin{array}{ccc}
J & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], a_{28}=\left[\begin{array}{ccc}
J & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right] .
\end{aligned}
$$

As before, we have
$S_{1}=(17,23)(18,24)(19,25)(20,26)(21,27)(22,28), S_{2}=(3,11)(7,14)(9,13)$ $(10,16)(18,27)(21,24), S_{3}=(2,11)(6,13)(8,14)(10,15)(18,28)(22,24)$, $S_{4}=(5,12)(7,16)(8,15)(10,14)(17,25)(19,23), S_{5}=(4,12)(6,15)(9,16)$ $(10,13)(17,20)(23,26), S_{6}=(3,13)(5,15)(8,12)(9,11)(20,28)(22,26), S_{7}=$ $(2,14)(4,16)(8,11)(9,12)(19,27)(21,25), S_{8}=(3,14)(4,15)(6,12)(7,11)$ $(19,28)(22,25), \quad S_{9}=(2,13)(5,16)(6,11)(7,12)(20,27)(21,26), S_{10}=(2,16)$ $(3,15)(4,14)(5,13)(17,24)(18,23), S_{11}=(2,3)(6,9)(7,8)(15,16)(21,22)$ $(27,28), S_{12}=(4,5)(6,8)(7,9)(13,14)(19,20)(25,26), S_{13}=(2,9)(3,6)$ $(5,10)(12,14)(18,20)(24,26), S_{14}=(2,7)(3,8)(4,10)(12,13)(18,19)(24,25)$, $S_{15}=(3,10)(4,8)(5,6)(11,16)(17,22)(23,28), \quad S_{16}=(2,10)(4,7)(5,9)(11,15)$
$(21,22)(23,27), \quad S_{17}=(1,23)(4,25)(5,26)(10,24)(15,22)(16,21), S_{18}=(1,24)$ $(2,27)(3,28)(10,23)(13,20)(14,19), S_{19}=(1,25)(4,23)(7,27)(8,28)(12,20)$ $(14,18), S_{20}=(1,26)(5,23)(6,28)(9,27)(12,19)(13,18), S_{21}=(1,27)(2,24)$ $(7,25)(9,26)(11,22)(16,17), S_{22}=(1,28)(3,24)(6,26)(8,25)(11,21)(15,17)$, $S_{23}=(1,17)(4,19)(5,20)(10,18)(15,28)(16,27), S_{24}=(1,18)(2,21)(3,22)$ $(10,17)(13,26)(14,25), S_{25}=(1,19)(4,17)(7,21)(8,22)(12,26)(14,24)$, $S_{26}=(1,20)(5,17)(6,22)(9,21)(12,25)(13,24), S_{27}=(1,21)(2,18)(7,19)$ $(9,20)(11,28)(16,23), S_{28}=(1,22)(3,18)(6,20)(8,19)(11,27)(15,23)$.

We can verify that the length of all cycles is three and there exist six cycles which contain a given element. On the other hand, the symmetric set consisting of all transpositions in S_{8} satisfies the same property. As a matter of fact, we can find an isomorphism ϕ of our symmetric set to the latter as follows. $\phi\left(a_{1}\right)=(1,2)$, $\phi\left(a_{2}\right)=(4,7), \phi\left(a_{3}\right)=(4,8), \phi\left(a_{4}\right)=(3,5), \phi\left(a_{5}\right)=(3,6), \phi\left(a_{6}\right)=(6,8), \phi\left(a_{7}\right)=(5,7)$, $\phi\left(a_{8}\right)=(5,8), \phi\left(a_{9}\right)=(6,7), \phi\left(a_{10}\right)=(3,4), \phi\left(a_{11}\right)=(7,8), \phi\left(a_{12}\right)=(5,6), \phi\left(a_{13}\right)=$ $(4,6), \phi\left(a_{14}\right)=(4,5), \phi\left(a_{15}\right)=(3,8), \phi\left(a_{16}\right)=(3,7), \phi\left(a_{17}\right)=(1,3), \phi\left(a_{18}\right)=(2,4)$, $\phi\left(a_{19}\right)=(2,5), \phi\left(a_{20}\right)=(2,6), \phi\left(a_{21}\right)=(1,7), \phi\left(a_{22}\right)=(1,8), \phi\left(a_{23}\right)=(2,3), \phi\left(a_{24}\right)=$ $(1,4), \phi\left(a_{25}\right)=(1,5), \phi\left(a_{26}\right)=(1,6), \phi\left(a_{27}\right)=(2,7), \phi\left(a_{28}\right)=(2,8)$. Since the group of displacements of the symmetric set of all transpositions in S_{8} coincides with A_{8}, this reestablishes the well known theorem of Dickson that $P S L_{4}\left(F_{2}\right)$ is isomorphic to A_{8}.

Leeward Community College

University of Hawaif

References

[1] J. Dieudonné: La geometrie des groupes classiques, Springer, Berlin, 1963.
[2] M. Kano, H. Nagao and N. Nobusawa: On finite homogeneous symmetric sets, Osaka J. Math. 13 (1976), 399-406.
[3] N. Nobusawa: On symmetric structure of a finite set, Osaka J. Math. 11 (1974), 569-575.
[4] _: Simple symmetric sets and simple groups, Osaka J. Math. 14 (1977), 411-415.

