ON MULTIPLY TRANSITIVE GROUPS

Yutaka HIRAMINE

(Received June 18, 1976)

1. Introduction

The known 4-fold transitive groups are $A_{n}(n \geq 6), S_{n}(n \geq 4), M_{11}, M_{12}$, M_{23} and M_{24}. Let G be one of these and assume G is a (4, μ)-group on Ω with $\mu \geq 4$. Here we say that G is a (k, μ)-group on Ω if G is k-transitive on Ω and μ is the maximal number of fixed points of involutions in G. Let t be an involution in G with $|F(t)|=\mu$, then $G^{F(t)}=G(F(t)) / G_{F(t)}$ is also a 4-fold transitive group. Here we set $F(t)=\left\{i \in \Omega \mid i^{t}=i\right\}$ and denote by $G(F(t)), G_{F(t)}$, the global, pointwise stabilizer of $F(t)$ in G, respectively.

In this paper we shall prove the following
Theorem 1. Let G be a 4-fold transitive group on Ω. Assume that there exists an involution t in G satisfying the following conditions.
(i) G is a $(4, \mu)$-group on Ω where $\mu=|F(t)|$.
(ii) $G^{F(t)}$ is a known 4-fold transitive group; $A_{n}(n \geq 6), S_{n}(n \geq 4)$ or M_{n} ($n=11,12,23$ or 24).

Then G is also one of the known 4-fold transitive groups.
This theorem is a generalization of the Theorem of T. Oyama of [10]: the case that $G^{F(t)} \simeq A_{n}(n \geq 6), S_{n}(n \geq 4)$ or M_{12} has been proved by T. Oyama and the case that $G^{F(t)} \simeq M_{11}, M_{23}$ or M_{24} by the author.

To consider the case that $G^{F(t)} \simeq M_{23}$ or M_{24}, we shall prove the following theorem in $\S 3$ and $\S 4$.

Theorem 2. Let G be a (1, 23)-group on Ω. If there exists an involution t such that $|F(t)|=23$ and $G^{F(t)} \simeq M_{23}$. Then we have
(i) If P is a Sylow 2-subgroup of $G_{F(t)}$, then P is cyclic of order 2 and $N_{G}(P) \cap g^{-1} P g \leq P$ for any $g \in G$.
(ii) $|\Omega|=69$ and G is imprimitive on Ω.
(iii) $O(G) \neq 1$ and is an elementary abelian 3-group. If we denote by ψ the set of $O(G)$-orbits on Ω, then $|\psi|=23$ and $G^{\psi} \simeq M_{23}$.

It follows from this theorem that there is no (3,24)-group such that for an involution t fixing exactly twenty-four points $G^{F(t)} \simeq M_{24}$.

In the remainder of this section we introduce some notations: Let G be a permutation group on Ω. For $X \leq G$ and $\Delta \subseteq \Omega$, we define $F(X)=\left\{i \in \Omega \mid i^{x}=i\right.$ for all $x \in X\}, X(\Delta)=\left\{x \in X \mid \Delta^{x}=\Delta\right\}, X_{\Delta}=\left\{x \in X \mid i^{x}=i\right.$ for every $\left.i \in \Delta\right\}$ and $X^{\Delta}=X(\Delta) / X_{\Delta}$. If p is a prime, we denote by $O^{p}(X)$, the subgroup of X generated by all p^{\prime}-elements in X and by $O^{p^{\prime}}(X)$, the subtroup of X generated by all p-elements in $X . \quad I(X)$ is the set of involutions in X.

Other notations are standard (cf. [6], [13]).

2. Preliminaries

First we describe the various properties of M_{23}.
(i) $\quad M_{23}$ is a 4-fold transitive group on twenty-three points $\{1,2 \cdots, 23\}$ and a Sylow 2-subgroup of the stabilizer of four points in M_{23} is of order 24. It has a seven fixed points and acts regularly on the remaining points.
(ii) M_{23} is a (4, 7)-group and has a unique conjugate class of involutions.
(iii) M_{23} is a simple group and the outer automorphism group of it is trivial.
(iv) The centralizer of an involution \widetilde{w} in M_{23} is a split extention of an elementary abelian normal subgroup \widetilde{E} of order 2^{4} by a group \tilde{M} which is isomorphic to $G L(3,2)$.
(v) The center of a Sylow 2-subgroup of M_{23} is cyclic of order 2.

Set $\tilde{C=C}(\tilde{w})$ and $F(\tilde{w})=\Delta=\{1,2,3,4,5,6,7\}$. Then we have
(vi) $\widetilde{E}^{\Delta} \simeq 1$ and \widetilde{E} is regular on $\{8,9, \cdots, 23\}$.
(vii) \tilde{M} is doubly transitive on Δ.
(viii) $\quad M_{23}{ }^{\Delta} \simeq A_{7}$ and $M_{23}(\Delta)=N(\widetilde{E})$.
(ix) $O(\widetilde{C})=1, O^{2}(\widetilde{C})=\tilde{C}$ and $O^{z^{\prime}}(\widetilde{C})=\tilde{C}$

We now prove the following lemmas.
Lemma 1. Let P be a 2-group and ϕ an automorphism of P of order 2 . If $\left|C_{P}(\phi)\right| \leq 2^{a}$, then $\left|\Omega_{1}\left(P / P^{\prime}\right)\right| \leq 4^{a}$.

Proof. Set $\left|\Omega_{1}\left(P / P^{\prime}\right)\right|=2^{r}$ and $\underset{\sim}{Q} / P^{\prime}=\Omega_{1}\left(P / P^{\prime}\right) \cap C(\phi)$. Then $|Q| P^{\prime} \mid \geq$ $2^{1 / 2 r}$ (cf. (2.7) of [8]). Since $[\phi, Q] \leq P^{\prime},(\langle\phi\rangle Q)^{\prime} \leq P^{\prime}$, whence $\left|\langle\phi\rangle Q:(\langle\phi\rangle Q)^{\prime}\right|$ $\geq 2^{1 / 2 r+1}$. On the other hand $\left|C_{\langle\phi\rangle Q}(\phi)\right|=\left|\langle\phi\rangle C_{Q}(\phi)\right| \leq 2^{a+1}$ and so $\mid\langle\phi\rangle Q$: $(\langle\phi\rangle Q)^{\prime} \mid \leq 2^{a+1}$ (cf. (2.8) of [8]). Thus $r \leq 2$ a.

Lemma 2. Let (G, Ω) be a $(1,23)$-group. Suppose there exists an involution t such that $|F(t)|=23$ and $G^{F(t)} \simeq M_{23}$. If P is a Sylow 2-subgroup of $G_{F(t)}$, then one of the following holds.
(i) $C_{G}(P)^{F(P)} \simeq M_{23}$ and there is an involution u in $N_{G}(P)-P$ satisfying $u^{G} \cap P \neq \phi$.
(ii) $\quad N_{G}(P)^{F(P)} \simeq M_{23}$ and $N_{G}(P) \cap g^{-1} P g \leq P$ for every $g \in G$.

Proof. Since $G(F(t))=N_{G}(P) G_{F(t)}$, we have $N_{G}(P)^{F(P)} \simeq M_{23}$. Suppose that
$N_{G}(P) \cap g^{-1} P g \nleftarrow P$ for some g in G. Since $F(P) \neq F\left(g^{-1} P g\right)$, there is an involution u in $g^{-1} P g$ satisfying (i). As $\left|F\left(u^{F(P)}\right)\right|=7$ (cf. (ii) of $\S 2$) and $|F(u)|=23$, $\mid\left((\Omega-F(P)) \cap F(u) \mid=16\right.$ and so $\left|C_{P}(u)\right| \leq 16$ by the semi-regularity of P on $\Omega-F(P)$. By Lemma $1,\left|\Omega_{1}\left(P / P^{\prime}\right)\right| \leq 2^{8}$. Since $|G L(n, 2)|$ is not divisible by the prime 23 when $1 \leq n \leq 8, O^{23^{\prime}}\left(N_{G}(P)\right)$ is a normal subgroup of $N_{G}(P)$ contained in $C_{G}(P)$ by Theorem 5.1.4 and 5.2.4 of [6]. Thus we obtain $C_{G}(P)^{F(P)} \simeq M_{23}$.

According as the lemma, the proof of Theorem 2 is divided into two cases.

3. Case (i)

In this section, we prove that the case (i) does not occur.
(3.1) The following hold.
(i) P is cyclic of order 2 and so we can choose P such that $P=\langle t\rangle$.
(ii) $\quad N_{G}(P)=C_{G}(t)=\langle t\rangle \times O^{2}\left(C_{G}(t)\right)$.
(iii) \quad Set $O^{2}\left(C_{G}(t)\right)=L(t)$. Then $L(t) / O(L(t)) \simeq M_{23}, O(L(t))^{F(t)}=1, t \notin\left\{g^{2} \mid\right.$ $g \in G\}$ and $L(t)$ has a unique conjugate class of involutions.
(iv) Let s be an involution of $L(t)$, then $s \in\left\{g^{2} \mid g \in G\right\}, I\left(C_{G}(t)\right) \subseteq t^{G} \cup s^{G}$, $t \nsim s$ and s is a central involution.

Proof. Since P is a Sylow 2-subgroup of $N_{G}(P)_{F(P)}, Z(P)$ is a unique Sylow 2-subgroup of $C_{G}(P)_{F(P)}$ and so we have $C_{G}(P)_{F(P)}=Z(P) \times O\left(C_{G}(P)\right)$. Set $\overline{C_{G}(P)}=C_{G}(P) / O\left(C_{G}(P)\right)$. Considering the normal series of $C_{G}(P), Z \overline{\left(C_{G}(P)\right)}=$ $\overline{Z(P)}$ and $\overline{C_{G}(\bar{P})} / \overline{Z(P)} \simeq M_{23}$. As the Schur multiplier of M_{23} is trivial ([7]), there exists a subgroup \bar{L} of $\overline{C_{G}(P)}$ such that $\overline{C_{G}(P)}=\bar{Z}(P) \times \bar{L}$ and $\bar{L} \simeq M_{23}$. Let L be the inverse image of \bar{L} in $C_{G}(P)$. Then $C_{G}(P)=Z(P) O\left(C_{G}(P)\right) L$, hence $C_{G}(P)=Z(P) \times L$ because $O\left(C_{G}(P)\right) \leq L . \quad$ Since $L=O^{2}\left(C_{G}(P)\right), P \times L$ is a normal subgroup of $N_{G}(P)$ and so $O^{2^{\prime}}\left(N_{G}(P)\right) \leq P \times L$. Hence if u is an involution satisfying (i) of Lemma 2 there are an element v in $I(P) \cup\{1\}$ and w in $I(L)$ with $u=v w$. Clearly $\tilde{C} \simeq C_{\bar{L}}(\bar{w})=\overline{C_{L}(w)} \simeq C_{L}(w) / O\left(C_{L}(w)\right)$ where $O\left(C_{L}(w)\right)=O(L) \cap$ $C_{L}(w)$ (cf. (ix) of $\S 2$). We denote $O\left(C_{L}(w)\right)=H$. Then $C_{L}(w) / H$ is isomorphic to \tilde{C} and $C_{L}(w) / H=E / H \cdot M / H$ such that $E / H=E^{F(P)} \simeq E_{16}, E^{F(P) \cap F(w)}=1$, $C_{L}(w)^{F(P) \cap F(w)}=M^{F(P) \cap F(w)}=M / H \simeq G L(3,2), E$ is a normal subgroup of $C_{L}(w)$ and $E^{F(P)} \cap M^{F(P)}=1$. By the fact that u is conjugate to some element of P, $G^{F(u)} \simeq M_{23}$ and it follows that either $y^{F(u)}=1$ or $y^{F(u)}$ is an involution for y in $I(E)$. If $y^{F(u)}=1$, then $F(y) \supseteq F(u)$. If $y^{F(u)}$ is an involution, $\left|F\left(y^{F(u)}\right)\right|=7$ and so $F(y) \cap F(u)=F(u) \cap F(P)$ because $F(u) \cap F(P) \subseteq F(y) \cap F(u)$ and $\left|F\left(u^{F(P)}\right)\right|=$ $\left|F\left(w^{F(P)}\right)\right|=7$.

We argue $F(y) \cap F(u)=F(u) \cap F(P)$ for any y in $I(E)$. Suppose $F(y) \supseteq F(u)$. Since $|F(y)| \leq 23, F(y)=F(u)$ and hence $\langle y, u\rangle$ is contained in a Sylow 2-subgroup of $G_{F(u)}$ and so $y^{G} \cap P \neq \phi$. Since $G^{F(y)} \simeq M_{23},[P, y]=1, F(P) \cap F(y)=$ $F(P) \cap F(u)$ and P is semi-regular on $\Omega-F(P)$, we have $P \simeq P^{F(y)}$ and P is an elementary abelian 2-group of order at most 16 . Hence any element which is
conjugate to some element of $P-\{1\}$ is not a square of any element in G. But the element y in L is a square of some element in L because $L / O(L) \simeq M_{23}$ and (ii) of $\S 2$, which is a contradiction. This shows that $F(u) \cap F(y)=F(u) \cap F(P)$ for any y in $I(E)$.

Set $\quad \Delta=F(u)-F(P)=F(u)-F(y)$. Since $|F(u)-F(P)|=\mid F(u)-(F(u) \cap$ $F(P) \mid=16$ and a Sylow 2-subgroup T of E is isomorphic to E_{16}, T acts regularly on Δ.

We argue $|P|=2$. Suppose $|P| \geq 4$. Then $\left|C_{P}(v)\right| \geq 4$. Since $C_{P}(v)$ is semi-regular on Δ and $\left[C_{P}(v), C_{L}(w)\right]=1$, we have $O^{7^{\prime}}\left(C_{L}(w)\right)^{\Delta}=1$. As $E \triangleright O\left(C_{L}(w)\right), O\left(C_{L}(w)\right)^{\Delta}=1$ and so by (ix) of $\S 2, C_{L}(w)^{\Delta}=1$, a contradiction. Thus (i), (ii) and (iii) are proved.

Let s be an involution of $L(t)$. Since t is not a square of any element of G, t is not conjugate to s and u is of the form $t w$ where w is an element in $I(L(t))$. On the other hand w is conjugate to s in $L(t)$ by (iii) and so u is conjugate to $t s$. Hence t is conjugate to $t s$. The four-group $\langle t, s\rangle$ is the center of a Sylow 2-subgroup of $C_{G}(t)$ by (v) of $\S 2$. Hence to complete the proof of (iv), we may assume t is not a central involution. Since $\langle t, s\rangle$ contains a central involution and $t \sim t s, s$ must be a central involution. Thus (iv) is proved.
(3.2) Let notations be as in (3.1). Then
(i) If $t_{1} \in t^{G}, u_{1} \in I(G)$ and $\left[t_{1}, u_{1}\right]=1$, then $t_{1}=u_{1}$ or $\left|F\left(t_{1}\right) \cap F\left(u_{1}\right)\right|=7$.
(ii) There exist an involution s in $L(t)$ and a four-group $\left\{u_{i} \mid 0 \leq i \leq 3\right\}$ of $L(t)$ satisfying the following.
$u_{0}=1 . \quad\left[s, u_{i}\right]=1, F\left(t u_{i}\right) \cap F\left(u_{j}\right)=F(t) \cap F\left(\left\langle u_{1}, u_{2}\right\rangle\right)$ if $0 \leq i, j \leq 3$ and $j \neq 0$. Set $F(t) \cap F\left(\left\langle u_{1}, u_{2}\right\rangle\right)=\Delta$. Then $|\Delta|=7$ and $|F(s) \cap \Delta|=3$.

Proof. By (ii) and (iii) of (3.1), (i) is obvious.
Let w, E and M be as in the proof of (3.1) and s an involution in M. Let T be a Sylow 2-subgroup of E normalized by s. Since T is isomorphic to E_{16}, there is a subgroup $\left\{1, u_{1}, u_{2}, u_{3}\right\}$ of T centralized by s (cf. Lemma 1). By (vi) of $\S 2,|F(T) \cap F(t)|=7$ and T is regular on $F(t)-F(T)$ and so $\left|F(t) \cap F\left(\left\langle u_{1}, u_{2}\right\rangle\right)\right|$ $=|\Delta|=7$. Since $F\left(t u_{i}\right) \cap F\left(u_{j}\right)$ contains $\Delta, F\left(t u_{i}\right) \cap F\left(u_{j}\right)=\Delta$ follows from (i). By (viii) of $\S 2,|F(s) \cap(F(t) \cap F(T))|=3$, hence $|F(s) \cap \Delta|=3$.
(3.3) Let $s,\left\{u_{0}, u_{1}, u_{2}, u_{3}\right\}$ be as in (ii) of (3.2). For $t_{1} \in t^{G}$ and $s_{1} \in I\left(L\left(t_{1}\right)\right)$, we set $L\left(t_{1}\right) \cap C\left(s_{1}\right)=L\left(t_{1}, s_{1}\right)$. Then we have
(i) Set $\Gamma_{i}=F\left(t u_{i}\right) \cap F(s)$ and $N_{i}=L\left(t u_{i}, s\right)(0 \leq i \leq 3)$, then $\left|\Gamma_{i}\right|=7, F(s) \supseteq$ $\bigcup_{i=0}^{3} \Gamma_{i}, \Gamma_{k} \cap \Gamma_{l}=\bigcap_{i=0}^{3} \Gamma_{i}(k \neq l),\left|\bigcap_{i=0}^{3} \Gamma_{i}\right|=3$ and $N_{i} / O\left(N_{i}\right)=N_{i}^{F\left(t u_{i}\right)} \simeq \tilde{C}$.
(ii) There exist subgroups E_{i}, M_{i} of N_{i} for each $i \in\{0,1,2,3\}$ such that $N_{i} / O\left(N_{i}\right)=E_{i} / O\left(N_{i}\right) \cdot M_{i} / O\left(N_{i}\right) \triangleright E_{i} / O\left(N_{i}\right), E_{i} / O\left(N_{i}\right) \simeq E_{16}, M_{i} / O\left(N_{i}\right) \simeq G L(3,2)$, $E_{i}{ }^{\Gamma}=1, N_{i}{ }^{\Gamma_{i}}=M_{i}{ }^{\Gamma_{i}} \simeq G L(3,2)$ and $M_{i}{ }^{\Gamma_{i}}$ is doubly transtive.

Proof. By the choice of s and $u_{i}(0 \leq i \leq 3)$, (i) is clear. Since $t u_{i}$ is con-
jugate to t for each i, we can define E_{i} and M_{i} in exactly the same way as E and M mentioned in the proof of (3.1). From this, (ii) immediately follows.
(3.4) Let notations be as in (3.1), (3.2) and (3.3). Then
(i) There is a $C_{G}(s)$-orbit Λ on $F(s)$ with $F(s) \supseteq \Lambda \supseteq \bigcup_{i=0}^{3} \Gamma_{i}$.
(ii) $|\Lambda|=19,21$ or 23 and $|F(s)|=19,21$ or 23.
(iii) If $k \in \Lambda$, then $C_{G}(s)_{k}$ has an orbit on $\Lambda-\{k\}$ of length at least 18 .
(iv) If $|\Lambda|=19$, then $C_{G}(s)^{\Lambda} \simeq A_{19}$ or S_{19}.

Proof. Since $N_{i} \leq C_{G}(s)$ and $N_{i}{ }^{\Gamma_{i}}$ is doubly transitive for i with $0 \leq i \leq 3$, (i) follows immediately from (i) of (3.3). By assumption, $|F(s)| \leq 23$ and obviously $\left|\bigcup_{i=0}^{3} \Gamma_{i}\right|=19$, hence $19 \leq|\Lambda| \leq 23$. On the other hand $\Lambda \supseteq \Gamma_{0}=$ $F(\langle t, s\rangle)$, so $|\Lambda|$ is odd. Thus (ii) holds. To prove (iii), we may assume $k \in \bigcap_{i=0}^{3} \Gamma_{i}$. Since $\left(N_{i}\right)_{k} \leq C_{G}(s)_{k}$ and $\left(N_{i}\right)_{k}$ is transitive on $\Gamma_{i}-\{k\}$, we have (iii).

Now suppose $|\Delta|=19$. Then $C_{G}(s)^{\wedge}$ is primitive and $N_{i}{ }^{{ }^{1}}{ }^{2} \simeq G L(3,2)$. Hence $C_{G}(s)^{\wedge}$ posseses an element of order 7. By Theorem 13.10 of [13], $C_{G}(s)^{\Lambda} \geq A_{19}$ holds and (3.4) is proved.
(3.5) Let notations be as in (3.1)-(3.4). There exists a Sylow 2-subgroup Q of $G_{F(s)}$ such that $s \in Z(Q)$ and $t \in N_{G}(Q)$. Let Γ be the $G^{F(s)}$-orbit containing Λ. Then
(i) $F(Q)=F(s), G^{F(s)}=N_{G}(Q)^{F(s)}$ and $|\Gamma|=19,21$ or 23.
(ii) If $k \in \Gamma$, then $N_{G}(Q)_{k}$ has an orbit on $\Gamma-\{k\}$ of elngth at least 18.
(iii) If $|\Gamma|=19$, then $N_{G}(Q)^{\Gamma} \simeq A_{19}$ or S_{19}.
(iv) If $|\Gamma|=21$, then $N_{G}(Q)^{\Gamma} \simeq A_{21}$ or S_{21}.
(v) If $|\Gamma|=23$, then $N_{G}(Q)^{\Gamma} \simeq A_{23}$ or S_{23}.

Proof. Let T be a Sylow 2-subgroup of $C_{G}(s)$ containing t. As s is a central involution by (iv) of (3.1) and $C_{G}(s) \leq G(F(s)), T$ is a Sylow 2-subgroup of $G(F(s))$. Set $Q=T \cap G_{F(s)}$. Then Q satisfies the condition of (3.5). Now we prove (i)-(v). (i), (ii) and (iii) follow immediately from (3.4).

To prove (iv), first we argue that $N_{G}(Q)^{\Gamma}$ is primitive. If $|\Lambda|=19, C_{G}(s)^{\Gamma}$ posseses an element of order 19 by (iv) of (3.4), hence $N_{G}(Q)^{\Gamma}$ is primitive. Therefore we may assume $|\Lambda|=|\Gamma|=21$ and we argue that $C_{G}(s)^{\wedge}$ is primitive. Suppose $C_{G}(s)^{\wedge}$ is imprimitive. Let B_{1} be a nontrivial block of $C_{G}(s)^{\wedge}$, then by (iii) of (3.4) we have $\left|B_{1}\right|=3$. Let $\Pi=\left\{B_{1}, B_{2} \cdots, B_{7}\right\}$ be a complete system of blocks. Since N_{i} is transitive on Π and $\left[N_{i}, t u_{i}\right]=1, t u_{i}$ fixes all blocks in Π. Hence $F\left(t u_{i}\right) \cap B_{l} \neq \phi$ for every l with $1 \leq l \leq 7$. On the other hand $\left|F\left(t u_{i}\right) \cap \Lambda\right|$ $=7$, hence $\left|F\left(t u_{i}\right) \cap B_{l}\right|=1$. From this $\left(t u_{i} t u_{j}\right)^{\wedge}=\left(u_{i} u_{j}\right)^{\wedge}=1$ for any $i, j \in$ $\{0,1,2,3\}$. If $F(Q) \neq \Lambda$, then $|F(Q)-\Lambda|=2$ and so $\left(t u_{i} t u_{j}\right)^{\Lambda_{1}}=\left(u_{i} u_{j}\right)^{\Lambda_{1}}=1$ where $\Lambda_{1}=F(Q)-\Lambda$. Hence $F\left(\left\langle u_{1}, u_{2}\right\rangle\right)=F(Q)=F(s)$, whihc is contrary to (ii) of (3.2). Thus $N_{G}(Q)^{\Gamma}$ is primitive.

Next we shall show that we many assume $E_{0}{ }^{F(Q)}=1$. Since $M_{0}{ }^{\Gamma_{0}} \simeq G L(3,2)$ and $M_{0} \leq G(F(Q)), M_{0}{ }^{F(Q)}$ posseses an element of order 7. We may assume this element has no fixed point on Γ, for otherwise we obtain $N_{G}(Q)^{\Gamma} \geq A_{21}$ by Theorem 13.10 of [13]. Hence an arbitrary M_{0}-orbit on Γ has length 7 or 14 and so $O\left(M_{0}\right)^{\Gamma}=1$ holds because $M_{0} / O\left(M_{0}\right)=M_{0}{ }^{\Gamma_{0}} \simeq G L(3,2)$. Hence $O\left(M_{0}\right)^{F(Q)}$ $=1$. Set $\Gamma-F(t)=\Delta_{0}$. Then $\Delta_{0}=\Gamma-\Gamma_{0}$ and $\left|\Delta_{0}\right|=14$. Since the element of $M_{0}{ }^{F(Q)}$ of order 7 as above and the element t have no fixed point on Δ_{0}, $\langle t\rangle \times N_{0}$ is transitive on Δ_{0}. It follows from $N_{0} D E_{0}$ that the orbits of $\langle t\rangle \times E_{0}$ on Δ_{0} form a complete system of blocks of $\langle t\rangle \times N_{0}$. We denote this $\Pi=$ $\left\{B_{1}, \cdots, B_{r}\right\}$. Since $O\left(M_{0}\right)=O\left(N_{0}\right), O\left(M_{0}\right)^{F(Q)}=1$ and $E_{0} / O\left(N_{0}\right) \simeq E_{16}$, we have $\langle t\rangle \times E_{0}$ is a 2-group on Δ_{0}. Hence $\left|B_{1}\right|=2$ and $r=7$. By (i) of (3.2), $F(s) \cap$ $F(t v)=F(s) \cap F(t)$ holds for every $v \in I\left(E_{0}\right)$ and so $\Delta_{0} \cap F(t v)=\phi$. Hence $v^{B_{k}}=$ $t^{B_{k} t v^{B_{k}}=1}$ for each B_{k} with $1 \leq k \leq 7$, which implies $E_{0}{ }^{\Gamma}=1$. If $F(Q) \neq \Gamma$, then $|F(Q)-\Gamma|=2$. Since $(F(Q)-\Gamma) \cap F(t v)=(F(s) \cap F(t v))-\Gamma=\phi$ for every $v \in$ $I\left(E_{0}\right)$, we get $v^{F(Q)-\Gamma}=t^{F(Q)-\Gamma} t v^{F(Q)-\Gamma}=1$. Thus $E_{0}^{F(Q)}=1$.

We denote $L(t)^{F(t)}=\overline{L(t)}$. Since $\overline{L(t)}=L(t) / O(L(t))$ and $O\left(E_{0}\right)=E_{0} \cap O(L(t))$, we have $\left(\overline{L(t)} \cap N\left(\overline{E_{0}}\right)\right)^{\Gamma_{0}} \simeq A_{7}$ by (viii) of §2. Hence $\left(L(t) \cap N\left(E_{0} O(L(t))\right)\right)^{\Gamma_{0}} \simeq A_{7}$ and so if T is a Sylow 2-subgroup of E_{0}, we have $N_{L(t)}(T)^{\Gamma_{0}} \simeq A_{7}$. We note that $F(T)=F(Q)$ because $E_{0}{ }^{F(Q)}=1$ and $L(t)$ has a unique conjugate class of involutions. So we have $N_{L(t)}(T) \leq G(F(Q)) \cap G\left(\Gamma_{0}\right)$. Let y_{0} be a 5-element of $N_{L(t)}(T)$ such that the order of $y_{0}{ }^{\Gamma_{0}}$ is 5 . Since $y_{0} \in G(F(Q)) \cap G\left(\Gamma_{0}\right)$, we get $y_{0} \in G(\Gamma) \cap G\left(\Gamma_{0}\right)$. Therefore $\left|F\left(y_{0}{ }^{\mathrm{r}}\right)\right| \geq 6$. As $N_{G}(Q)^{\Gamma}$ is primitive, it follows from Theorem 13.10 of [13] atht $N_{G}(Q)^{\Gamma} \geq A_{21}$. Thus (iv) is proved.

Finally we prove (v). If $|\Gamma|=23, F(Q)=\Gamma$. Since $G^{\Gamma} \geq N_{i}{ }^{\Gamma}$ and $N_{i}{ }^{\Gamma}$ involves the group isomorphic to $G L(3,2), G^{\Gamma}$ is not solvable. Hence by the result of [11], we have $G^{\Gamma} \simeq M_{23}, A_{23}$ or S_{23}. If $G^{\Gamma}=N_{G}(Q)^{F(Q)} \simeq M_{23}$, we can apply (iii) of (3.1) to s and obtain $s \notin\left\{g^{2} \mid g \in G\right\}$, which is contrary to (iv) of (3.1). (Here we note that $I(L(t)) \subseteq s^{G}$ and hence (i) of Lemma 2 occurs with respect to s.)
(3.6) Let notations be as in (3.5). We set $N=C_{G}(Q)$ if $F(Q)=\Gamma$ and $N=C_{G}(Q)_{\psi}$ where $\psi=F(Q)-\Gamma$ if $F(Q) \neq \Gamma$. Then $N^{\Gamma} \geq A_{|\Gamma|}$.

Proof. Since $|\Gamma \cap F(t)|=7$, by (i) of (3.2) $C_{Q}(t)$ acts semi-regularly on $F(t)-\Gamma$ and so $\left|C_{Q}(t)\right| \leq 16$. Hence $\left|\Omega_{1}\left(Q / Q^{\prime}\right)\right| \leq 2^{8}$ by Lemma 1. Since $G L(n, 2)$ is a 19^{\prime}-group when $1 \leq n \leq 8, O^{19^{\prime}}\left(N_{G}(Q)\right)$ is a normal subgroup of $N_{G}(Q)$ contained in $C_{G}(Q)$ by Theorem 5.1.4 and 5.2.4 of [6]. Hence $C_{G}(Q)^{\Gamma}$ $\geq A_{|\Gamma|}$ by (iii), (iv) and (v) of (3.5), so that $N^{\mathrm{r}} \geq A_{|\Gamma|}$ because $|\psi| \leq 4$.
(3.7) We have now a contradiction in the following way.

Let notations be as in (3.1)-(3.6). Set $H=\langle t\rangle N$. We denote $H^{\Gamma}=\bar{H}$. Since $|F(\bar{t})|=7$ and by (3.6) $\bar{N} \geq A_{|\Gamma|}$, there exists in N an element v such that the order of \bar{v} is $5,[\bar{t}, \tilde{v}]=1$ and $\nabla^{F(t)} \neq 1$. We may assume v is a 5 -element.

Cleary v normalizes $\langle t\rangle N_{\Gamma}$. Since $Z(Q)$ is a unique Sylow 2-subgroup of N_{Γ}, $\langle t\rangle Z(Q)$ is a Sylow 2-subgroup of $\langle t\rangle N_{\Gamma}$. By the Frattini argument there is a 5-element w in N such that $\bar{v}=\bar{w}$ and w normalizes $\langle t\rangle Z(Q)$. It follows from $Z(Q) \leq Z(N)$ that w stabilizes a normal series $\langle t\rangle Z(Q) \triangleright Z(Q) \triangleright 1$. By Theorem 5.3.2 of [6], w centralizes $\langle t\rangle Z(Q)$ and hence $w \in L(t, s)$. Since $F(t) \cap F(s)=$ $F(t) \cap \Gamma, w^{F(t) \cap F(s)}=v^{F(t) \cap \Gamma} \neq 1$. Hence $L(t, s)^{F(t) \cap F(s)} \simeq G L(3,2)$ has a nontrivial 5-element, a contradiction.

4. Case (ii)

In this section we shall prove that if the case (ii) of Lemma 2 holds, then (G, Ω) is an imprimitive group of degree 69 and has properties listed in the conclusion of Theorem 2. From now on we assume the involution t is contained in P because P is an arbitrary Sylow 2-subgroup of $G_{F(t)}$.
(4.1) $O(G) \neq 1$.

Proof. Let (G, Ω) be a minimal counterexample to (4.1).
Since $\left|G: N_{G}(P)\right|$ is odd, there is a Sylow 2-subgroup S of G such that $S \triangleright P$. Set $H=G(F(t))$. If $t \in H^{g}$ for some $g \in G$, then $t^{g^{-1}} \in H$ and $\left(t^{g^{-1}}\right)^{h} \in S$ for some $h \in H$ because S is a Sylow 2-subgroup of H. Since $N_{G}(P) \cap P^{g^{-1} h} \leq P$, $F\left(t^{g^{-1} h}\right)=F(P)=F(t)$, hence $g^{-1} h \in H$, which implies $g \in H$. Consequently $t \in H^{g}$ if and only if $g \in H$. If $t_{1}(\neq t)$ is an involution in $t^{G} \cap C(t)$, then as above $t_{1} \in$ $H_{F(t)}$ and so $t t_{1} \in I\left(H_{F(t)}\right)$. Hence $\left(t t_{1}\right)^{g} \in H$ if and only if $g \in H$.

Thus we can apply Theorem 3.3 of [1] to t, H and G. Set $\left\langle t^{G}\right\rangle=L$. Since $O(G)=O_{2}(G)=1$, the 2-rank of any nontrivial characteristic subgroup of L is at least 2 by the Theorem of Brauer-Suzuki ([3]) and Theorem 7.6.1 of [6]. Hence $H \cap L^{\prime}$ is strongly embedded in L^{\prime}. By the Theorem of Bender ([2]), L^{∞} is a simple group isomorphic to $\operatorname{PSL}(2, q), S z(q)$ or $\operatorname{PSU}(3, q)$ for $q=2^{n} \geq 4$. Here L^{∞} is the last term of the derived series of L. Set $L^{\infty}=N$. We note that N is a normal subgroup of G and $|N: N \cap H| \geq 5$.

Since $G^{F(t)} \triangleright N^{F(t)}$ and $G^{F(t)} \simeq M_{23}$, we have $N^{F(t)} \simeq M_{23}$ or 1. Suppose $N^{F(t)} \simeq M_{23}$. Since $N \neq M_{23}$, we have $N \nsubseteq G(F(t))$. If $\left|N_{F(t)}\right|$ is odd, $G=\langle t\rangle N$ and $P=\langle t\rangle$ by the minimality of G. By the Glauberman's Z^{*}-theorem ([5]), $G \triangleright\langle t\rangle O(G)=\langle t\rangle$, a contradiction. If $\left|N_{F(t)}\right|$ is even, by the minimality of G, $G=N$. Since N has a unique conjugate class of involution, $I\left(N_{G}(P)\right) \subseteq I(P)$ by the assumption (ii) of Lemma 2. Hence S / P is an elementary abelian 2-group (cf. section 3 of [2]), which is contrary to $N_{G}(P)^{F(P)} \simeq M_{23}$.

Now we suppose $N^{F(t)}=1$. Since $N \cap P \neq 1$ and $N C_{G}(N)=N \times C_{G}(N)$, the assumption (ii) of Lemma 2 forces $\left|C_{G}(N)_{F(t)}\right|$ is odd. Hence if $\left|C_{G}(N)\right|$ is even, $C_{G}(N)^{F(t)} \neq 1$ and so $C_{G}(N)^{F(t)} \simeq M_{23}$ because $M_{23} \simeq G^{F(t)} \triangleright C_{G}(N)^{F(t)}$. Obviously $C_{G}(N) \leq G\left(F\left((N \cap P)^{g}\right)\right)=G\left(F\left(t^{g}\right)\right)$ for any $g \in G$. Therefore $\left\{F(t)^{g} \mid\right.$ $g \in G\}$ forms a complete system of blocks of G on Ω and an involution of $C_{G}(N)$
has exactly seven fixed points on each block. But (G, Ω) is a (1, 23)-group and hence $\left|\left\{F(t)^{g} \mid g \in G\right\}\right|=3$, which implies $|N: N \cap H|=3$, a contradiction. Thus we have $C_{G}(N)=1$. From this G / N is isomorphic to a subgroup of outer automorphism group of N. Hence G / N is solvable ([12]) and so $G^{\infty}=N$. Thus $N^{F(t)} \geq\left(G^{F(t)}\right)^{\infty} \simeq M_{23}$, a contradiction.
(4.2) P is cyclic or generalized quaternion.

Proof. Suppose that P contains a four-group Q. Then $O(G)=\left\langle C_{0(G)}(x)\right| 1$ $\neq x \in Q>$ by Theorem 5.3.16 of [6] and $O(G) \leq G(F(P))=G(F(t))$. Since $O(G)^{F(t)} \triangleleft G^{F(t)} \simeq M_{23}, O(G)^{F(t)}=1$. Hence $O(G) \leq G_{F(t)}$, so that $O(G)=1$, which is contrary to (4.1). Thus P is cyclic or generalized quaternion.

Let us note that the automorphism group of P is a $\{2,3\}$-group. Hence $N_{G}(P)^{F(P)}=C_{G}(P)^{F(P)} \simeq M_{23} . \quad$ By the similar argument as in the first paragraph of the proof of (3.1), we have
(4.3) $\quad C_{G}(P)^{F(P)} \simeq M_{23} . \quad C_{G}(P)=Z(P) \times O^{2}\left(C_{G}(P)\right) . \quad$ Set $L=O^{2}\left(C_{G}(P)\right)$. Then $L^{F(P)}=L / O(L) \simeq M_{23}$.

By the Feit-Thompson theorem ([4]), $O(G)$ is solvable. Hence we have (4.4) Let N be a minimal normal subgroup of G contained in $O(G)$. Then N is an elementary abelian p-group for some odd prime p.
(4.5) Set $K=\left\{x \in N \mid x^{t}=x^{-1}\right\}$. Then
(i) L normalizes K and $K \nsubseteq G(F(t))$.
(ii) Set $X=(\langle t\rangle \times L) K$ and $\Gamma=\alpha^{X}$ where $\alpha \in F(t)$. Then $\Gamma \supseteq F(t),|\Gamma|>$ 23 and $|\Gamma|$ is odd.

Proof. Since $N^{F(t)}<G^{F(t)} \simeq M_{23}, N^{F(t)}=1$. Hence $N \nsubseteq G(F(t))$. By Lemma 2.1 of [2], $N=C_{N}(t) K$ and so $K \nsubseteq G(F(t))$. If $x \in K$ and $y \in L, x^{y} \in N$. It follows from (4.2) that $t \in Z(P)$. Hence $[L, t]=1$ and $\left(x^{y}\right)^{t}=x^{y t}=x^{t y}=\left(x^{-1}\right)^{y}$ $=\left(x^{y}\right)^{-1}$. So we have $x^{y} \in K$. Thus (i) holds.

Since $L^{F(t)} \simeq M_{23}$ and $K \nsubseteq G(F(t)), \Gamma \supseteq \alpha^{L}=F(t)$ and $\Gamma \neq F(t)$. Let T be a Sylow 2-subgroup of L. Then $F(T) \cap F(t) \neq \phi$ and $\langle t\rangle \times T$ is a Sylow 2-subgroup of X. Therefore $|\Gamma|$ is odd. Thus (ii) holds.
(4.6) Let $\Pi=\left\{\Delta_{1}, \Delta_{2}, \cdots, \Delta_{r}\right\}$ be the set of K-orbits on Γ. Then the following hold.
(i) $r=23, K^{\mathrm{I}}=t^{\mathrm{I}}=O(L)^{\mathrm{I}}=1, X^{\mathrm{I}}=L^{\mathrm{I}} \simeq M_{23}$ and $X_{\mathrm{\Pi}}=\langle t\rangle O(L) K$.
(ii) If $y \in I(\langle t\rangle \times L)$ and $y \neq t$. Then $\left|F\left(y^{\mathbb{I}}\right)\right|=7$ and for $\Delta_{i}, \Delta_{j} \in F\left(y^{\mathrm{I}}\right)$, $\left|\Delta_{i} \cap F(y)\right|=\left|\Delta_{j} \cap F(y)\right|$.
(iii) For $y \in I(\langle t\rangle \times L)-\{t\}$ and $\Delta_{i} \in F\left(y^{\mathrm{II}}\right)$ we set $\left|\Delta_{i} \cap F(y)\right|=m(y)$. Then $m(y)=1$ or 3 and $|F(y) \cap \Gamma|=7 \times m(y)$.

Proof. If $r=1$, then K^{F} is regular, so that $\left|F\left(t^{\mathrm{r}}\right)\right|=\left|K^{\mathrm{r}} \cap C\left(t^{\mathrm{r}}\right)\right|$. On the other hand $\left|F\left(t^{\Gamma}\right)\right|=23$ and by the definition of $K,\left|K^{\Gamma} \cap C\left(t^{\Gamma}\right)\right|=1$, a contradiction. Thus $r \neq 1$.

We consider the action of X on the set Π. Since $K^{\Pi}=1,[t, L]=1$ and X
is transitive on Π, we have $t^{\mathbb{I}}=1$ and L is transitive on Π. Hence for $\Delta_{i}, \Delta_{j} \in$ Π, there is an element $x \in L$ such that $\left(\Delta_{i}\right)^{x}=\Delta_{j}$. Then $\left|F(t) \cap \Delta_{i}\right|=\mid(F(t) \cap$ $\left.\Delta_{i}\right)^{x}\left|=\left|F(t) \cap \Delta_{j}\right|\right.$, so that $| F(t)\left|=\left|\Delta_{i} \cap F(t)\right| \times r\right.$ for any $\Delta_{i} \in \Pi$. Hence $\left|\Delta_{i} \cap F(t)\right|=1$ and $r=23$. Since $F(O(L)) \supseteq F(t), O(L)^{\mathbb{I}}=1$ and $X_{\mathrm{II}}=\langle t\rangle O(L) K$. Thus (i) holds.

Let $y \in I(\langle t\rangle \times L)$ and $y \neq t$. Then $y^{\mathbb{\pi}} \neq 1$ and by (ii) of $\S 2,\left|F\left(y^{\mathbb{I}}\right)\right|=7$. Since $X_{\mathrm{\Pi}}=\langle t\rangle O(L) K, L^{\mathrm{II}} \cap C\left(y^{\mathrm{I}}\right)=\left(C_{L}(y)\right)^{\mathrm{I}}$. By (vii) of $\S 2, L^{\mathrm{II}} \cap C\left(y^{\mathrm{I}}\right)$ is transitive on $F\left(y^{\mathrm{I}}\right)$. Therefore as above we obtain (ii).

Since $23 \geq|F(y) \cap \Gamma|=\left|F\left(y^{\mathrm{II}}\right)\right| \times m(y)=7 \times m(y)$, we have $m(y) \leq 3$. By (ii) of (4.5), $|\Gamma|$ is odd and so $m(y)$ is odd. Thus (iii) holds.
(4.7) Let $s \in I(L)$. Then the following hold.
(i) $m(s)=3$ and $|F(s) \cap \Gamma|=21$.
(ii) If $\Delta \in F\left(s^{\mathrm{I}}\right)$, then $F(s) \supseteq \Delta$. Moreover $|\Delta|=3$ and N is an elementary abelian 3-group.
(iii) $F(s) \subseteq \Gamma$ and $|F(s)|=21$.

Proof. Suppose $m(s) \neq 3$. Then by (iii) of (4.6) $m(s)=1$. Since K^{Δ} is regular for any $\Delta \in \Pi$, if $\Delta \in F\left(s^{\mathbb{T}}\right)$, s^{Δ} inverts K^{Δ}. Hence $(t s)^{\Delta}$ centralizes K^{Δ} and so $F(t s) \supseteq \Delta$ and $m(t s)=|\Delta|$. Since $|\Delta| \neq 1$, by (iii) of (4.6) we have $|\Delta|=m(t s)=3$. Therefore by (iii) of (4.6) $|F(t s) \cap \Gamma|=21$. Since $L / O(L) \simeq M_{23}$, s^{Γ} is an even permutation. Furthermore $|F(s) \cap \Gamma|=7$ because $m(s)=1$. On the other hand $|\Gamma|=|\Delta| \times 23=69$ and s^{Γ} is an odd permutation, a contradiction. Thus (i) holds.

Since $|F(s) \cap \Gamma|=21$ and s^{Γ} is an even permutation, t^{Γ} is an odd permutation because $|F(t) \cap \Gamma|=23$. Hence $(t s)^{\Gamma}$ is an odd permutation and so $m(t s)=1$ and $(t s)^{\Delta}$ inverts K^{Δ} for $\Delta \in F\left(s^{\mathbb{I}}\right)=F\left((t s)^{\mathbb{I}}\right)$. Therefore $s^{\Delta}=\left(t^{\Delta}\right)(t s)^{\Delta}$ centralizes K^{Δ} and $F(s) \supseteq \Delta$, so that $m(s)=|\Delta|=3$. Hence K and N are elementary abelian 3-groups, so (ii) holds.

Since $L^{F(t)}=L / O(L) \simeq M_{23}$, by (vi) of $\S 2$, there exists a four-group $\left\langle s_{1}, s_{2}\right\rangle$ of L such that $F\left(s_{1}\right) \cap F(t)=F\left(s_{2}\right) \cap F(t)$. Since L has a unique conjugate class of involutions (cf. (ii) of $\S 2$), $m\left(s_{1}\right)=m\left(s_{2}\right)=m\left(s_{1} s_{2}\right)=3$. Hence $F\left(s_{1}\right) \cap \Gamma=F\left(s_{2}\right) \cap \Gamma$ $=F\left(s_{1} s_{2}\right) \cap \Gamma$ and $\left|F\left(s_{1}\right) \cap \Gamma\right|=21$. To prove (iii) it will suffice to show that $\left|F\left(s_{1}\right)\right|=21$. Assume $\left|F\left(s_{1}\right)\right| \neq 21$. Then $\left|F\left(s_{1}\right)\right|=23$ and $\left|F\left(s_{1}\right) \cap(\Omega-\Gamma)\right|=2$. Since $L / O(L) \simeq M_{23}$, we have $C_{L}\left(s_{1}\right) / O\left(C_{L}\left(s_{1}\right)\right) \simeq \tilde{C}$ by the property of M_{23}. $C_{L}\left(s_{1}\right)$ acts on $F\left(s_{1}\right) \cap(\Omega-\Gamma)$ and $O^{2}(\tilde{C})=\tilde{C}$ by (ix) of $\S 2$, hence $C_{L}\left(s_{1}\right)$ acts trivialy on $F\left(s_{1}\right) \cap(\Omega-\Gamma)$. Therefore $F\left(s_{1}\right)=F\left(s_{2}\right)=F\left(s_{1} s_{2}\right)$ and $\left|F\left(s_{1}\right)\right|=23$. By Theorem 5.3.16 of [6], $N=\left\langle C_{N}(s) \mid 1 \neq s \in\left\langle s_{1}, s_{2}\right\rangle\right\rangle$ and hence N acts on $F\left(s_{1}\right)$. From this $3\left|\left|F\left(s_{1}\right)\right|\right.$, a contradiction. Thus (iii) holds.
(4.8) The following hold.
(i) $O(G)$ is an elementary abelian 3-group.
(ii) G is imprimitive on Ω and the length of an $O(G)$-orbit is three. $|P|=2$.
(iii) $|\Omega|=69$. Let ψ be the set of $O(G)$-orbits on Ω. Then $|\psi|=23$ and $G^{\psi} \simeq M_{23}$.

Proof. Since $L^{F(t)}=L / O(L) \simeq M_{23}$, there exist two subgroups $\left\langle s_{1}, s_{2}\right\rangle,\left\langle s_{3}, s_{4}\right\rangle$ of L satisfying the following (cf. §2). $\left\langle s_{1}, s_{2}\right\rangle \simeq\left\langle s_{3}, s_{4}\right\rangle \simeq E_{4}, F\left(s_{1}\right) \cap F(t)=$ $F\left(s_{2}\right) \cap F(t)=F\left(s_{1} s_{2}\right) \cap F(t), F\left(s_{3}\right) \cap F(t)=F\left(s_{4}\right) \cap F(t)=F\left(s_{3} s_{4}\right) \cap F(t), \mid\left(F\left(s_{1}\right) \cap F(t)\right)$ $\cap\left(F\left(s_{3}\right) \cap F(t)\right) \mid=3$. By (ii) and (iii) of (4.7), we have $\Gamma \supseteq F\left(s_{1}\right)=F\left(s_{2}\right)=F\left(s_{1} s_{2}\right)$, $\left|F\left(s_{1}\right)\right|=21, \Gamma \supseteq F\left(s_{3}\right)=F\left(s_{4}\right)=F\left(s_{3_{4}}\right),\left|F\left(s_{3}\right)\right|=21$ and $\left|F\left(s_{1}\right) \cap F\left(s_{3}\right)\right|=9$.

On the other hand $O(G)=\left\langle C_{0(G)}(s) \mid 1 \neq s \in\left\langle s_{1}, s_{2}\right\rangle\right\rangle=\left\langle C_{0(G)}(s) \mid 1 \neq s \in\left\langle s_{3}, s_{4}\right\rangle\right\rangle$ by Theorem 5.3.16 of [6]. Hence $O(G)$ acts on $F\left(s_{1}\right)$ and $F\left(s_{3}\right)$, so that also on $F\left(s_{1}\right) \cap F\left(s_{3}\right)$. Therefore the length of an $O(G)$-orbit is three because it is a common divisor of 9 and 21. From this $O(G)$ is an elementary abelian 3-subgroup and by (4.2) P is cyclic of order 2. Thus (i) and (ii) hold.

Let ψ be the set of $O(G)$-orbits on Ω. Since $\psi \supseteq \Pi, \Pi=F\left(t^{\psi}\right)$ and $X^{\Pi} \simeq$ M_{23}, we have $G^{\mathrm{II}} \geq M_{23}$. If $G^{\mathrm{I}} \neq M_{23}$, then $G^{\mathrm{I}} \geq A_{23}$ by the result of [11]. But if S is as in (4.1), the order of S / P is equal to that of a Sylow 2-sulgroup of M_{23}, a contradiction. Hence $G^{\mathrm{I}} \simeq M_{23}$.

Now we suppose $\psi \neq \Pi$. Then $t^{\psi} \neq 1$ and G^{ψ} satisfies (ii) of Lemma 2. On the other hand $O\left(G^{\psi}\right)=1$, which is contrary to (4.1), so (iii) holds.

5. Proof of Theorem 1

The proof of Theorem 1 is obtained in the following way: By the Theorem of Oyama and his lemma of [10], it will suffice to consider the case that $G^{F(t)}$ is isomorphic to M_{11}, M_{23} or M_{24}. Since G is 4-fold transitive on $\Omega, G^{F(t)} \neq M_{23}$ and M_{24} by Theorem 2. Hence we consider the case that $G^{F(t)} \simeq M_{11}$.

Suppose that $G^{F(t)} \simeq M_{11}$. Let P be a Sylow 2-subgroup of $G_{F(t)}$ and S a Sylow 2-subgroup of a stabilizer of four points of Ω in G such that $S \geq P$. Then $N_{s}(P) \leq G(F(P))$, hence $N_{s}(P)^{F(t)}=1$ by the structure of M_{11}, so $F\left(N_{s}(P)\right)$ $=F(t)$. Since P is a Sylow 2-subgroup of $G_{F(t)}, N_{S}(P)=P$, which forces $S=P$, hence $|F(S)|=11$. By the Theorem of [9], $G^{\Omega}=M_{11}$, a contradiction.

Osaka Kyoiku University

References

[1] M. Aschbacher: On finite groups of component type, Illinois J. Math. 19 (1975), 87-115.
[2] H. Bender: Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festlast, J. Algebra 17 (1971), 527-554.
[3] R. Brauer and M. Suzuki: On finite groups of even order whose 2-Sylow subgroup is a quaternion group, Proc. Nat. Acad. Sci 45 (1959), 1757-1759.
[4] W. Feit and J.G. Thomson: Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029.
[5] G. Glauberman: Central elements in core-free groups, J. Algebra 4 (1966), 403420.
[6] D. Gorenstein: Finite groups, Harper and Row, New York, 1968.
[7] R.L. Griess: Schur multipliers of the known finite simple groups, Bull. Amer. Math. Soc. 178 (1972), 68-71.
[8] Y. Hiramine: On transitive groups in which the maximal number of fixed points of involutions is five, to apper.
[9] T. Oyama: On multiply transitive groups IX, Osaka J. Math. 7 (1970), 41-56.
[10] T. Oyama: On multiply transitive groups XII, Osaka J. Math. 11 (1974), 595636.
[11] E.T. Parker and P.J. Nikolai: A search for analogues of the Mathieu groups, Math. Comp. 12 (1958), 38-43.
[12] R. Steinberg: Automorphisms of finite linear groups, Canad. J. Math. 12 (1960), 606-615.
[13] H. Wielandt: Fimite permutation groups, Academic Press, New York, 1964.

