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1. Introduction. Let π be a set of primes, and let n=p1 p2 pt be
a positive integer, where the p{ are (not necessarily distinct) primes. Then we
say that the total exponent (shortly Γ-exponent) of n is t and write e(ri)=t. If
pi€Ξπ for z=l , 2, •••, ΐ with the above notation, then n is said to be a 7r-number.

Let Irr(G) be the set of irreducible complex characters of a group G. We
say that a group G has c.d.π {character degrees π) if X(ί) is a τr-number for any
X^Irr(G), a group G has r.Λ\£ (representation exponent e) if e(%(l))^£ for any
X€Ξlrr(G), and G has r.x.e for π (representation exponent e for π) if G has c.d.π"
and r.x.e.

In this paper we shall prove the following theorems.

Theorem I. Let G have r.x.e for π. Suppose G is π-solvable when
\π\ ^ 3 . Then G has a normal series

G = Λt>β,-iI>Λ-it> - t>Bot>4>

and there exists some prime p{ e π for any i such that
( 1 ) A( has r.x.ifor π,
( 2) Ai/Bi-! is a cyclic πrgroup, where π~π— {pi\,
( 3 ) Bi.1/Ai_1 is an elementary abelian prgroup, and
( 4 ) \Ai\ Ai_x\ is a π-number with e(\A{\ ^4 I _ 1 | )^2/+1.
In particular G has a subnormal abelian subgroup Ao whose index is a π-number

with e(\G: A0\)^e(e+2).

This theorem generalizes the result of I.M. Isaacs and D.S. Passman [5]
in the case π={p}. In the case π={p), indeed, p1=p2="-~ρe—p and the
7rt are empty with the above notation. Thus Ai=Bi_ly that is, the normal
series in Theorem I has elementary abelian factor groups.

In Theorem I G may have, however, larger subnormal abelian subgroups.
We shall show the existence of such subgroups. First we make the following
definition.

Let fs (resp. fn) be a function with the following property. If G is a sol-
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vable (resp. nilpotent) group with r.x.ey then G has a subnormal abelian sub-

group A with e( I G: A \)<.fs(e) (resp. fn(e)). Moreover we assume that fs (resp.

fn) is the smallest such function. Let / φ be the corresponding function for

the class of groups with r.x.e for a prime p.

In what follows, we denote the largest integer <Lx by [x].

In [6] we know the existence of/(j>) for any prime p. Actually /φ(0)=0 and

2e^f(p)(e)^[4-e—ϊog24e] when e^ί .

In this paper we have:

Theorem II. The functions fs and fn exist and satisfy

( 1 ) fΛ(0)=0,f,(l)=2and

2e^/„(<;) ̂ [4e-log2&>] when e^2.

(2) Ue)^fs(e)^e(e+3)I2.
This yields in particular

Λ(0)=/.(0)=0,/.(l)=/χi)=2,/ ( 1(2)=4 andfs(2)=4 or 5.

All groups in this paper are assumed to be finite unless otherwise stated.

Let N<]G. If X^Irr(G/N)f then X may be viewed as a character of G. For

example G=Irr(G/G/), where G/ is the commutator subgroup of G, is the

set of linear characters of G. In what follows an irreducible character means an

irreducible complex character. If G is a group, then Z(G) and Φ(G) denote the

center and Frattini subgroup of G respectively. If S is a set, then | S |

denotes the cardinality of S. We write

π(G)= {primes p | p divides | G \},

π '= {primes p \ p $ π), and

P'=iP)'
Let % be a character. We denote simply e(X(l)) by e(X). If e(X)=e,

then we say that % is a character with total exponent e (shortly Γ-exponent

e). All the other notation can be seen in [3] or [6].

The author would like to express his hearty thanks to Professor H. Nagao

who encouraged him in whole study.

2. Groups with cd.π. The following theorem is a slight extension of

the Burnside's ^Y-Theorem, (see [3] 4.3.3).

T h e o r e m 2.1. Let G have c.d.π. If \π\^2, then G is solvable.

Proof. Since any normal subgroup or factorgroup of G satisfies the same

assumption, the theorem follows at once by induction on \G\ if G is not simple.

So we may assume G is simple. Therefore we may also assume p^πCL {p,q}

and G has a nontrivial Sylow ^-subgroup P. Choose I Φ Λ GZ(P). Let

1GΦ%^Irr(G). If X{\) is a power of p, then the simplicity of G and Burnside's
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lemma (see [3] 4.3.1) imply X(x)=0. Thus by orthogonality relations,

0= Σ

where a is an algebraic integer. So a== — l/q, which is clearly imposible.
There exists no extension of Theorem 2.1 to the case \π\ ^ 3 as SL(2,5)

shows.
The following results on groups with cΛ.p' for a prime p are shown in [8]

and [1].

Proposition A (N. Ito). If G is a solvable group with c.d.p', then G has
a normal abelian Sylow p-subgroup.

Proposition B (P. Fong). If G is a p-slovable group with c.d.p'y then G has
a normal abelian Sylow psubgroup.

The latter includes the former. We shall extend these propositions in The-
orem 2.5. We start with some lemmas.

If a 7r-number n is also a Tzr'-number, then n=\. Therefore the following
lemma is immediate.

Lemma 2.2. If G is a πf-group with c.d.π, then G is abelian.

Lemma 2.3 (P. X. Gallagher [2], Theorem 8). Suppose G is a π-separable
group with a Hall π'-subgroup H. If the degree of any irreducible constituent
of (\H)G is a 7t-number, then H^\G.

REMARK. In [2] the term "zr-solvable" seems to be used in the sense of
"τr-separable".

The following lemma is proved by using the Schur-Zassenhaus Theorem,
(see [3] 6.3.5).

Lemma 2 4. If G is π-separable, then G possesses a Hall π'-subgroup.

We are now ready to extend Proposition B. If G is a 7r-seρarable group
with c.d.7Γ, then G has a Hall z^-subgroup H by Lemma 2.4 and hence Lemma
2.3 is applicable. Therefore H <]G and H is a Tr'-group with c.d. r. So H
is abelian by Lemma 2.2. By combining Theorem 2.1 and Ito's Theorem we
have:

T h e o r e m 2.5. Suppose G is π-separable when \π\ ^ 3 . Then G has a nor-

mal abelian Hall π -subgroup if and only if G has c.d.π.

The following corollary is useful in the proof of Theorem I in section 3.

Corollary 2.6. Let G have c.d.π. Suppose G is π-solvable when \π\ ^ 3 .
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Then G is solvable.

Proof. By the theorem G has a normal abelian Hall 7r'-subgroup H.
Then GjH is a 7r-solvable τr-group, and hence G/H is solvable. Therefore G
is also solvable.

Now it is clear the following corollary holds for subnormal subgroups of
arbitrary groups.

Corollary 2.7. Let G have c.d.π. Suppose G is π-separable when \π\ ^ 3 .

Then every subgroup of G has also c.d.π.

Proof. Let G be as above. By the theorem G has a normal abelian Hall
7r'-subgroup H. Let K be a subgroup of G. Then H f] K is a normal abelian
Hall ^-subgroup of K and hence the theorem implies the corollary.

3. Groups with r.x.e for π. In this section we shall prove Theorem I.
The following properties of the total exponent immediately follow from

our definition.

Lemma 3.1. ( 1) e(m)^>0, and e(m)=0 if and only if m=ί.
( 2) e(mή)=e(m)+e(n).
In particular these yield:
( 3 ) When s divides t, e(s)^e(t), and the equality holds if and only if s=t.

If G has r.x.Oy then G has no nonlinear irreducible characters and hence
G is abelian. We know that groups with r.x.l are solvable ([7] Theorem 6.1),
but groups with r.x.l are not necessarily solvable. Indeed the simple group
A5y the alternating group on 5 letters, has character degrees 1, 3, 22, 5.

By using Frobenius Reciprocity Theorem, Clifford's Theorem and our
definition, we have the following immediately.

Lemma 3.2. Let N be subnormal in G where G has r.x.e for π. Then N
has r.x.e for π.

The following lemma will be useful in applying induction on the total
exponent.

Lemma 3.3. Let N <]G where G has r.x.e for π. If GjN is nonabelian,
then N has r.x.(e~Y)for π.

Proof. By Lemma 3.2, it will be sufficient to show that iV has no irreducible
characters with T-exponent e. Assume that N has an irreducible character θ
with e(θ)=e. Let X be an irreducible constituent of ΘG. Then 0(1) divides X(l)
and hence

e =
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for G has r.x.e. We have the equality throughout so that e(X)=e and X \ N=
Irr(N). Since GjN is nonabelian, there exists φ^Irr(G/N) such that φ(l)> 1.
Then φX<=Irr(G) (see [2] Theorem 2), and hence

e = e(X)<e(φ)+e(X) = e(φX)^e .

This is a contradiction.
We remark that in the proof of Lemma 3.3 above we obtained the fol-

lowing result.

Corollary 3.4. Let N <]G where G and N have r.x.e. Suppose Θ^Irr(N)
with e(θ)=e. If X is an irreducible constituent of ΘG, then e(X)=e and X \ N=θ^
Irr(N).

The following proposition generalizes Lemma 2.7 in [5] however it will
not be used in this paper.

Proposition 3.5. Let N<]G where G has c.d.π. Suppose G/N is a πf-
group. Then we have:

( 1 ) Any irreducible character of N is G-invaήant and X\N^Irr(N) for
any X^Irr(G).

( 2 ) If N has r.x.e for π, then so does G.

Proof. Let X(=Irr(G). By Clifford's Theorem, X\ N=eyΣί

t

i=ιθi where the
θi are distinct irreducible constituents and X(ί)=etθ1(ί). Then et is a 7r-number
since G has c.d.π. Now et divides \G: N\ which is a 7r'-number. Thus we
have e=t=l. Since X is arbitrary, (1) and (2) follow from Frobenius Reciprocity
Theorem.

Before going on to another result, we state here the result by Isaacs and
Passman, which will be needed.

Lemma 3.6 ([5] Proposition 2.5). Let N <]G with G/N nilpotent. Suppose
X^Irr(G) with X\N reducible. Then there exists a normal subgroup T of G of

prime index such that N^T and X=ΛJΓG for some

The following lemma generalizes Lemma 2.8 in [5].

Lemma 3.7. Let N 0 G with G/N nilpotent. Let G have r.x.e for π and N
have r.x.{e—I) for π. If F is the inverse image of Φ(G/JV) in G, then F has r.x.
(e—\) for n.

Proof. F<\G and thus by Lemma 3.2 F has r.x.e for π. Therefore it
would be sufficient for our purpose to show that F has no irreducible character
with Γ-exponent e. Suppose Θ^Irr(F) satisfies e(θ)=e. Let X be an
irreducible constituent of ΘG. By Corollary 3.4, e(X)=e and X\F is irreduc-
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ible. Since N has r.x.(e— 1) for π, X\N is reducible, and by Lemma 3.6

there exists a subgroup T maximal in G and containing N with % = ψ G for

some ψ^Irr(T). Therefore ψ is a constituent of X\τ which is thus reducible.

Consequently X\F must be reducible for F^T. This is a contradiction and

the result follows.

The following lemma is a part of the result appearing in [6], which is ex-

tremely useful in proving our main theorems. We will call it Isaacs-Passman's

Lemma in this paper.

L e m m a 3.8 (Isaacs-Passman's Lemma). Let E be a group such that

E"=1<E' and E'^Kfor all K with 1 <K <\E. Then we have one of the fol-

lowing.

Case P. ( 1 ) E is a p-group for some prime p.

( 2 ) Z(E) is cyclic.

( 3 ) Every nonlinear irreducible character has degree | E : Z(E)\1/2.

Case Q. ( 4 ) E is a Frobenius group with a cyclic complement and elemen-

tary abelian q-group Q as kernel.

( 5 ) Every nonlinear irreducible character has degree \E: Q\.

( 6 ) For any λ E ^ and any x^E — Q, there exists μ^Q with \=μxμ~1.

Let TV be normal and maximal with respect to GjN being nonabelian.

We note that if G is solvable then E= G/N satisfies of Isaacs-Passman's Lemma.

We are now ready for the proof of Theorem I.

Proof of Theorem I. We prove the result by induction on e. When e=0,

the result is trivial. Suppose e^l. It will be sufficient to show that G has a

normal series G\^Be_l\^Ae_l and there exists some p r i m e p ^ π such that

( 1 Y Ae_λ has r.x.(e— 1) for π,

(2)' GjBe.λ is a cyclic π^-group where πλ=π— {pi},

(3)' Be_1/Ae_1 is an elementary abelianp^group, and

(4)' e(\G: A._1\)£2e+1.

We know that G is solvable by Corollary 2.6. We may assume G is non-

abelian. Then there exists N <3G which is maximal with GjN nonabelian.

Now E=G/N satisfies the hypotheses of Isaacs-Passman's Lemma. Thus

E has a unique nonlinear irreducible character degree m, which is also a char-

acter degree of G. So m is a 7Γ-number with e(m)^ey because G has r.x.e for

π. Since E is nonabelian, N has r.x.(e— 1) for π by Lemma 3.3.

We consider two cases according to Isaacs-Passman's Lemma, which we

apply to E.

Case P. E is a p-group for some prime p. Then p divides m and thus p e

n. Let Ae_x be the inverse image of Φ(G/N) in G. By Lemma 3.7 Ae_λ has r.x.

(e—\) for 7r, and satisfies (I) ' . Since Z(E) is cyclic and \E: Z(E)\ =m\



Γ-SOLVABLE GROUPS 443

e(\G: A^) = e(\E: Φ(E)\)^e(\E: Φ(E)nZ(E)\)

= e(\E: Z(E)\)+e(\Z(E):

Thus we get (4)'. Let Be^=G and pλ=p. Then (2)' and (3)' hold, and the
result follows for this case.

Case Q. E is a Frobenius group with a cyclic complement and elementary
abelian #-group Q as kernel. Let K be the inverse image of Q in G. Since
K has r.x.e by Lemma 3.2, we may consider the following two cases.

Case Q-\. K has r.x.(e— 1) for π. Let Ae_λ be the inverse image of Φ(G/K)
in G. Now G/K^EIQ is a cyclic group of order m, therefore by Lemma 3.7
Ae-1 has r.x.(e— 1) for TΓ and satisfies (I)7. Since I G i ^ . - J divides m, (4/
follows for ^(τ«)^^^2^-(-l. Choose a prime divisor^ of \G: Ae_λ\y which is a
square-free 7r-number, and let Be_λ be the inverse image of a Sylow ^-subgroup
of G/Λ-i in G. Then (2)' and (3)' follow.

Case 0-2. K has r.x.e for πr but not r.x.(e— 1) for 7Γ. Then there exists
Θ^Irr(K) such that e(θ)=e. By Corollary 3.4 (9 is G-invaraiant. Let g<= G-K.

For any μ^Q, μθ^Irr(K) and e(μθ)=e(θ)~e. Thus similarly μ# is G-invariant,

so that

θμ = (θμ)g = 0*μ* = 6>/x̂

and θ=θμ8μ~1. Hence θ vanishes off Ktr(μgμ~1). By (6) of Isaacs-Passman's

Lemma, for any character λ E ^ we can find a character μ^Q and an element

g(=G—K with \=μgμ-\ Thus (9 vanishes Ker λ. Now Q=KjN has a sub-

group of index q. Let ^ ί ^ be its inverse image in G. Ae.λ is the kernel of

(\Ae_^κ which is a sum of linear characters of Q. So θ vanishes off Ae_v Let

θ\Ag_ = β Σ ! = i ^ , where <£>, are distinct. Then

= (θ\Ae_i,θ\Ae_i)A^ι = J £ L (*, fl), = q .

Hence α = l and ί = ^ . Thus ^=^(l)/9?(l)eτr and θ\Ae_1 is reducible. For any
irreducible character of K with Γ-exponent e, similarly its restriction to K is
reducible. Therefore we have (I) ' . Let Be_1=K, pλ=q and π1=π—{p1}.
Since q is relatively prime to tn= \E: Q\ = \G:K\9 (2)' and (3)r are satisfied.

Now

e(\G:Ae^\) = e(\G:K\)+e(\K:Q\) = e(m)+\^e+\^2e+l ,

and hence (4)7 is also satisfied. This proves the theorem.
As consequences of Theorem I we have the following.

Corollary 3.9. Assume that G satisfies the hypotheses of Theorem I. Then

we have:
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( 1 ) G has the derived length<L2e-\-\, and Sylow p-subgroup of G has the
derived length ̂ e-\-ί.

( 2 ) G has a subnormal abelian subgroup Ao with \G: Ao\ <^re(e+2\ where r is
the biggest prime of π(G)Γ)π.

( 3 ) If G has an abelian Hall π-subgroup, then G has a normal series

such that (i) A{ has r.x.ifor π and (ii) AijAi_ι is a cyclic π-group of square-free
order, whose T-exponent ̂ i.

Proof. (1) and (2) immediately follow from Theorem I. We consider
(3). Any section of G which is a π-group must be abelian. Theorefore
only Case Q-\ in the proof of Theorem I can occur. Hence the result follows.

The above (1) may be of interest as the analogy to the following result
appearing in [4]. A Sylow ^-subgroup of a solvable group G has the derived
length ^ 2 m + l , where m is the biggest integer such that pm divides %(1) for
some X^Irr(G).

Let G be a (not necessarily finite) group, and we suppose every irreducible
C[G]-module is of finite dimension over C, where C is the field of complex
numbers. Then we may use the terminology ''r.x.e for π" as in the case of finite
groups.

The following consequence of Theorem I generalizes Theorem I of [5].

Corollary 3.10. Let G be (not necessarily finite) finitely generated group

with r.x.e for π. Moreover suppose \π\ is finite when G is not finite. Then G

has a normal series

G = Λt>β.-il>^-it> - t> A>t>Λ

and there exists some prime pi G π for any i such that
( 1 ) Ao is abelian,
( 2 ) AijBi_ι is a cyclic πrgroup where π~π— {pi},
( 3 ) Bi-JAi-i is an elementary abelian prgroup, and
( 4 ) \A{: Ai_x I is a n-number with T-exponent <Z2i-\-l.
In particular \G: AQ\ is a π-number with T-exponent ̂ e(e-\-2) and hence

\G:A0\ ^rβ(e+2\ where r=max(π(G)Ππ).

Proof. Let G be a finitely generated group which satisfies the above
hypotheses. By the assumption there exists a prime r such that r^s for any
s^π(G) n 7Γ. There are only finitely many subgroups of G with index ^re(e+2)

by M. Hall's Theorem (see [9] p. 56 or [6] p. 901). Suppose that Llf L2, -- ,Lt

are all of those which are nonabelian. Choose xi9 y^Li with the commutator
zi=[xi,yi]φl. By Passman's Theorem ([10] Theorem V), G is a subdirect
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product of finite groups. Thus we can find a normal subgroup N of finite index
in G such that z£$N for ί = l , 2, •••, ί. Then G/iV is a finite group with r.x.e
for 7r and thus there exists a normal series

G = Aeΐ>Be.1[>A^1\>... ΐ>Boΐ>Ao[>N

such that (2), (3) and (4) hold, Ao/N is abelian and | G: Λ | ^r««+2> by Theorem
I. By the choise of N, AQ is abelian and hence the result is proved.

4. Large subnormal abelian subgroups. In this section we shall prove
Theorem II.

We note that the function/, exists and satisfies fs(e)^e{e-\-2) by Theorem I.
Thus there exists fn and clearly fn(e)^fs(e).

In order to improve the upper bounds, we start with lemmas which corre-
spond to the results in [6], The following lemma is due ultimately to Isaacs
and Passman.

Lemma 4.1. Let G have r.x.e. Suppose N<\G with E=G/N being as in
Case P of Isaacs-Passman's Lemma. Let Z be the complete inverse image of Z(E)
in G. Let β e Irr(E) with β( 1) > 1. Then we have:

( 1 ) Given any character φ^Irr(Z), if Xλ is an irreducible constituent of
φG and if Xλ is an irreducbίle constituent of Xβ> then

e(X)+e(X1)^e(β)+e(t)+2e(φ)

where t is the number of distinct conjugates of φ.
( 2 ) Z has r.x.[e-e(β)β].
( 3 ) Moreover if e(β) is even, then G has a normal subgroup B with the

following properties: B>Zy e{\B\ Z\)=l and B has r.x.(e—e(β)/2).

Proof. ( 1 ) Let X be an irreducible constituent of φG. Then since Z <| G,

X\z=<*Σi=i<P, <Pi=<P Letβ\z=β(l)\, where λeZ/JV. Let {φ\f=^aiXi.
By the proof of Lemma 3.5 of Isaacs-Passman [6], aλatlβ(\)={Xβ, %x

atφ{\) and Xι{\)=aιtφ{\). Hence

= axafφ{\γ = (Xβ, Xx)β{X)tφ{Vγ

and

e(X)+e(X1)^e(β)+e(t)+2e(φ)

as desired.
( 2 ) Since G has r.x.e, e(X) and e(X1) are ^e. By (1), therefore, e(φ)

^e—e(β)/2. Since φ is an arbitrary character of Z, Z has r.x. \e—e{β)j2\, and
(2) follows.
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( 3 ) Let e(β) be even. Since G/Z is a />-group for some prime py there
exists B such that Z<B<\G and \B:Z\=p. We may show B has r.*.(e—e(β)β).
Suppose that there exists an irreducible character θ of B with e(θ)>e—e(β)β.
By (2) Zhas r.x.(e—e(β)β) and hence 0 | z is reducible. By Lemma 3.6 there
exists <p^Irr(Z) with θ=φB. So e(0)=e(£>)-|-l, and we have

^e(θ)-ί = e{φ)<Le-e{β)β .

Thus we have e(φ)=e—e(β)β. Now φ has/) conjugates in B. Hence if φ has
t conjugates in G, we have t^p> 1 and e(t)>0. Thus by (1),

2e-e(/3) = 2e(φ)^2e-e(β)-e(t)<2e-e(β).

This is a contradiction. Therefore £ has r.x.(e—e(β)β).

Lemma 4.2. fs(0)=0 and

Ue)^m2ix{Ue-ί)+e+lJXe-(m+l)β)+2mJs(e-nβ)+2n-l\

m is an odd integer with 0<Cm^e and n is an even integer with

Proof. A group with r.x.O is abelian and hence / s(0)=0. Let v be the
right-hand side of the above inequality. The proof is by induction on \G\.
We may assume that G is a nonabelian group with r.x.e and that e^ί. Since G
is solvable, we can choose N<\G with E=G/N being a group as in Isaacs-
Passman's Lemma.

We consider three cases according to the cases of the proof of Theorem I.
First we consider the case Q-l.

Case Q-l. K has r.x.(e— 1), where K is as in the proof of Theorem I.
Then K has a subnormal abelian subgroup A such that e(\K: A\)^fs(e— 1).
Since K<\G and e(\G:K\)^e, A is a subnormal abelian subgroup of G such
that

e(\G:A\)=e(\G:K\)+e(\K:A\)^e+fs(e-l)<v.

Case Q-2. K has r.x.e but not r.x.(e—1). Let Ae^ be as in the proof of
that theorem. Then Ae_x is a subnormal subgroup with r.x.(e— 1) and with
e( I G: Ae^|)^e+l. By induction ^4e_! has a subnormal abelian subgroup A
with e(\Ae-ιm. A\)tίfs(e—1). Therefore A is a subnormal abelian subgroup of
G such that

Case P. £ is a />-group for some prime p. Let Z be the inverse image of
Z(E)m G. Let β(Ξlrr(E) with /3(1)>1. We know that \G:Z\=β(l)2 and
that
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Moreover there exist two cases to consider.
Case P-l. e(β) is odd. Then

[e-e(β)β] = e-(e(β)+l)l2^e-l .

By Lemma 4.1 (2), Z has r.x.{e—{e{β)J

Γ\)j2), By induction Z has a subnormal
abelian subgroup A with *( |Z: A \)^fs(e—(m+1)/2), where m=e{β). Thus ̂ 4
is a subnormal abelian subgroup of G with

Case P-2. £(/?) is even. Then let B be as in Lemma 4.1 (3). Since B has
r.x.(e—e(β)β) and e(β)^2, B has a subnormal abelian subgroup 4̂ with e ( | £ :
A\)^fs(e—nj2)y where n=e(β). Thus 4̂ is a subnormal abelian subgroup of
G with

In any case G has a subnormal abelian subgroup A with
and hence fs(e)^v. This completes the proof of our lemma.

From the proof of Theorem A in [6], we have immediately (2) of the fol-
lowing lemma.

Lemma 4.3 (Isaacs-Passman). For any prime p there exists f(p)y which

satisfies

( 1) /φ(0)=0, /(,,(1)=2, /(,)(2)=4 and
( 2 ) 2e^fip)(e)

^m2ix{fip)(e-(m+ί)l2)+2mJ(p)(e-nl2)+2n-ί\

m is an odd integer with 0<m^e and n is an even integer with

The equality f(p)(2)=4r of (1) is seen in [11], and the other equalities of
(1) are seen in [6].

We remark that clearly f(p)(e)^fn(e)^fs(e) for any prime p.

Corollary 4.4. f(p)(e) = 2e for

f(P)(e)^4e-[log28e] for e^2 .

Proof. By Lemma 4.3 (1), / ( ί )(0)=0, / ( / > )(l)=2 and/(/,)(2)=4, therefore by

(2)

Thus the result holds for e^3. We may suppose e^4. Our inequality will
be proved by induction on e. By Lemma 4.3 (2), it would be sufficient to show
the following two inequalities.
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(i) If m is any odd integer with 0<m^e, then

(ii) If n is any even integer with 0<n^e, then

f(p)(e-nl2)+2n-1^4e-[log2Se] .

Proof of (i). Let m be as in (i). Then since e^4y 2^e
Hence induction is applicable. Write

A= {4e-[log28e]}-{f(p)(e-(m+l)l2)+2m}

By induction,

Since m^e, 4(e-(m+l)/2)^2(e-ί)^e for e^4. Therefore we get A^ 0,
and hence (i) also follows.

Proof of (ii). Let n be as in (ii). Then 2^e—nβ^e— 1 for e^4. Thus
by using induction we get

because n^e, 2(e—n/2)^e. Thus (ii) is proved, and hence the result follows.
We will need the following elementary inequality in (3).

Lemma 4.5. ( 1 ) [x]+[y]+1 ^ [x+y].
( 2 ) [x]—[y] 2̂  [x—y].
( 3 ) We define a function z on all of nonnegative integers as follows.

(2x if x=0 or 1 ,

[4x— [Iog28#] if x ̂  2 .

Then we have

z(x-\-y)^z{x)-\-z{y) for any x, y .

and thus z(Y*r

i==,

Proof. The inequalities ( 1 ) and ( 2 ) are well-known.
( 3 ) By induction on r the last inequality follows from the first inequality.

We consider three cases.
Case 1. xtίl and J > ^ 1 . Then since #(2)=4, z(x+y)*£z(x)+z(y).
Case 2. Either x or y is ^ 1. We may assume that x^2 andy=l . Then

we have
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z{x-\-y)—z(x)—z(y) = z(x-\-\)—z(x)—2

The first inequality follows from (2) and the last inequality follows from the
fact that (4*)/(a+l)>2 for x^2.

Case 3. x^.2 and jy^2. Then we have

z(x+y)—z(x)—z(y)

= 3+[log2^] + [log2j;]-

^2+[log2xy]-[log2(x+y)]

The first (resp. the second) inequality follows from (1) (resp. (2)) and the last
inequlity follows from the fact that (Axy)j{x-\-y)>2 for x^2 and y^2.

Now we are ready to prove our second main theorem.

Proof of Theorem II. By the first remark in this section, we may prove
(l)and, (2)': fs(e)^e(e+3)β.

We discuss (2)' first. Use induction on e. By Lemma 4.2, it would be suffi-
cient to show that the following inequalities:

(i) fs(e-\)+e+\^e{e+Z)l2ϊor e^\.
(ii) If m is any odd intetger with 0 < m ^ e , then

fs(e-(m+l)/2)+2tn^e(e+3)l2.

(iii) If n is any even integer with 0<n^e, then

fs(e-nl2)+2n-\^e(e+3)l2.

Proof of ( i ) . By induction,

+ l = e(e+3)/2.

Proof of (ii). Let m be as in (ii). Since
ίΞe—(w+l)/2;Se— 1, induction is applicable. Thus

fs(e-(m+l)β)+2m

e ( e + 3 ) + ( m + l ) ( 2 e + 3 ) (m+l)+2m

because m and e are integers with
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Proof of (iii). Let n be as in (iii). Since 0<e—nβ^e— 1, by induction
we can prove (iii) similarly.

Next we discuss (1). By Lemma 4.3 and the remark following that lemma,
it would be sufficient to show that

( 1 ) ' Λ(0)=0, /.(1)^2 and

fn(e)^e-[logβe] for e^2.

Now /M(0)~0 is trivial. Let G be a nilpotent group with r.x.e, and write G=
P1χP2X-~χPr, where P f is a Sylow ^-subgroup of G. Suppose that P f has
r.x.e{ but not r.x.{e{— 1). Then G has r.ff.Σί=i£» and hence 2 i = A = ̂  We
define #(#) as in Lemma 4.5 (3). By Corollary 4.4 we know f{pi)(et)^z(et).
Thus Pi has a subnormal abelian subgroup A{ with £( |P, : ̂ 4, l ) ^ ^ , ) . If ^4=
A1χA2X•••• X^4r, then 4̂ is a subnormal abelian subgroup of G, and

The second and the last inequalities follow from Lemma 4.5 (3). We have,
therefore, fn(e)^z(e)> and prove (I)7. This completes the proof of Theorem II.

5. A remark on a result of Issacs-Passman. A group G is said to
have r.b.n (representation bound n) if X(l)^n for any X^Irr(G).

The following result appears as Theorem D of [6]. Let h2 be the function
with the following property. If G is a solvable group with r.b.ny then G has a
subnormal abelian subgroup of index ^h2(ή). Moreover we assume that h2 is
the smallest such function. Then

In this section we remark that the above upper bound may be slightly
improved as follows.

Theorem 5.1. h2(n) ̂

Proof. If G is abelian, the result is trivial, so we may assume that G is
nonabelian. As usual, choose N<]G with G/N being a group of Isaacs-Passman's
Lemma. There are three cases in the proof of Theorem D of [6].

Case P. G has a normal subgroup of index ^n2 with r.6.(w/2). ( 1 )
Case Q-l. G has a normal subgroup Q of index ^n with r.b.(n/2). ( 2 )
Case Q-2. G has a normal subgroup Q of index ^n with r.b.n but not r.b.

(rc/2), and QjN is an abelian Sylow ^-subgroup of G/N for some prime q. In
this case, moreover, it is known that if Θ^Irr(Q) with θ(l)>n/2 then θ
vanishes off N. We consider this case more precisely.
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Now QjN has a subgroup of index q. Let D be its inverse image in G.

Then θ vanishes off D and D<\Q. Let θ | D=aΣx\=ιφi. Then

Hence α = l and t=q. Thus

?

because Q has r.δ.w. So

and φι{\)—θ{\)lq^nj2. Since 0 is an arbitrary character of Q with θ(l)>n/2y

D has r.b.(n/2) by Frobenius Reciprocity Theorem. Thus we have:

G has a subnormal subgroup D of index ^n2 with r.i.(n/2). ( 3 )

We now apply induction on n. (1), (2) and (3) imply that G has a subnor-

mal subgroup M of index 5jw2 with r.δ.(«/2). By induction M has a sub-

normal abelian subgroup A with

Then 4̂ is subnormal in G with

IG: i41 ^

and the result follows.
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