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1. Introduction

We consider in this paper the problems of existence, uniqueness, and
asymptotic behavior of solutions of the following semi-linear evolution equa-
tion in a Banach space E:

() = A1, 5(1), O<t<+oo,

@ x(0) = x, . (L.1)
x(t) is said to be a solution of (1.1), if

x(+)EC([0, =); E)NCY(0, «); E)

and (1.1) is satisfied.

In (1.1), A is a closed linear operator in E with a domain D(A4) which is
not necessarily dense in E. Throughout this paper, it is assumed that the
resolvent R(p)==(A—pl)™! exists and satisfies the estimate

M,
HR(M)“§(1+ TCYG (1.2)

for Re p=—Mx, where A is a constant, and B=(1+4a)™?, O<a<1.
W. von Wahl [9] and H. Kielhofer [3] studied the parabolic initial boundary
value problems, and obtained the similar estimate to (1.2) (see Section 6).
For fixed g, 0<¢<1, let T, be the curve

T,= {p=o+it; 0 = —A——L (14 |7])f, —co <7< +00} .
M,

It is easy to see that the resolvent exists in a region situated to the right of the
curve I', and satisfies (1.2) with M,(1—gq)™! instead of M, [4].

Under the assumption (1.2), the weakened Cauchy problem of the following
unperturbed linear equation
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d
Lot = Ax(0), >0, x(0) =, (1.3)

is well-posed on the set D(A) [4], and the solution x(z) of (1.3) is represented as
U(t) x, for >0, where U(%), t>>0, is the semigroup of bounded linear operators
given by

__ 1t
U(t) = Zm,que R(u)du, >0. (1.4)

It follows from (1.4) that U(z) satisfies the estimate [4]
U@ <Met™®, t>0, (1.5)

where M >0 is some constant.

For the nonlinear term f{¢, x), it is assumed that the following condition (i)
or (ii) is satisfied:

(i) f(¢, x) is continuous on [0, o)X E, and the estimate

1A, )—f(2, P =Kllx—yl| (1.6)

holds, where K >0 is a constant independent of ¢, x, and y.
(i1) f(¢, x) is continuous on [0, )X E. For each ¢>0 there exists a
constant k(c)>0 such that the estimate

1A, %)—f(2, )| =k(e)llx—y] (L.7)

holds for ¢, x, and y satisfying £ =0, ||| =¢, ||y||=c.

In the case where A4 is the infinitesimal generator of C, semigroup, the
problem of existence and uniqueness of solutions of semi-linear equations was
treated by several authors, for example, by T. Kato [2], and the problem of
asymptotic behavior was treated, for example, by A. Pazy [5]. Recently W. von
Wahl [9] and H. Kielhofer [3] considered the local solvability of (1.1) under
the same condition as (1.5) and weaker conditions for f(¢, x). They also ap-
plied their results to a semi-linear initial boundary value problem within the
framework of the C®-theory. Our main purpose is to obtain an estimate for
the asymptotic behavior of the solution of (1.1) and its derivative under the
condition (1.5). Some examples of linear partial differential equations are
worked out.

2. Existence and uniqueness of solutions

In this section it is assumed that f(¢, x) satisfies (1.6). We consider the
problem of existence and uniqueness of the solution of (1.1) under the condition

(1.6).

Let x(t) be a solution of (1.1). Then we have the integral equation
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#(t) = U)ot | Ua—9)f(s, x(5))ds @.1)
(2.1) can be uniquely solved by the successive approximations:

x(t) = U(t)x,

Sunlt) = U@set | UE—9fGs, x(o)ds,  n=0,1, -, (2.2)

x(f) = lim (7). (2.3)

If x,&D(A4), the solution x(¢) of (2.1) is in C([0, o); E). Otherwise x(t) is in
C((0, o0); E) and satisfies the following estimate in the neighbourhood of t=0:

llx(@)ll e,

where ¢,>0 is some constant,

Next we shall show that the solution of (2.1) is continuously differentiable
in £>0 by posing some additional assumptions on f(¢, x). Suppose that
f(t, x) satisfies the following conditions:

(1) %f(t’ x)=f(t, x) is continuous for (¢, x) [0, o)X E. (2.4)

(ii) For each t=0, f(¢, x) is Fréchet differentiable in x (Tanabe [8]), i.e.,

fit, x+2) = fit, £)+(Df(t, 9)+Df(t, x))-z+o(ll3]; %)
holds when ||3||—0, where Df(t, x) (resp. Df(t, x)) is a linear (resp. anti-linear)

bounded operator in E. (2.5)
(iti) Df(t, x) and Df(¢, x) are strongly continuous for (¢, x)E [0, o)X E.
(2.6)

_ (iv) For ¢, xsatisfying 0=<t=c, |lxl|=c, |If{t, ¥)Il, |IDf(¢, x)|rz.p7, and
[|Df(¢, %)||.(z.5 are uniformly bounded. (2.7)

The following lemma is well-known, if f(£)C*([0, oo); E) and U(t) is of
C, class.

Lemma 2.1. Suppose that f(t) belongs to C([0, >); E)NCY(0, o=); E).
d

2 1t
2 st

Furthermore, suppose that is integrable on (0, T'), where T >0. Then we

have for t>0

4 g' Ut—s)f(s)ds = U@)f(0)+ S: U(t—s)% f(s)ds

dt Jo
—4 S: Ut—s)f(s)ds+(t) . (2.8)
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Proof. If 0=p(A4), the resolvent set of 4, then it is easily seen that
3(0) = § Ut—947-2 f(s)ds— A7 f(0)+ UOA0)
0 s
is in C([0, o); E)NC*((0, o=); E) and satisfies for £>0

& 3(8) = A0+
— UOAO+{, Ut—9) -2 f ds
and y(0)=0. Therefore

¥(e) = | U= fts)ds

holds for ¢=0.
If 0¢: p(A), the relation (2.8) holds for

A, = A—al, Uo'(t) = e-ﬂU(t)’ fa‘(t) = e_‘ﬂf(t) ’

where os=p(4). Then we can derive (2.8) by differentiating the following
equation in Z:

s: Ut—s)f(s)ds = e S; U (t—s)f.(s)ds . Q.E.D.

The following theorem can be proved in the similar way to Sobolevskii-
Pogorelenko [7]:

Theorem 2.2. If f(¢, x) satisfies (1.6) and (2.4) to (2.7), then for each
x%ED(A) the solution of (2.1) is continuously differentiable in t>0 and satisfies
(1.1). Furthermore, the estimate

[ 0]z

holds as t tends to 0, where c, is a constant.

Proof. By the Fréchet differentiability of f(¢, x) and by the fact that
xyED(A), we obtain for 0<t<T

2t w(0) = £t wO)+ DA, w0)-- 50
+Df(2, xt))- xo(t) >

[] 4 fit, wt))| se®
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where ¢; is a constant. Therefore it follows inductively from Lemma 2.1 that
the successive approximations (2.2) satisfy

L 5y(t) = U A UDAO, 3)+ [ V=915, 5(9)
+Dfts, 5,(9)+2-,(5)+ Dfts, 5(0) L, (0 ds . (2.9)
Consider the integral equation

o(t) = UWAsot U0, %)+ | Ua—9lf (s, +(5)
DS, a(s))-0(s)+ Dfts, x(s))-0(s)] ds - (2.10)
The existence and uniqueness of the solution o(¢) of (2.10) and the estimate
lo@)l|=ct™®, O0<t<T (2.11)

are ensured by the similar arguments to (2.2). From (2.9) and (2.10) we
have

L st —o(0) = [ U=, )1, ()] ds

Ut—s)Df(s, x,(s))-| -2 (s)—v(s)] ds

+ L ds

~ o

+

)
+S U(t—s)[DS(s, 2,(5))—DAf(s, #(s))] -v(s)ds
|

U(t—s)Df(s, %,(5)- _—d—x (s)-—v(s)] ds

+ So U(t—3)[Df(s, x,(s))—DAfs, x(s))]-v(s)ds
= I4+II41II4+IV+V. (2.12)
By Holder’s inequality we obtain
0= HUe—sypdsy o4 1175, () —Filss a(sliedsp e,

where 1/p+1/g=1 and ap<<1. By Lebesgue’s dominated convergence theorem
[|II]| converges to O uniformly in ¢€(0, T]. For the third term of (2.12) the
estimate

|11 < [ (=9 UE—9)1 I11DAs, ()~ DS, ()] -o(s) s

+4{ NUe—syiedspe [ 1SS, %,6)— DA, 5(5))
X s?0(s)||?ds} Ve
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holds, where 1/p+1/g=1and ap<<1. Similarly #*||III|| converges to 0 uniformly
in t&€(0, T], and so does t*||V||. Consequently there exist ¢;>0 and a sequence
of positive numbers {&,}.¢, such that &,—0 as n— oo, and the estimates

w0, S 627+ [ et —)ew,(5) s, (2.13)
te(0, T], n=0, 1, --.

hold, where w,(t) are given by

, t>0.

w,) = |- x,()—o(0)
From (2.13) it follows inductively that
(' [sTA—a)l™ (  yia-ay-ay,
wnt)s | S L S, ()ds

—» j F(l—a)t"‘”]k

r(1—g)eo sy et—a) T, 2.14

A Y (oo =19
O=j=n 0<i=T.

Since wy(t)<cit ™%, 0<t =T, by letting j=n in (2.14), it follows that *w,(t) are

uniformly bounded in t&(0, T] and in #, i.e.,

w,(t)<ct™®, t€(0, T], n=0,1, . (2.15)
It follows from (2.14) and (2.15) that
e T(1—a)[e (1 —a)t~*)*!
N((j+2)(1—a))

_ 3 [6T(—a) "]
+T(1—a) 32 r((k+1)(1—a))8”"“ (2.16)

0<j=<n, O0<t=T.

t'w, () =

For any €>0, choose j sufficiently large so that
[the first term of (2.16)]<§, 0<t<T
holds. Next take a large number N(€) so that

[the second term of (2.16)]<-§—, 0=:T

holds for any n>N(€). Consequently, for any §>0, w,(f) converge to 0 uni-
formly in ¢<[8, T]. Therefore x(#) is continuously differentiable in ¢&(0, T]
and the following equation holds:
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d _ ¢ d
4 (t) = U)ot UBAO, 3+ Ut—9)-2-f(s, x(5))ds

— AQU o+ || Ue—9fts, 5(©)dsl-+A(t, 2(2)

where the second equation follows from Lemma 2.1.
Since %x(t)zv(t), the estimate in the Theorem follows from (2.11).
Q.E.D.
3. Asymptotic behavior I

Now let us consider the asymptotic behavior of the solution of (1.1) and
(2.1). In this section we assume that f(¢, x) satisfies (1.6).
It follows from the successive approximations (2.2) that for 0<t<T

(B 33 1) —,-a(8) I+ 5o0)|

i [KMT(1—a)t°]*
=0 T((n+1)(1—a))

. (S [KMT(1—a)st=*]*
i, s OIMT( “)SOE T(n(1—a))

X s~ % s . (3.1)

IA

MT(1—a)l|x,|| e~ 22t~

In the case where a=0 and the Cauchy problem of (1.3) is uniformly well-
posed, (3.1) is reduced to the inequality

(KM-X\)t___ 1

[%(£)]1 = Met D lxgl| 4 sup || fis, OIM= o~

0=:=T.

(3.2)

In particular, if f(t, ¥)=Bx, where B is a linear bounded operator in E, we have
the well-known result [1], [4] from (3.2):
HUars(t)| =M exp {M||B|]|—r} ¢, t=0,

where U 4, 5(2) is the semigroup generated by the Cauchy problem
—jt—x(t) — (ALB)a(t), =0, #(0)=x,.
Now let us return to (3.2). Suppose that
KM<n,  sup [[f(s, 0)| <H-oo.
0=Ss< +oo

By considering x(t+1,) instead of x(¢) in (3.2), where £,>>0, we have for =0



340 T. NaMBU AND Y. SAKAWA

x(t-+10)[| < Me =530 x(z) ||+ sup ||, 0)1Ma 1=
oll= ol R 1A KM
Therefore it follows that
Iim <
fim [lx()]| = 77 sup [17s, O)II -
Since #, is arbitrary, from the above inequality we obtain
fim [lx(8)l| < — 22 Tim || (¢, O)]] . (3.3)
t>oo T A—KM t>e

If >0, it seems difficult to obtain the asymptotic behavior of x(¢) from
(3.1). In what follows, we derive the similar estimate to (3.3).
The following lemma is easily proved:

Lemma 3.1. Suppose that f(t) is a real valued continuous function of t=0,
and that [im f(t)=-+co. Then we can choose a sequence {t,} -1 such that
t—>o0

f=Aft,)=mn  for 0=t=t,,
fStS-St,<--, limt, = foo.

n-yoo

Proof. Let us define
S, = {t: f(t)=n, t=0}.
By the assumptions the sets S, are closed and nonvoid. Further let
t,=inf {t: t=8,} .
Then {¢,} 7., is the sequence stated in the lemma. Q.E.D.

Now let us prove one of our main results.

Theorem 3.2. Suppose that (1.6) is satisfied and that
S”KMe—Mrwdt — KM»*"T(1—a)<1. (3.4)
0

Then we have the following estimate for the solution x(t) of (2.1):

o-1 JE—
fim [0 = ] e i 106 Ol (3.5)
Proof. If lim ||f(¢, 0)||=-+ oo, then (3.5) is clear. Therefore we as-
sume henceforth that |im [|f(2, 0)|| <+ 0. We set y(t)=x(t-+1) and y,=x(1).
Then y(2) satisfies (2.1) and continuous in 2=0.
First we prove that ||y(#)|| is bounded. If not so, by Lemma 3.1 we can
choose a sequence {¢,};., such that
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n = 150 1 UG IUE— K31+ 1, 0)lds
<IUEyoll+ sup 11fts, O] 10U ds-+ak [ T ds

This is a contradiction by (1.5) and (3.4). Therefore there exists some con-
stant ¢;>0 such that

ly(@®)<es 2=0. (3.6)
Let
a=KMA"T(1—a), b=lim [Ifi, OIMN\"T(1—a).

For any €>0, there exists T(€)>0 such that the inequality
stMe“"""’)(t—s)‘“lIf(s—i—to, 0)l|ds=¢&(1—a)+b 3.7)
0

holds for any #,= T(€), and #>0.
Let x°(t)=x(t-+t,), where t=0 and f,=max {1, T(€)}. Then by (3.6) and
(3.7) we have the estimate

120(0)]| < (| Uy (2l | +-csa-+-E(1—a)+b, £=0. (3.8)

Take v>0 such that a+v<1. Then, from (1.5) and (3.8), there exists
t,>0 such that the estimate

llx(t -2l = 10°(2)]| S csla+7)+E(1—a)+b (3.9)

holds for any ¢>¢,. Consequently for any integer >0, we can find inductively
toy b1y ***y Emt1, Such that the estimate

|2+ j\; t)l| S cat+v)+[e(1—a)+] ]é al (3.10)

holds for any ¢t=¢,,,. From (3.10) it can be concluded that there exists #(€)>0
such that the estimate

la(t) ]| < 26+b(1—a)~! (3.11)

holds for any 2=¢#(€). Clearly (3.11) implies that the estimate (3.5) holds.
Q.E.D.

If f(t, 0) tends to 0 when ¢— oo, the following theorem holds:

Theorem 3.3. Suppose that the assumptions of Theorem 3.2 are satisfied,
and let x(t) be the solution of (2.1).

(1) If there exist ¢>0 and 8> 0 such that the estimate
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12, 0)|=ce™®, t=0 (3.12)
holds, then x(t) satisfies the estimate
llx(t)||<ee 54, >0, (3.13)

where ¢ >0 and ' 8>0 are some constants.
(i1) If there exist ¢ >0, an integer n =0, and 8, 0= B <1, such that the estimate

1Az, O)|<ct=® (3.14)
holds when t— oo, then x(t) satisfies the estimate
llx(2)l| et~ (3.15)

when t— oo, where ¢>0 is some constant.
(iii)  If there exists ¢ >0 such that the estimate

If¢t, O)l| <cfin (3.16)
holds when t— oo, then x(t) satisfies the estimate
x(t)l| <z {ln £} (3.17)
when t— oo, where t>0 is some constant.
Proof. (i) Let us take »>0 so that the inequalities
v<min (5, ), KMMA—r)* ' T'(1—a)<1 (3.18)

hold. It follows from (2.1) that the estimate

e+l e UV HEZ e i1, 0l

t —(A-Y)(t-s)

[ BMEE D ev(s+ )l ds (3.19)
o (t—s)

holds for ¢>0. From (1.5), (3.12), and (3.18), the first and the second terms

of (3.19) are bounded for >0 and tend to 0 exponentially as z—co. In the
same way as Theorem 3.2, (3.18) and (3.19) imply that

ex(t+1)l|Sc, 120,

where ¢,>0 is some constant. Clearly the above inequality implies that the
estimate (3.13) holds.

(i) Let n=1. Using the relation #=<(z—s)’+s% 0<s=¢, 0<8<1, we
obtain ,



NoNLINEAR EQUATIONS IN BANACH SPACE 343

o [ U=l lIfts+1, 0} ds
= 10—l 23.,C (=9 fis+1, O)llds
+{ U=l 33,C,(t—5) 5 1f(s+1, O) s (3.20)
It follows from (1.5) and (3.14) that the right-hand side of (3.20) is bounded on

(0, ). v

From (2.1) we obtain the estimate
(e DI ST #(1-+2] 11091 1fs+1, 0)l1ds
+{ KNIUE—9le—9)la(s-+ 1)l ds
+ [ KITE—s)lsllats+ D1 ds. (3.21)

It follows from (1.5), (3.5), and (3.20) that the first, the second, and the third
terms of (3.21) are bounded on (0, ). In the same way as Theorem 3.2,
(3.21) implies that zx(f+1) is bounded on (0, o). It follows inductively that
the estimate

tllat+ 1) e 120 (3.22)
holds, where ¢, is some constant. Consider the inequality
£ 9] ja(a-+ DIl SR U@ (] [UE—)1 11+, 0) s
+ | KIIUE—9)ll 23.0,(t—sy~5|(s+ 1)1 ds
+ | KIUGE—5)1l 5 1 (t—9~ 35l x(s-+ V) ds
+| KIUG—s)s* a5+ 1)1ds, 0. (3.23)

From (1.5), (3.20), and (3.22), the same argument as Theorem 3.2 implies that
x(t) satisfies the estimate (3.15) when f—oo,

In the case where n=0, we also obtain the same conclusion.
(iii) Consider the inequality

tn (t+1)[ 110911 lIfis+1, 0}l ds
éSf, {IIn (¢—9) | +1n (s+ 1)+ In 2H|U@E—9)[ || fis+1, O)llds . (3.24)

Here we have used the inequality
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[In (x+y)|<|lnx|+ |lny|+In2, x>0, y>0.
It follows from (3.16) that the right-hand side of (3.24) is bounded on (0, o0).
Therefore the estimate (3.17) follows from the following inequality:
In (24 1)||x(¢+1)l|
St DIUOAOI+n @) | 1U0E—9)ll1f+1, 0)l1ds
+{_ {110 (t—9) -1 (s )+ 0 2L KN U 5)l lats-+ 1)l ds

Q.E.D.
4. Asymptotic behavior II

In this section it is assumed that f(#, x) satisfies (1.7). Furthermore it is
assumed that A>0 in (1.5) and that for the simplicity k(c) satisfies

k(c)=Kc*, ¢>0, 4.1)
where K >0 and a>0 are some constants. Then the following lemma holds:

Lemmad4.1. Suppose that f(t, x) satisfies (1.7) and (4.1) and that the estimate

p= ail [(@a+1) KMA* ' T(1—a)] V*—MA*"'T(1—a)
sup £z, 0)I[>0 (4.2)
holds.  Then the global solution x(t) of (2.1) uniquely exists for x,& D(A) satisfying
14x|| = p[Il A7+ M T(1—a)] ™, (4.3)
and satisfies the estimate
x| =[(a+1) KM A T(1—a)] ¥4, t=0.
Proof. In the successive approximations (2.2), let

[l (2] - (44)

e, = su
t=20

Since x,(t) satisfy the estimates

@IS NUO01+ | 1UE—5) el x,(5)1+1fGs, OV} ds
it follows that the estimates

e, =e+MA'T(1—a) sup [1£(t, Ol +KMA*'T(1—a)e, ! (4.5)
hold for n=0. On the other hand, we obtain

@A =11 A7+M "' T(1—a), t>0 (4.6)
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from the equation
U(A~ = A-1+S' Us)ds, t>0.
0
It follows from (4.2), (4.3), (4.5), and (4.6) that

- g-% [(a+1D)KMA ' T(1—a)] Y+ KM A*"'T(1—a)e, ",
a
eo<[(a+1)KMA*'T(1—a)] V. (4.7)
(4.7) implies that
e, <[(@a+1)KMA\*"'T(1—a)] ¥4, n=0. (4.8)

Therefore x,(t) converge to () uniformly on any finite closed interval in [0, oo).
Clearly x(2) is the unique solution of (2.1). Q.E.D.

If the conditions (2.4) to (2.7) are satisfied, it is clear that x(¢) is the unique
solution of (1.1) under the conditions in Lemma 4.1. Thus we have arrived
at the following assertion:

Theorem 4.2. Suppose that the assumptions of Lemma 4.1 are satisfied
and that f(t, x) satisfies (2.4) to (2.7). Then there exists the unique solution x(t)
of (1.1) for x, satisfying (4.3) and x(t) satisfies the estimate

lim lx(8)| <52 MA* T (1—er) im 02, O)1 (4.9)

Proof. For any >0 choose #,>0 so large that the estimates
Hx(t)Hé}iEHx(t)ll—H:‘, A, 0)|]§En§||f(t, 0)ll+¢

hold for t=t,, Then for £>0 we have

tMe—)\(t—s){ 1
o (t—s)* Ua+1)MA"'T(1—a)

X [l £o)[| (s o O)H}ds

e+ el1 <1 U (0) 1+

< 1U@X(E)+ - Fimlix()l+e}+MAT(1—a)
X {li_fgﬂ 1, 0)|+¢&} . (4.10)
It follows from (4.10) that
i (0| = (i 10) &} 4+ T (1 —a) lim (5 O)-+-8}

Since £>0 is arbitrary, the above inequality implies that (4.9) holds. Q.E.D.
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Corresponding to Theorem 3.3, the following theorem holds. The proof
can be carried out in the same way as that of Theorem 3.3 with some modi-
fications.

Theorem 4.3. Suppose that (1.7) and (4.2) are satisfied. Let x(t) be the
solution of (2.1) with x, satisfying (4.3).

(1) If there exist ¢>0 and 6> 0 such that the estimate (3.12) holds, then x(t)
satisfies the estimate

()| <ees, =0, (4.11)

where £>0 and >0 are some constants.
(i1) If there exist ¢ >0, an integer n=0, and B, 0<B<1, such that the esti-
mate (3.14) holds when t— o, then x(t) satisfies the estimate (3.15) when t— oo,
(ii1) If there exists ¢ >0 such that the estimate (3.16) holds when t— oo, then
x(t) satisfies the estimate (3.17) when t—co.

5. Asymptotic behavior III

In this section it is assumed that f(¢, x) satisfies (2.4) to (2.7) and either (1.6)
or (1.7) and that there exists the unique solution of (1.1).

Theorem 5.1. Suppose that the solution x(t) of (1.1) satisfies the estimate
p = MA*T(1—a) Tm IDf(t, 2(2)+Dftt, s(®)lle.o <1 (5.1)
Then we have the estimate

fim |- (1) <(1—p)" MA*"T(1—a) fim |t o)) (5.2)

ReEMARK 1. Let 4 (resp. B) a linear (resp. anti-linear) bounded operator.
Then ||A+ Bl .z, » is understood to be

sup ||Ax—+Bx|] .

IEZIE$t

REMARK 2. Suppose that the estimates

IDf(2, %)—Df(2, Y)|rz.0 =ki()llx—HIl

IDf(2, %)—Df(2, ¥l e, S ko)l [x—I
hold for ¢, x, and y satisfying ¢=0, ||x||=c, ||y||=¢, where ky(c) and k,(c) are
monotone non-decreasing functions of ¢>0 which are right continuous. Then
the condition (5.1) can be written in the more concrete form by combining the
above inequalities with (3.5) or (4.9).

Proof. (5.2) is clear in the case where [im ||f,(¢, (¢))||=-+oc. Therefore
t-yo0
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we assume that 1}?1 [1fi(2, 2(£))||<+oo. Consider the inequality

i

x(t-+1o)

<1100 -L-s()1+ | J1UE—) 15+t s+l ds

+{ U= 1D+t a(s-+10)

+ Dt to, 56+ 15,0 |2 (st10)|ds,  (5.3)
where #,>0 and £>0. Take any >0 so that the inequality
p+MAT(1—-a)e<l (5.4)
holds. Next take #,>0 so large that the following inequalities hold:
sup [1£4s ()l <Lim||f(2, x(2))]+-¢, (3.5)
sup [1Df(s, %(5))+Df(s, ()l 2z
< Tim 1DA(t, 3(8)-+DfCt, 306 (5.:6)

Then it follows from (5.3), (5.5), and (5.6) that

e+t <HU(t)—*x(to)|l+S U9l {Tim [1£2, #(0)I+¢} ds
+SOHU(t“s)H{£i_fE||Df(t’ x(t))“”ﬁf(t’ x(t))HL(E,E)‘]‘G}

X ” —;Tx(s—}—to) ds

t>0. (5.7)

In the same way as Theorem 3.2, the inequalities (5.4) and (5.7) imply that

%x(i—}—to) is bounded on [0, o). If necessary, take #,>0 so large that the

inequality

sup
sgto

*x(s)'

gﬁ”%x(t) H+e (5-8)

holds. It follows from (5.7) and (5.8) that

fim _‘%x(t)“ < MN*T(1—ar) {lim | fi(t, +(D)+8} -+ MA*T(1—a)
flim 107, 3O+ DAt o) lem+eh {m | s +ep. (59)
Since £>0 is arbitrary, (5.9) implies (5.2). Q.E.D.

Next suppose that f(¢, x) satisfies the following condition: For each ¢>0,
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there exists a bounded measurable function k(t, ¢) of ¢ which is integrable on
(0, o) and k(, c) satisfies

fd2, %) =k(t, ), llxll=c, t>0.

. (5.10)
lim A(t, ¢) = 0.
t>oo

From (5.10) we find that there exists a continuous function f.(x) such that
f(t, x) converges to f.(x) as z—oo uniformly on each bounded set in E.

Theorem 5.2. Suppose that f(t, x) satisfies (5.10). If the solution x(t) of
(1.1) és bounded on [0, o) and satisfies the estimate (5.1), there exists x(>o)& D(A)
which satisfies the equation

Ax(o0)+fa(x(o0)) = 0 (5.11)
and x(t) converges to x(°) as t—>oo.

Proof. Let [|x(2)||=c, t=0. Then it follows from (5.2) and (5.10) that

lim

tpoo

i)
—x(t)|=0. 5.12
0 (5.12)
Take #,>0 so large that the inequality

MAT(1—a) sup | Df(s, %(s))~+Df(s, 2()|| .z, < p+E<1 (5.13)

holds, where £>0 is arbitrary.
By integrating the both sides of (5.3) with respect to ¢ from 0 to T, we

obtain
T| 4 .
go & (t+t)|de<MAT(1— a)[,lvx(to) S k(z, ¢)de]
+p+8)| | -Laer9ar, (5.14)

where T'>0 is arbitrary. Therefore (5.14) implies that

X ” 4 x(t)Hdt<—|—oo . (5.15)
Consequently it follows that there exists x(cc)&E such that

2(t)—=>x(0), f(t, 2(t))=fa(x(o0)) (t—>c0). (5.16)
From (1.1), (5.12), and (5.16), we obtain x(cc)&D(A4) and (5.11). Q.E.D.

Corresponding to the degree of decreasing of k(%, ¢), the following theorem
holds:
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Theorem 5.3. Suppose that the assumptions of Theorem 5.2 are satisfied.
(1) If for each ¢>0 there exist d>0 and 6>0 such that the estimate

k(t, c)=de™®, t>0 (5.17)
holds, then the solution x(t) of (1.1) satisfies the estimate
|lx(t)—x(o0)|| <de 8!, >0, (5.18)

where d>0 and §>0 are some constants.
(i1) If for each c>0 there exist d>0, an integer n=1, and B, 0<B=1, such
that the estimate

k(t, c)<dt~™*P (5.19)
holds when t— oo, then x(t) satisfies the estimate

||(t)—x(o0)|| Sdt~ -1 (5.20)
when t—> oo, where d >0 is some constant.

Proof. In the same way as Theorem 3.3, (i), it follows that " %x(t) is
bounded when t—oo, where »>0 is some constant. Therefore (5.18) follows
from the equation

w(00)—x(t) = S“ix(r)dr, =0
t dr
The proof of (ii) is similar to the above arguments. Hence we omit it. Q.E.D.

Corollary 5.4. Suppose that f(t, x) is independent of t. If the solution x(t)
of (1.1) satisfies the estimate

M 'T(1—a)lim || DA(®)+ D x(t))l| iz, 0 <1, (5.21)
then there exists x(oo)E D(A) which satisfies the equation

Ax()+f(x()) =0 (5.22)
and x(t) converges to x(oo) exponentially.

Proof. The proof is carried out in the same way as that of Theorem 5.2
and Theorem 5.3. Hence we omit it.

6. Examples

In this section we give some examples of linear partial differential equations
whose semigroups satisfy the estimate (1.5).
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ExampLE 1. Consider the initial boundary value problem of the heat
equation

%u(t, x) = 8i;zu(t, x), >0, 0=x<l, (6.1)
#(0, x) = uy(x), 0=<x<1, (6.2)
0 i, 0)= L ue, 1)=0. (6.3)
ox Ox

Let E=C*([0, 1]), where 0<a <1. The norm in E is given by

lully = sup [u(x)] + sup 1AD=EL, (6.4)

szys1 |x—y|®
The operator 4 and the domain D(4) are given by

— d otew, 4 d
Au= ——u, DA)= uesC**; —u0)= —u(l) =0} . (6.5)
dx? dx dx

The resolvent R(u) of A4 exists in the complex plane except for the non-positive
real semiaxis and is represented as follows:

() = Ru)f = — ST C ) cosh /- §)

__coshviux S’ h /i (E—1)-f(E) d 6.6
SO S (cosh Vg 1):fE) dE . (6

Let any >0 and any &, 0<<€<z/2, be given. In the following we shall
estimate ||[R(u)||, on the sector >7;

D= {p=U+b— T —e<agt=T+e}.

Let u=re®® and B=cos % It is easy to see that the estimate

uuuogr%ufno (6.7)

holds, where || ||, denotes the supremum norm of C([0, 1]).
Let 0=y<x=1. Then from (6.6) we have

lu(x)—u(y)| 1
[x—y|® — |x—y]®

SR
[x—y]|

s | £ D UO— S ]
1
VvV sinh /i

[L66&5 % 9d-1)
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|cosh \/ p(x—1)—cosh \/u(y—1)|
lx—y|®|v/ 1 sinh /|

|cosh v/ x—cosh v/ 59 |( couh </a (6 1) f(EVaE]. (6.8
o Leomh LI [ cosh v s )01, (69)

[ cosh vE-18) ds\

where
&(&; x, y) = cosh \/p(x—1)-cosh \/pE—cosh \/uy-coshv/p(E—1).
It is easy to see that the estimate

[the first term of (6.8)1%% {111} (6.9)

holds. Since the equation

[ otes m 3)az =

4-:/1_ﬁ {(eVF D —gVE O-D)(gVEE_ Vi)
—(eVF U gV (=N)(g™ VET g~ VEY)}
holds, we obtain the estimate
[the second term of (6.8)]
2{2%2-%|sin % |+ (cos %)‘”}e"'_"
e iy (6.10)

For the third term of (6.8), we obtain

<roet

[the third term of (6.8)] < {2%2-*

. 0 i 0 @ —1,0/2—
sm—z—‘ —|—(COSE) YB 2 fllo -
(6.11)

Similarly we obtain

[the fourth term of (6.8)] < {2¥2~*

sin %‘a—l— (cos %)w} B2\ fllo -
(6.12)
Therefore (6.7) and (6.9) to (6.12) imply that the estimate

IIR(u)Ilwé—M%, BE2] (6.13)
||t

holds, where My >0is some constant. It is easily seen that (6.13) implies (1.2).

ReEMARK. In this example we can shift the path of the integration in (1.4)
from T',t0 8%]. Therefore the semigroup U(%) of (6.1), (6.2), and (6.3) satisfies
the estimate

U@ <Mert—2, >0, (6.14)
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where M >0 and 7y are some constants.
In the following Examples 2, 3, and 4, E is considered to be C*([0, 1]) and
A is considered to be d?/dx?, respectively.

ExampLE 2. Consider (6.1) and (6.2) under the boundary condition
u(t, 0) = - u(z, )= 0. (6.15)
Ox
The domain D(A4) of A is given by
D(4) = {usC*?; u(0) = diu(l) =0}. (6.16)
x

The resolvent R(p) of A exists in the same region as in Example 1 and is re-
presented as '

(g Ccosh VEE—D (L
u(®) = R(u)f = %Sosmh ViEf(E)dE

___sinhvpx (? —e 1y,
N V;L“’SW“(’? 1)-fE)dE.  (6.17)

In the similar way to Example 1, R(u) satisfies the estimate (6.13) on 3.

ExampLE 3. Consider (6.1) and (6.2) under the boundary condition
9wt 0)=u(t, 1)=0. (6.18)
O
The domain D(A4) of A4 is given by

D(4) = fusC?®; ‘;ixu(O) = u(1) = 0} . (6.19)

Then the resolvent R(n) of A exists in the same region as in Example 1 and is
represented as

_ __ sinh/u(x—1)(* —
) = Ru)f = T2 LD cosh v/ n-fie) e

cosh /px (! — e 1.
RVArS [ sinh vaE—1s@)dE.  (6.20)

In the similar way to Example 1, R(x) satisfies the estimate (6.13) on 3.
ExampLE 4. Consider (6.1) and (6.2) under the boundary condition
u(t, 0) =wu(t,1)=0. (6.21)
The domain D(4) of A is given by
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D(4) = {usC?*; u(0) = u(l) = 0} . (6.22)

Then the resolvent R(p) exists in the same region as in Example 1 and is re-
presented as

_ _ sinh /p(x—1) (% . —s
u(x) = R(p)f  sinh s Sosmh VwE-f(E)dE
sinh/px (! —e 1Y,
R ﬁg;mh VEE-1)fE)dE.  (623)
In the similar way to Example 1, R(p) satisfies the estimate (6.13) on 3.

RemaRk. For Example 4, more general results have been obtained. Con-
sider the parabolic equation

0
BN —mrgm “"(x)a"xxl “ 0Py,
98l

0Pux;-+-0Prx, |ag

u, t>0, x€80, u(0, x)=uyx), *€Q,
=O) {Bl =m—1 ’

where Q is a domain of R" with a sufficiently smooth boundary and the coeffi-
cients ag(x) are smooth. Let E=C*(Q). W.von Wahl [9] obtained the estimate
(6.13) in the case where  is bounded. In the case where Q is unbounded, H.
Kielhofer [3] obtained (6.13).

ExampLE 5 ([4], p. 161). Consider the following initial value problem of
a system which is parabolic in the sense of Silov:

0 0 0 . 03 0?2
T W T e it e 20 €K,
2,0, x) = di(x), (0, x) = dy(x), xER. (6.24)

Let E=L*R'). Then the semigroup U(¢) of (6.24) satisfies (1.5) with
a=1/2.

ExampLE 6. Consider the following initial value problem of a system
which is parabolic in the sense of Silov:

(] 0 .08 07

a-tﬂl = Av,, —877)2 = <1M—£§—>01+A%, t>0, x=(x, x,)ER?,

2,(0, x) = ¢i(x), 2,(0, x) = ¢py(x), xER?, (6.25)
where A denotes the Laplacian in R?. Let E=L*R?). By the Plancherel’s

theorem, (6.25) is equivalent to the following system of ordinary differential
equations in L*(R?):
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57171 = —(pi+p3)9,, ' %ﬁz = ( pi‘+p§)ﬁl—(pf+p§)ﬁz, t>0,
P = (P P)ER, 0,0, p) = i(p), 00, p) = P(p), PER*, (6.26)

where ¢(p) denotes the Fourier transform of ¢(x)L*(R?). The semigroup
U(?) of (6.26) is the bounded operator of multiplication by the matrix U(¢; p)

e~ irept 0
U D) =1, 0, concitisde ey (6.27)
t(_pl_l_PZ)e (p1+03) e (p1+02) .
[lU(#)|| is calculated according to the formula [4]
U@ = sup [[Ut; p)ll >0, (6.28)

where ||U(t; p)|l, is the norm of the matrix U(t; p) as an operator in R%  As
is easily seen, the formula (6.28) implies that U(f) satisfies the estimate (1.5)
with a=1/2.

Acknowledgment. The authors wish to thank Professor H. Tanabe for his
many helpful suggestions.

Osaka UNIVERSITY

References

[1] E. Hille and R.S. Phillips: Functional analysis and semigroups, American Mathe-
matical Society, Providence, R.I., 1957,

[2] T. Kato: Nonlinear evolution equations in Banach spaces, Proc. Symp. Appl.
Math. 17 (1965), 50-67.

[31 H. Kielhofer: Halbgruppen und. semilineare Anfangs-Randwertprobleme, Manu-
scripta Math. 12 (1974), 121-152.

[4] S.G. Krein: Linear differential equations in Banach space, American Mathe-
matical Society, Providence, R.I., 1971.

[51 A. Pazy: A class of semilinear equations of evolution, Israel J. Math. 20 (1975),
23-36.

[6] I.E. Segal: Non-linear semi-groups, Ann. of Math. (2) 78 (1963), 339-364. -

[7] P.E. Sobolevskii and V.A. Pogorelenko: Hyperbolic equations in Hilbert space, Sib-
erian Math. J. 8 (1967), 123-145.

[81 H.Tanabe: Evolution equations, Iwanami, Tokyo, 1975 (in Japanese).

[9] W. von Wahl: Gebrochene Potenzen eines elliptischen Operators und parabolische
Differentialgleichungen in Rdumen hélderstetiger Funktionen, Nachr. Akad. Wiss.
Géttingen, II. Math. Phys. Kl. Jg. 1972, 231-258.





