Sakane, Y. Osaka J. Math. 14 (1977), 201–206

A THEOREM ON LATTICES OF A COMPLEX SOLVABLE LIE GROUP

YUSUKE SAKANE*)

(Received February 4, 1976)

1. Introduction

A discrete subgroup Γ of a Lie group G is called a lattice of G if the homogeneous space G/Γ is of finite volume. It is known that any lattice Γ of a solvable Lie group G is uniform, i.e., such that G/Γ is compact. In this note we shall prove the following theorem.

Theorem. Let G be a connected complex solvable Lie group and Γ be a lattice of G. Suppose that Γ is nilpotent. Then G is nilpotent.

It is known that Theorem is not true in general for real solvable Lie group ([1] Chapter 3, Example 4).

2. Proof of Theorem

First we note that our theorem will be valid in general if it is proved for the case where G is simply connected. In fact, let \tilde{G} be the universal covering group with the projection $\pi: \tilde{G} \to G$. Then $\tilde{\Gamma} = \pi^{-1}(\Gamma)$ is a lattice in \tilde{G} and it is nilpotent, since the kernel of π is contained in the center of $\tilde{\Gamma}$. Thus \tilde{G} is nilpotent by Theorem for the case where the complex solvable Lie group is simply connected, and so is G.

From now on assume that G is simply connected. Let g be the Lie algebra of G and I the canonical complex structure. We denote by n the maximal nilpotent ideal of n regarded as real Lie algebra. Since n is given by $\{X \in g \mid ad(X)$ is nilpotent}, n is invariant by I, so that n is a complex subalgebra of g. Let g^k denote $[g, g^{k-1}]$ where we put $g^0 = g$. Then $\{g^k\}$ is a descending sequence of ideals. Put $g^{\infty} = \inf_k g^k$. It is obvious that g^{∞} equals g^m for some m and is a complex subalgebra. We thus have a sequence of ideals:

 $\mathfrak{g}\supset\mathfrak{n}\supset[\mathfrak{g},\mathfrak{g}]\supset\mathfrak{g}^{\infty}$.

^{*)} Partially supported by Yukawa Foundation.

Y. SAKANE

Let \mathfrak{g}^c denote the complexification of \mathfrak{g} . Then $\mathfrak{g}^c = \mathfrak{g}^+ + \mathfrak{g}^-$ (direct sum), where $\mathfrak{g}^{\pm} = \{X \in \mathfrak{g}^c | IX = \pm \sqrt{-1}X\}$. By Theorem of Lie, we can take a basis $\{X_1, \dots, X_n\}$ of the complex solvable Lie algebra \mathfrak{g}^+ such that

1) $\{X_{l+1}, \dots, X_n\}$ is a basis of $(\mathfrak{g}^{\infty})^+$

2) $\{X_{r+1}, \dots, X_n\}$ is a basis of $[g^+, g^+]$

3) $\{X_{s+1}, \dots, X_n\}$ is a basis of \mathfrak{n}^+ , where $\mathfrak{n}^+ = \{X \in \mathfrak{n}^c | IX = \sqrt{-1}X\}$, \mathfrak{n}^c being the complex subalgebra spanned by \mathfrak{n} .

4) the subspaces g_p^+ ($p=1, \dots, n$) spanned by $\{X_p, \dots, X_n\}$

are ideals of g^+ .

Put $Y_j = \frac{1}{2}(X_j + \overline{X}_j)$ for $j=1, \dots, n$. Then $IY_j = \frac{\sqrt{-1}}{2}(X_j - \overline{X}_j)$ and

 $\{Y_1, IY_1, \dots, Y_n, IY_n\}$ is a basis of g (over **R**). Moreover, if g_{2j-1} (resp. g_{2j}) denotes the real vector space spanned by $\{Y_j, IY_j, \dots, Y_n, IY_n\}$ (resp. $\{IY_j, Y_{j+1}, IY_{j+1}, \dots, Y_n, IY_n\}$). Then g_i $(i=1, \dots, 2n)$ are subalgebras of g and g_{i+1} is contained in g_i as an ideal. Since G is simply connected, it follows that every element $g \in G$ can be written in one and only one way in the form

$$g = (\exp t_1 Y_1)(\exp s_1 I Y_1) \cdots (\exp t_n Y_n)(\exp s_n I Y_n),$$

where $t_j = t_j(g)$, $s_j = s_j(g)$ $(j=1, \dots, n)$ are real numbers (cf. [2]). Since $[IY_j, Y_j] = 0$ for $j=1, \dots, n$.

$$g = \exp\left(t_1Y_1 + s_1IY_1\right) \cdots \exp\left(t_nY + s_nIY_n\right).$$

Thus we get a biholomorphic map $\Phi: G \rightarrow C^n$ defined by

$$\Phi(g) = (t_1(g) + \sqrt{-1}s_1(g), \cdots, t_n(g) + \sqrt{-1}s_n(g)).$$

Let $\{2C_{ij}^k\}$ be the structure constants of the Lie algebra \mathfrak{g}^+ with respect to the basis $\{X_1, \dots, X_n\}$. Then we may regard $\{C_{ij}^k\}$ as the structure constants of the complex Lie algebra \mathfrak{g} with respect to the basis $\{Y_1, \dots, Y_n\}$.

Note that, for $i=s+1, \dots, n$,

$$ad(X_i) = \begin{pmatrix} s & r-s & l-r & n-l \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ * & * & A_i & 0 \\ * & * & * & B_i \end{pmatrix} \begin{pmatrix} s \\ r-s \\ l-r \\ n-r \end{pmatrix}$$

where $A_i = \begin{pmatrix} 0 & 0 \\ & \ddots \\ & & 0 \end{pmatrix}$ and $B_i = \begin{pmatrix} 0 & 0 \\ & \ddots \\ & & 0 \end{pmatrix}$

202

and, for $i=1, \dots, s$,

$$ad(X_i) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ * & * & A_i & 0 \\ * & * & * & B_i \end{pmatrix}$$

where

$$A_i = \begin{pmatrix} 0 & 0 \\ \ddots \\ * & 0 \end{pmatrix} \text{ and } B_i = \begin{pmatrix} 2C_{i\,l+1}^{l+1} & 0 \\ & \ddots \\ * & 2C_{in}^n \end{pmatrix}.$$

In the following, decomposition of a matrix in sixteen blocks is always taken in sizes as indicated above.

We note that $(C_{1j}^{i}, \dots, C_{sj}^{i}) \neq (0, \dots, 0)$ for any $j=l+1, \dots, n$, by the definition of g^{∞} .

Since $Ad(g) = (\exp z_1(g) ad(Y_1)) \cdots (\exp z_n(g) ad(Y_n))$,

(1)
$$Ad(g)(Y_i, \dots, Y_n) = (Y_1, \dots, Y_n) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ B_1 & B_2 & B_3 & 0 \\ B_4 & B_5 & B_6 & B_7 \end{pmatrix}$$

where

$$B_{3} = \begin{pmatrix} 0 & 0 \\ * & 0 \\ * & 0 \end{pmatrix}, \quad B_{7} = \begin{pmatrix} \exp\left(\sum_{j=1}^{s} C_{jl+1}^{l+1} z_{j}(g)\right) & 0 \\ * & \ddots \\ \exp\left(\sum_{j=1}^{s} C_{jn}^{n} z_{j}(g)\right) \\ \end{bmatrix}$$

Consider g as a real Lie algebra and let l(g) denote the number of eigenvalues different from 1 of Ad(g): $g \rightarrow g$ for $g \in G$. Define rank $G = \sup_{g \in G} l(g)$. An element $g \in G$ is called regular if $l(g) = \operatorname{rank} G$. Then it is easy to see that $g \in G$ is regular if and only if $\exp\left(\sum_{i=1}^{s} C_{jk}^{k} z_{j}(g)\right) \neq 1$ for all $k = l+1, \dots, n$.

Lemma 1. Let Γ be a lattice of a simply connected complex solvable Lie group G. Then Γ contains a regular element of G.

Proof. If we denote by N the connected maximal normal nilpotent Lie group of $G, N \cap \Gamma$ is a lattice of N by a theorem of Mostow ([3], [4]). Let $\pi: G \to G/N$ be the projection. Then $\pi(\Gamma)$ is a lattice of G/N and $(G/N)/\pi(\Gamma)$ is a complex torus. By the definition of $\Phi: G \to \mathbb{C}^n$, it is obvious that G/N is biholomorphic to \mathbb{C}^s by $G/N \ni \pi(g) \to (z_1(g), \dots, z_s(g)) \in \mathbb{C}^s$. We identify G/Nwith \mathbb{R}^{2s} by Y. SAKANE

$$\pi(g) = (\operatorname{Re} z_1(g), \operatorname{Im} z_1(g), \cdots, \operatorname{Re} z_s(g), \operatorname{Im} z_s(g))$$
 .

Consider the real subspaces H_k of codimension 1 defined by

$$H_{k} = \{(x_{1}, y_{1}, \dots, x_{s}, y_{s}) \in \mathbf{R}^{2s} | \sum_{j=1}^{s} (\operatorname{Re}(C_{jk}^{k})x_{j} - \operatorname{Im}(C_{jk}^{k})y_{j}) = 0\}$$

for $k=l+1, \dots, n$. Since $\pi(\Gamma)$ is a lattice of \mathbb{R}^{2s} , there are infinitely many different real subspaces of codimension 1 which are generated by 2s-1 lattice points of $\pi(\Gamma)$. Hence, there exists a point $\gamma \in \Gamma$ such that $\pi(\gamma) \notin H_k$ for $k=l+1, \dots, n$. Then $|\exp(\sum_{j=1}^{s} C_{jk}^k z_j(\gamma))| \neq 1$ for all $k=l+1, \dots, n$ and $\gamma \in \Gamma$ is a regular element of G. q.e.d.

Lemma 2. (Mostow) Let G be a simply connected solvable Lie group and Γ a uniform subgroup of G containing a regular element. Let G^{∞} denote the connected Lie subgroup of G corresponding to \mathfrak{g}^{∞} . Then $G^{\infty} \cap \Gamma$ is uniform in G^{∞} .

Proof. See [3] Lemma 5.

Proof of Theorem. Suppose that G is not nilpotent. Then $G^{\infty} \neq \{e\}$. Since G^{∞} is a simply connected nilpotent Lie group, $G^{\infty} \cap \Gamma \neq \{e\}$ by Lemma 2. Since Γ is nilpotent, $G^{\infty} \cap \Gamma$ contains a non-trivial element of the center C of Γ . Choose an element $\gamma \neq e$ of $G^{\infty} \cap \Gamma \cap C$. We can write γ uniquely as

$$\gamma = (\exp z_{l+1} Y_{l+1}) \cdots (\exp z_n Y_n)$$

where $(z_{l+1}, \cdots, z_n) \in \mathbb{C}^{n-l}$.

Note that $ad(Y_i)$ is represented by the basis $\{Y_1, \dots, Y_n\}$ as follows:

where

$$A_{j} = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \\ C_{j_{1}}^{j_{1}} \cdots & C_{j_{s}}^{j_{s}} \\ \vdots & & \vdots \\ C_{j_{1}}^{n_{1}} \cdots & C_{j_{s}}^{n_{s}} \end{pmatrix} < j-l, \qquad B_{j} = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ * & \cdots & * \\ * & \cdots & * \end{pmatrix} < j-l,$$

204

$$C_{j} = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ * & \cdots & * \\ \vdots & \vdots \\ * & \cdots & * \end{pmatrix} < j-l \quad \text{and} \quad D_{j} = \begin{pmatrix} j-l \\ & & & \\ 0 & \cdots & 0 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \\ 0 & \cdots & 0 & \cdots & 0 \\ * & \cdots & * & 0 & \cdots & 0 \\ \vdots & & & \vdots \\ * & \cdots & & * & 0 \end{pmatrix} .$$

Fix a j=l+1, ..., n and put $\delta_j=(\exp z_j Y_j)...(\exp z_n Y_n)$. Then $Ad(\delta_j)=(\exp z_j ad(Y_j))...(\exp z_n ad(Y_n))$ is written as follows:

(2)
$$Ad(\delta_{j}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ P_{j} & Q_{j} & R_{j} & S_{j} \end{pmatrix}$$

where

$$P_{j} = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \\ C_{j_{1}}^{j} z_{j} \cdots & C_{j_{s}}^{j} z_{j} \\ * & \cdots & * \\ \vdots & & \vdots \\ * & \cdots & * \end{pmatrix} < j-l, \qquad Q_{j} = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \\ * & \cdots & * \\ \vdots & & \vdots \\ * & \cdots & * \end{pmatrix} < j-l, \qquad d_{j} = \begin{pmatrix} 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ * & \cdots & * \\ \vdots & & \vdots \\ 0 & \cdots & 0 & 0 \\ * & \cdots & * & 1 \\ \vdots & & \vdots \\ * & \cdots & * & 1 \end{pmatrix} < j-l \text{ and } S_{j} = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \vdots & \cdots & 0 \\ 0 & 1 & 0 & \vdots & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & 1 & 0 & 0 \\ * & \cdots & * & 1 & 0 & \cdots & 0 \\ \vdots & & & \ddots & & \vdots \\ \vdots & & & \ddots & & \vdots \\ * & \cdots & & * & 1 \end{pmatrix} < j-l.$$

We claim that if $\gamma_0 \delta_j = \delta_j \gamma_0$ for a regular element $\gamma_0 \in \Gamma$, then $z_j = 0$. Put

$$Ad(\gamma_0) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ B_1 & B_2 & B_3 & 0 \\ B_4 & B_5 & B_6 & B_7 \end{pmatrix}.$$

Since $Ad(\gamma_0)Ad(\delta_j)=Ad(\delta_j)Ad(\gamma_0)$, we get

(3)
$$B_4 + B_7 P_j = P_j + R_j B_1 + S_j B_4 \in M_{n-l,s}(C)$$
.

205

Consider the (j-l, k)-component of both hands of (3), by (1) we get

$$\exp\left(\sum_{i=1}^{3} C_{ij}^{j} z_{i}(\gamma_{0})\right) C_{jk}^{j} z_{j} = C_{jk}^{j} z_{j}$$

for $k=1, \dots, s$. Since γ_0 is a regular element of G, exp $(\sum C_{ij}^j z_j(\gamma_0)) \neq 1$ and $C_{jk}^j z_j=0$ for $k=1, \dots, s$. Thus $z_j=0$, since $(C_{1j}^j, \dots, C_{sj}^j) \neq (0, \dots, 0)$.

Now, starting with j=l+1, we get $z_j=0$ successively for all $j=l+1, \dots, n$. This contradicts our assumption $\gamma \neq e$. Hence, G is nilpotent, and this proves our Theorem.

REMARK. The special case of our Theorem has been proved in a stronger form in the section 2 of [5].

OSAKA UNIVERSITY

References

- [1] L. Auslander: An exposition of the structure of solvmanifolds Part 1: Algebraic theory, Bull. Amer. Math. Soc. 79 (1973), 227-261.
- [2] C. Chevalley: On the topological structure of solvable groups, Ann. of Math. 42 (1941), 668-675.
- [3] D.G. Mostow: Factor spaces of solvable groups, Ann. of Math. 60 (1954), 1-27.
- [4] M.S. Raghunathan: Discrete subgroups of Lie groups, Springer-Verlag, 1972.
- [5] Y. Sakane: On compact complex affine manifolds, J. Math. Soc. Japan 29 (1977), 135-149.