Ōshima, H.
Osaka J. Math.
14 (1977), 179-189

ON F-PROJECTIVE HOMOTOPY OF SPHERES

Hideaki ŌSHIMA

(Received December 16, 1975)

We write F for the real (R), complex (C) or quaternoinic (H) numbers. Let $F P^{n}$ be the F-projective space of $n F$-dimensions and

$$
h_{F}: S^{(n+1) d-1} \rightarrow F P^{n}
$$

the canonical fibration with fibre S^{d-1}, where $d=\operatorname{dim}_{R} F$. We work in the topological category of pointed spaces and pointed maps. Given a space X and a positive integer m, we define the F-projective homotopy sets

$$
\pi_{m}^{F}(X)= \begin{cases}h_{F}^{*}\left[F P^{n}, X\right] & \text { if } m=(n+1) d-1 \\ 0 & \text { if } m \neq-1(d)\end{cases}
$$

and similarly the stable F-projective homotopy groups

$$
\pi_{m}^{S F}(X)= \begin{cases}h_{F}^{*}\left\{F P^{n}, X\right\} & \text { if } m=(n+1) d-1 \\ 0 & \text { if } m \neq-1(d)\end{cases}
$$

here $\{X, Y\}=\lim \left[S^{r} X, S^{r} Y\right]$, the limit maps being induced by suspension.
For small $j, \pi_{n+j}^{(S) F}\left(S^{n}\right)$ has been calculated by Bredon [6], Rees [11], Strutt [13] and Randall [10]. In this note we restrict our attention to the case $F=C$ or H. We calculate the Adams e-invariants of elements in $\pi_{m}^{(S) F}\left(S^{n d}\right)$ in $\S 1$ and estimate the order of a canonical element in $\pi_{(k+n+1) d-1}^{(S) F}\left(S^{n d}\right)$ for $n=1$ in §2 and $n \equiv 0\left(M_{k+1}(F)\right)$ in $\S 3$ (see $\S \S 2,3$ for the definitions of "canonical" and ($k+1$)-th F-James number $\left.M_{k+1}(F)\right)$. For example we show that under some assumptions on k and a prime p, if $n \equiv 0\left(M_{k+1}(F)\right)$ and $\nu_{p}(n)=\nu_{p}\left(M_{k+1}(F)\right), \pi_{(k+n+1) d-1}^{S F}\left(S^{n d}\right)$ ($\subset \pi_{(k+1) d-1}^{S}$, the stable $(k+1) d-1$ stem) contains an element of order $p^{\nu p^{(k+1)+1}}$, where $\nu_{p}(q)$ denotes the exponent of p in the prime factorization of q.

1. e-invariants of \boldsymbol{F}-projective elements

It is clear that $\pi_{(m+1) d-1}^{F}\left(S^{n d}\right)=\pi_{(m+1) d-1}^{S F}\left(S^{n d}\right)=0$ for $m<n$. For $m \geqq n$, by cellularity

$$
\pi_{(m+1) d-1}^{F}\left(S^{n d}\right)=\bar{h}_{F}^{*}\left[F P_{n}^{m}, S^{n d}\right]
$$

and similarly for the stable case, here $F P_{n}^{m}=F P^{m} / F P^{n-1}$ and \bar{h}_{F} denotes the composition of h_{F} and the natural projection $F P^{m} \rightarrow F P_{n}^{m}$.

We introduce the following notations:

$$
\phi_{F}(x)= \begin{cases}\exp (x)-1 & \text { if } F=C \\ \left\{2 \operatorname{sh} \frac{\sqrt{x}}{2}\right\}^{2} & \text { if } F=H\end{cases}
$$

$\left(\operatorname{sh}(x)=\frac{\exp (x)-\exp (-x)}{2}\right) ;$ the rational numbers $\alpha_{F}(n, j)$ defined by

$$
\left\{\frac{\phi_{F}^{-1}(x)}{x}\right\}^{n}=\sum_{j=0}^{\infty} \alpha_{F}(n, j) x^{j}
$$

(ϕ_{F}^{-1} denotes the inverse function of ϕ_{F}) $e, e_{R}{ }^{\prime}$, the Adams complex and real e invariants [1];

$$
\operatorname{deg}:\left[F P_{n}^{k+n}, S^{n d}\right]\left(\text { or }\left\{F P_{n}^{k+n}, S^{n d}\right\}\right) \rightarrow Z
$$

maps f to the degree of $S^{n d}=F P_{n}^{n} \subset F P_{n}^{k+n} \xrightarrow{f} S^{n d} ; \xi=\xi_{F}(m)$, the underlying complex vector bundle of the canonical F line bundle over $F P^{m} ; z=z_{F}(m)=$ $\xi-\frac{d}{2} \in K\left(F P^{m}\right) ; t=t_{F}(m)=(-1)^{d / 2+1} c_{d / 2}(\xi) \in H^{d}\left(F P^{m} ; Z\right)$ (d/2-th Chern class); $\beta=z_{c}(1) \in K\left(S^{2}\right)$, the Bott generator; $\psi^{k}: K(\quad) \rightarrow K(\quad)$, the Adams operation; ch: $K() \rightarrow H^{*}(; Q)$, the Chern character. Then the followings are well known.

$$
\begin{aligned}
K\left(F P^{m}\right) & =Z[z] / z^{m+1} \\
H^{*}\left(F P^{m} ; Z\right) & =Z[t] / t^{m+1} \\
\operatorname{ch}(z) & =\phi_{F}(t)
\end{aligned}
$$

Now we prove the following.
Theorem 1.1. For $f \in\left[F P_{n}^{k+n}, S^{n d}\right]$ (or $f \in\left\{F P_{n}^{k+n}, S^{n d}\right\}$), we have

$$
e\left(\bar{h}_{F}^{*}(f)\right)=-\operatorname{deg}(f) \alpha_{F}(n, k+1)
$$

Proof. Consider the following commutative diagram

where the horizontal sequences are cofibrations. Then we have the commutative diagram of the short exact sequences
$0 \longleftarrow \tilde{K}\left(F P_{n}^{k+n}\right) \longleftarrow \tilde{K}\left(F P_{n}^{k+n+1}\right) \longleftarrow \tilde{K}\left(S^{(k+n+1) d}\right) \longleftarrow 0$

Let $a \in K\left(C_{\tilde{f}}\right)$ be such that $i^{*}(a)=\beta^{n d / 2}$. Let $b=j^{*}\left(\beta^{(k+n+1) d / 2}\right)$. Then

$$
\psi^{2}(a)=d^{n} a+\lambda b \text { for some } \lambda \in Z,
$$

and

$$
e(\tilde{f})=\frac{\lambda}{d^{n}\left(d^{k+1}-1\right)} \in Q / Z
$$

Let

$$
\bar{f}^{*}(a)=\sum_{i=0}^{k+1} a_{i} z^{i+n}
$$

Then

$$
\begin{aligned}
\psi^{2} \bar{f}^{*}(a) & =\sum_{i=0}^{k+1} a_{i}\left(\psi^{2}(z)\right)^{i+n}=\sum_{i=0}^{k+1} a_{i}\left(z^{2}+d z\right)^{i+n} \\
& =\sum_{j=0}^{k+1} \sum_{i=0}^{k+1} a_{i}\left(\begin{array}{c}
n+i \\
\left.j_{-i}\right)
\end{array} d^{n+2 i-j} z^{n+j}\right.
\end{aligned}
$$

and this equals

$$
\bar{f}^{*} \psi^{2}(a)=\bar{f}^{*}\left(d^{n} a+\lambda b\right)=d^{n} \sum_{i=0}^{k+1} a_{i} z^{n+i}+\lambda z^{k+n+1}
$$

so that comparing the coefficients of z^{k+n+1} we have

$$
\lambda=\sum_{i=0}^{k} a_{i}\left({ }_{k+1-i}^{n+i}\right) d^{n+2 i-(k+1)}+d^{n}\left(d^{k+1}-1\right) a_{k+1}
$$

and so

$$
\begin{equation*}
e(\tilde{f})=\frac{\sum_{i=0}^{k} a_{i}\binom{n+i}{k+1-i} d^{n+2 i-(k+1)}}{d^{n}\left(d^{k+1}-1\right)} \tag{1.2}
\end{equation*}
$$

Consider the commutative diagram

Then

$$
f^{*}\left(\beta^{n d / 2}\right)=\sum_{i=0}^{k} a_{i} z^{n+i}
$$

and

$$
\begin{align*}
\operatorname{deg}(f) t^{n} & =f^{*} \operatorname{ch}\left(\beta^{n d / 2}\right)=\operatorname{ch} f^{*}\left(\beta^{n d / 2}\right)=\sum_{i=0}^{k} a_{i}(\operatorname{ch}(z))^{n+i} \tag{1.3}\\
& =\sum_{i=0}^{k} a_{i} \phi_{F}(t)^{n+1}
\end{align*}
$$

By definition

$$
\begin{aligned}
\left(\phi_{F}^{-1}(x)\right)^{n} & =\sum_{j=0}^{\infty} \alpha_{F}(n, j) x^{n+j} \\
x & =\phi_{F}^{-1} \phi_{F}(x)
\end{aligned}
$$

so that

$$
t^{n}=\sum_{j=0}^{\infty} \alpha_{F}(n, j) \phi_{F}(t)^{n+j}
$$

Then by (1.3)

$$
a_{i}=\operatorname{deg}(f) \alpha_{F}(n, i) \quad \text { for } 0 \leqq i \leqq k,
$$

so that by (1.2)

$$
\begin{equation*}
e(\tilde{f})=\frac{\operatorname{deg}(f) \sum_{j=0}^{k} \alpha_{F}(n, j)\binom{n+j}{k+1-j} d^{n+2 j-(k+1)}}{d^{n}\left(d^{k+1}-1\right)} \tag{1.4}
\end{equation*}
$$

Next we observe that the function ϕ^{-1} satisfies the equation

$$
\phi_{F}^{-1}\left(x^{2}+d x\right)=d \phi_{F} \bar{F}^{-1}(x) .
$$

Then

$$
\begin{aligned}
\left(\phi_{F}^{-1}\left(x^{2}+d x\right)\right)^{n} & =\sum_{j=0}^{\infty} \alpha_{F}(n, j)\left(x^{2}+d x\right)^{n+j} \\
& =\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \alpha_{F}(n, j)\binom{n+j}{i-j} d^{n+2 j-i} x^{n+i}
\end{aligned}
$$

equals

$$
\left(d \phi_{F}^{-1}(x)\right)^{n}=d^{n} \sum_{i=0}^{\infty} \alpha_{F}(n, i) x^{n+i}
$$

so that comparing the coefficients of x^{k+n+1}, we have

$$
\sum_{j=0}^{k} \alpha_{F}(n, j)\binom{n+j}{k+1-j} d^{n+2 j-(k+1)}=d^{n}\left(1-d^{k+1}\right) \alpha_{F}(n, k+1)
$$

and then by (1.4)

$$
e(\tilde{f})=-\operatorname{deg}(f) \alpha_{F}(n, k+1)
$$

This completes the proof of Theorem 1.1.
Using $K O^{*}$-theory, we can obtain lower bounds of $\operatorname{deg}(f)$ (e.g. [8], [9]), but
now we need upper bounds and unfortunately we have not sharp estimation with the exception of the two special cases $n=1$ and $n \equiv 0\left(M_{k+1}(F)\right)$. In the following two sections we will study these two cases.

2. $\boldsymbol{\pi}_{(k+n+1) d-1}^{(S) \boldsymbol{F}}\left(\mathbf{S}^{\boldsymbol{n d}}\right)$ for $\boldsymbol{n}=\mathbf{1}$

For a positive integer q, it is well known that the order of the composition

$$
S^{2 d-1} \xrightarrow{h_{F}} F P^{1}=S^{d} \xrightarrow{q} S^{d}
$$

is infinite, so that

$$
\operatorname{deg}(f)=0 \quad \text { for } f \in\left[F P^{k+1}, S^{d}\right](k>0)
$$

and so by Theorem 1.1

$$
e=0: \pi_{(k+2) d-1}^{F}\left(S^{d}\right) \longrightarrow Q / Z(k>0) .
$$

By induction on k we know that the rank of $\left\{F P_{n}^{k+n}, S^{n d}\right\}$ is one. We will call a generator of this free part (and its image by \bar{h}_{F}^{*}) a canonical element. Let $f \in\left\{F P_{n}^{k+n}, S^{n d}\right\}$ be a canonical element, then (take $-f$ if necessary)

$$
\operatorname{deg}(f)=k_{s}\left(F P_{n}^{k+n}, S^{n d}\right)
$$

where the right hand side has been defined in [8] and called the stable James number of the pair $\left(F P_{n}^{k+n}, S^{n d}\right)$. In particuler we have used the notation

$$
d_{F}(k+1)=k_{s}\left(F P^{k+1}, S^{d}\right)
$$

and this has been estimated in [7], [8] and [9].
Proposition 2.1. For an odd prime p and an integer $l \geqq 1$, e-invariant of a canonical element in $\pi_{2 p^{l-1}}^{S C}\left(S^{2}\right)\left(\right.$ or $\left.\pi_{2 p+1}^{S H}\left(S^{4}\right)\right)$ is of order $p($ or a multiple of p).

Proof. (i) $F=C$. We have

$$
\frac{\phi \bar{c}^{-1}(x)}{x}=\frac{\log (1+x)}{x}=\sum_{i=0}^{\infty} \frac{(-1)^{i}}{i+1} x^{i}
$$

so that

$$
\alpha_{C}(1, k+1)=\frac{(-1)^{k+1}}{k+2}
$$

and then for a canonical element $f \in\left\{C P^{k+1}, S^{2}\right\}$

$$
e\left(h_{c}^{*}(f)\right)=(-1)^{k} \frac{d_{c}(k+1)}{k+2} .
$$

Suppose that $k+2=u v$, where u and v are relatively prime integers and not one. Then by [8], u, v and hence $u v$ devide $d_{c}(k+1)$. Therefore $e\left(h_{c}^{*}(f)\right)=0$. In
case with $k+2=2^{w}$ for $w \geqq 2,2^{w}$ devides $d_{c}\left(2^{w}-1\right)$ [8] and hence $e\left(h_{c}^{*}(f)\right)=0$. If $k+2=p^{l}$ for an odd prime p and a positive integer l, [8] says that $\nu_{p}\left(d_{c}\left(p^{l}-1\right)\right)$ $=l-1$ so that the order of $e\left(h_{c}^{*}(f)\right)$ is p. This completes the proof of Proposition 2.1 for $F=C$.
(ii) $F=H$. We have

$$
\frac{\phi_{H^{1}}(x)}{x}=\left(\frac{\operatorname{sh}^{-1} \frac{\sqrt{x}}{2}}{\frac{\sqrt{x}}{2}}\right)^{2}=\sum_{i=0}^{\infty} \frac{(-1)^{i}}{2^{4 i}} \sum_{u+v=i} \frac{(2 u)!(2 v)!}{(u!)^{2}(v!)^{2}(2 u+1)(2 v+1)} x^{i}
$$

so that

$$
\alpha_{H}(1, k+1)=\frac{(-1)^{k+1}}{2^{4 k+4}} \sum_{i+j=k+1} \frac{(2 i)!(2 j)!}{(i!)^{2}(j!)^{2}(2 i+1)(2 j+1)} .
$$

Therefore if $2 k+3=p$, a prime,

$$
\nu_{p}\left(\alpha_{H}(1, k+1)\right)=-1
$$

On the other hand by [9]

$$
d_{H}(k+1) \mid(2 k+2)!(2 k)!\cdots 4!
$$

so that by Theorem 1.1 for a canonical element $f \in\left\{H P^{k+1}, S^{4}\right\}$

$$
\nu_{p}\left(e\left(h_{H}^{*}(f)\right)=-1 .\right.
$$

This completes the proof of Proposition 2.1.

3. $\boldsymbol{\pi}_{(k+n+1) d-1}^{(S) \boldsymbol{F}}\left(\mathbf{S}^{n d}\right)$ for $\boldsymbol{n} \equiv \mathbf{0}\left(\boldsymbol{M}_{k+1}(\boldsymbol{F})\right)$

First we repeat the basic relations of the James number $M_{k+1}(F), \alpha_{F}(n, j)$ and the coreducibility of $F P_{n}^{k+n}$ as given in Adams-Walker [2], Atiyah [4] [5], Atiyah-Todd [3] and Sigrist-Suter [12].

Let $M_{k+1}(F)$ be the order of $J(\xi)$ in the J-group $J\left(F P^{k}\right)$ [4].
Lemma 3.1. ([2], [12]) For a prime p, we have
(i) $\quad \nu_{p}\left(M_{k+1}(C)\right)= \begin{cases}\max \left(r+\nu_{p}(r)\right), 1 \leqq r \leqq \frac{k}{p-1} \text { if } p \leqq k+1 \\ 0 & \text { if } p>k+1 .\end{cases}$
(ii) $\nu_{2}\left(M_{k+1}(H)\right)=\max \left(2 k+1,2 r+\nu_{2}(r)\right), 1 \leqq r \leqq k$, $\nu_{p}\left(M_{k+1}(H)\right)=\nu_{p}\left(M_{2 k+2}(C)\right)$ if p odd.

Lemma 3.2. ([5, p. 143], [3], [12]) The following three statements are equivalent.
(i) $n \equiv 0\left(M_{k+1}(F)\right)$
(ii) for $0 \leqq j \leqq k, \alpha_{F}(n, j) \in\left\{\begin{aligned} Z & \text { if } F=C \text { or } F=H \text { and } j \text { even } \\ 2 Z & \text { if } F=H \text { and } j \text { odd }\end{aligned}\right.$
(iii) $F P_{n}^{k+n}$ is coreducible, that is, there exists a retraction $F P_{n}^{k+n} \rightarrow S^{n d}$.

When above equivalent conditions are satisfied, for a retraction $f: F P_{n}^{k+n} \rightarrow$ $S^{n d}$ we have

$$
\begin{equation*}
e\left(\bar{h}_{F}^{*}(f)\right)=-\alpha_{F}(n, k+1) \tag{3.3}
\end{equation*}
$$

Therefore next we have to compute $\alpha_{F}(n, k+1)$. Remark that f represents a canonical element in the stable category.

Lemma 3.4. ([3], [12]) Let n be a positive integer, k a non negative integer and p a prime (an odd prime if $F=H$). Then we have
(i) $\quad \nu_{p}\left(\alpha_{F}(n, j)\right) \geqq 0$ for $0 \leqq j \leqq k$ if and only if $\nu_{p}(n) \geqq \nu_{p}\left(M_{k^{+1}}(F)\right)$,
(ii) $\quad \nu_{2}\left(\alpha_{H}(n, j)\right) \geqq\left\{\begin{array}{ll}0 & j \text { even } \\ 1 & j \text { odd }\end{array}\right.$ for $0 \leqq j \leqq k$ if and only if $\nu_{2}(n) \geqq \nu_{2}\left(M_{k+1}(H)\right)$,
(iii) if $\nu_{2}(n) \geqq 2 j-1, \nu_{2}(n)=2 j+\nu_{2}(j)+\nu_{2}\left(\alpha_{H}(n, j)\right)$.

In $\S 1$ we defined the coefficients $\alpha_{c}(n, j)$ by the formula

$$
\sum_{j=0}^{\infty} \alpha_{c}(n, j) x^{j}=\left(\frac{\phi \bar{c}^{-1}(x)}{x}\right)^{n}=\left(\frac{\log (1+x)}{x}\right)^{n}=\left(\sum_{i=0}^{\infty} \frac{(-1)^{i}}{i+1} x^{i}\right)^{n} .
$$

Using the multinomial expansion we find

$$
\begin{align*}
\alpha_{C}(n, j) & =(-1)^{j} \sum_{s} \frac{n!}{s_{0}!s_{1}!\cdots s_{j}!} \prod_{i=0}^{j} \frac{1}{(i+1)^{s}} \tag{3.5}\\
& =(-1)^{j} \sum_{s} T(n, j, s), \text { say }
\end{align*}
$$

where the summation extends over all ordered sets $\boldsymbol{s}=\left(s_{0}, s_{1}, \cdots, s_{j}\right)$ of non negative integers such that $\sum s_{i}=n, \sum i s_{i}=j$.

Lemma 3.6. ($[3,6.5]$) Let p be a prime and k a non negative integer. Suppose that $\nu_{p}\left(\alpha_{c}(n, j)\right) \geqq 0$ for $0 \leqq j \leqq k$. Then
$\nu_{p}(T(n, k+1, s)) \geqq 0$ for all sequences s in (3.5), with the following possible exception: if $k+1=s(p-1)$ with s integral, and if s is the sequence in which $s_{0}=n-s, s_{p-1}=s$, and all other s_{i} are zero, we have

$$
\nu_{p}(T(n, k+1, s))=\nu_{p}(n)-\nu_{p}(s)-s .
$$

Lemma 3.7. (i) Let p be a prime (an odd prime if $F=H$), n and k non negative integers. \quad Suppose that $\nu_{p}\left(M_{k+1}(F)\right) \leqq \nu_{p}(n)<\nu_{p}\left(M_{k+2}(F)\right) . \quad$ Then $\frac{(k+1) d}{2}$ $=s(p-1)$ for some integer s and

$$
\nu_{p}\left(\alpha_{F}(n, k+1)\right)=\nu_{p}(n)-\nu_{p}\left(M_{k+2}(F)\right) .
$$

(ii) If $\nu_{2}\left(M_{k+1}(H)\right) \leqq \nu_{2}(n), \nu_{2}\left(\alpha_{H}(n, k+1)\right)=\nu_{2}(n)-2(k+1)-\nu_{2}(k+1)$.

Proof. By (3.1)

$$
\nu_{2}\left(M_{k+1}(H)\right) \geqq 2 k+1
$$

so that (ii) follows from (3.4).
(i) for $F=C$ follows from (3.1), (3.5) and (3.6) immediately.

We define the rational numbers $d_{i}(n)$ by

$$
\sum_{i=0}^{\infty} d_{i}(n) y^{i}=\left(\frac{\operatorname{sh}^{-1} y}{y}\right)^{2 n}
$$

then

$$
\begin{equation*}
d_{2 i}(n)=2^{2 i} \alpha_{H}(n, i), d_{2 i+1}=0 \tag{3.8}
\end{equation*}
$$

Recall that $\operatorname{sh}^{-1} y=\log \left(y+\sqrt{1+y^{2}}\right)$. The power series of $y+\sqrt{1+y^{2}}$ is of the form $1+g(y)$, where $g(y)$ has the inverse $g^{-1}(x)=x-\frac{1}{2} \sum_{i=2}^{\infty}(-1)^{i} x^{i}$. We have

$$
\sum_{i=0}^{\infty} d_{i}(n) y^{i+2 n}=\left(\operatorname{sh}^{-1} y\right)^{2 n}=(\log (1+g(y)))^{2 n}=\sum_{i=0}^{\infty} \alpha_{C}(2 n, i) g(y)^{i+2 n}
$$

Put $y=g^{-1}(x)$. Then for non negative integer j we have

$$
\begin{equation*}
\sum_{i=0}^{j} d_{i}(n) \sum_{s} \frac{(i+2 n)!}{s_{1}!s_{2}!\cdots} \frac{(-1)^{i+j}}{2^{i+2 n-s_{1}}}=\alpha_{C}(2 n, j) \tag{3.9}
\end{equation*}
$$

where the summation \sum_{s} extends over all ordered sets $s=\left(s_{1}, s_{2}, \cdots\right)$ of non negative integers such that $\sum s_{u}=i+2 n, \sum u s_{u}=j+2 n$. Hence for an odd prime p and a positive integer m we have

$$
\begin{align*}
& \nu_{p}\left(d_{i}(n)\right) \geqq 0 \quad \text { for } 0 \leqq i \leqq m \quad \text { if and only if } \tag{3.10}\\
& \nu_{p}\left(\alpha_{c}(2 n, j) \geqq 0 \quad \text { for } 0 \leqq j \leqq m\right.
\end{align*}
$$

If these equivalent conditions are satisfied, (3.9) says that $\nu_{p}\left(d_{m+1}(n)\right)$ or $\nu_{p}\left(\alpha_{c}\right.$ $(2 n, m+1))<0$ implies $\nu_{p}\left(d_{m^{+1}}(n)\right)=\nu_{p}\left(\alpha_{c}(2 n, m+1)\right)$. Therefore

$$
\begin{align*}
& \text { if } \nu_{p}\left(\alpha_{C}(2 n, j)\right) \geqq 0 \quad \text { for } 0 \leqq j \leqq 2 k+1 \text { and } \nu_{p}\left(\alpha_{C}(2 n, 2 k+2)\right) \tag{3.11}\\
& \quad<0 \text {, then } \nu_{p}\left(\alpha_{H}(n, k+1)\right)=\nu_{p}\left(d_{2 k+2}(n)\right)=\nu_{p}\left(\alpha_{C}(2 n, 2 k+2)\right) .
\end{align*}
$$

Suppose that $\nu_{p}\left(M_{k+1}(H)\right) \leqq \nu_{p}(n)<\nu_{p}\left(M_{k+2}(H)\right)$ for an odd prime p. Then by (3.4)

$$
\nu_{p}\left(\alpha_{H}(n, j)\right) \geqq 0 \quad \text { for } 0 \leqq j \leqq k
$$

and by (3.8)

$$
\nu_{p}\left(d_{j}(n)\right) \geqq 0 \quad \text { for } 0 \leqq j \leqq 2 k+1
$$

and by (3.10)

$$
\nu_{p}\left(\alpha_{c}(2 n, j)\right) \geqq 0 \quad \text { for } 0 \leqq j \leqq 2 k+1
$$

so that by (3.1) and (3.11) we know that $2 k+2=s(p-1)$ with s integral and

$$
\nu_{p}\left(\alpha_{c}(2 n, 2 k+2)\right)=\nu_{p}(2 n)-\nu_{p}(s)-s=\nu_{p}(n)-\nu_{p}\left(M_{k+2}(H)\right)<0 .
$$

This implies (i) for $F=H$ and completes the proof of Lemma 3.7.
Now we will estimate the order of the e-inavriant of a canonical element. Let \#a denote the order of an element a of a module.

Proposition 3.12. Suppose that $n \equiv 0\left(M_{k+1}(F)\right)^{*)}$ and let $f: F P_{n}^{k+n} \rightarrow S^{n d}$ be a retraction.
(i) Let p be a prime (an odd prime if $F=H$) and suppose that $\nu_{p}\left(M_{k+1}(F)\right)$ $\leqq \nu_{p}(n)<\nu_{p}\left(M_{k+2}(F)\right)$. Then

$$
\nu_{p}\left(\# e\left(\bar{h}_{F}^{*}(f)\right)\right)=\nu_{p}\left(M_{k+2}(F)\right)-\nu_{p}(n) .
$$

Moreover, in case $k \equiv 1(4)$ and $(F, p)=(C, 2)$, considering f as a stable map (or if $n \equiv 0$ (4)), we have

$$
\nu_{2}\left(\# e_{R}^{\prime}\left(\bar{h}_{C}^{*}(f)\right)\right)=\nu_{2}\left(M_{k+2}(C)\right)-\nu_{2}(n)+1 .
$$

(ii) If $\nu_{2}\left(M_{k+1}(H)\right) \leqq \nu_{2}(n)<2(k+1)+\nu_{2}(k+1)$,

$$
\nu_{2}\left(\# e\left(\bar{h}_{H}^{*}(f)\right)\right)=2(k+1)+\nu_{2}(k+1)-\nu_{2}(n) .
$$

Moreover in case $k \equiv 0$ (2) and $n \equiv 0$ (2), we have

$$
\nu_{2}\left(\# e_{R}{ }^{\prime}\left(\bar{h}_{H}^{*}(f)\right)\right)=2(k+1)+\nu_{2}(k+1)-\nu_{2}(n)+1 .
$$

Proof. (3.3), (3.7) and the fact

$$
e=2 e_{R}{ }^{\prime}: \pi_{8 q+r}\left(S^{8 q}\right) \rightarrow Q / Z \quad \text { if } r \equiv 3(8) \quad[1,7.14]
$$

imply Proposition 3.12.
Suppose that $\nu_{p}\left(M_{k+1}(F)\right) \leqq \nu_{p}(n)<\nu_{p}\left(M_{k+2}(F)\right)$. Then $\frac{(k+1) d}{2}=s(p-1)$ with s integral as seen before. Put $s=p^{l} u, u \neq 0(p)$ for integers l, u. Then by (3.1)
$\nu_{p}\left(M_{k^{+2}}(F)\right)-\nu_{p}(n) \leqq \nu_{p}\left(M_{k^{+2}}(F)\right)-\nu_{p}\left(M_{k^{+1}}(F)\right) \leqq\left\{\begin{array}{l}l+1 \quad \text { if }(F, p) \neq(H, 2) \\ \max (l+1,2) \text { if }(F, p)=(H, 2) .\end{array}\right.$

[^0]In the following Corollary 3.13, we will give a condition that implies

$$
\nu_{p}\left(M_{k+2}(F)\right)-\nu_{p}(n)= \begin{cases}l+1 & \text { if }(F, p) \neq(H, 2) \\ \max (l+1,2) & \text { if }(F, p)=(H, 2) .\end{cases}
$$

Corollary 3.13. Let p be a prime. Suppose that $n \equiv 0\left(M_{k^{+1}}(F)\right)$ and $\nu_{p}(n)=$ $\nu_{p}\left(M_{k+1}(F)\right)$. Let $f: F P_{n}^{k+n} \rightarrow S^{n d}$ be a retraction.
(i) If $(F, p) \neq(H, 2)$ and k satisfies

$$
\frac{(k+1) d}{2}=p^{l} u(p-1), u \neq 0(p), \begin{array}{ll}
u<p^{l+1} & (p \text { odd }) \\
u<2^{l} & (p=2)
\end{array}
$$

for some integers u and l, then

$$
\nu_{p}\left(\# e\left(\bar{h}_{F}^{*}(f)\right)\right)=l+1 .
$$

(ii) If k satisfies

$$
k+1=2^{\prime} u, u \neq 0(2), u<2^{l+2}
$$

then

$$
\nu_{2}\left(\# e\left(\bar{h}_{H}^{*}(f)\right)\right)= \begin{cases}l+1 & \text { if } l \geqq 1 \\ 2 & \text { if } l=0\end{cases}
$$

and moreover in case $k=0$ or 2 and $n \equiv 0$ (2) we have

$$
\nu_{2}\left(\# e_{R}{ }^{\prime}\left(\bar{h}_{H}^{*}(f)\right)\right)=3
$$

Proof. Using (3.1) and the fact [3]

$$
M_{2 k+1}(C)=M_{2 k+2}(C) \quad \text { for } k \geqq 1
$$

we can prove this Corollary by elementary calculation, so we omit the proof.
Remark. If $n \equiv 0\left(M_{k+1}(F)\right)$, we have

$$
\pi_{(k+n+1) d-1}^{F}\left(S^{n d}\right) \longrightarrow \pi_{(k+n+1(d-1}^{S F}\left(S^{n d}\right)
$$

with the exception of $(F, k, n)=(C, 0,1),(C, 1,2)$ or $(H, 0,1)$. For these three cases, we list up the results without proof.

Proposition 3.14.

$$
\begin{aligned}
& \pi_{3}^{C}\left(S^{2}\right)=\left\{k^{2} \eta ; k \in Z\right\} \\
& \pi_{7}^{C}\left(S^{4}\right)=\left\{k^{2} \nu+\frac{k(k-1)}{2} \delta+6 l \delta ; k \in Z, l=0 \text { or } 1\right\} \\
& \pi_{7}^{H}\left(S^{4}\right)=\left\{k^{2} \nu+\frac{k(k-1)}{2} \delta ; k \in Z\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{3}^{S C}\left(S^{2}\right)=\pi_{1}^{s}=Z_{2} \\
& \pi_{7}^{S C}\left(S^{4}\right)=\pi_{7}^{s H}\left(S^{4}\right)=\pi_{3}^{s}=Z_{24}
\end{aligned}
$$

where $\pi_{3}\left(S_{2}\right)=Z=\{\eta\}$ and $\pi_{7}\left(S^{4}\right)=Z \oplus Z_{12}=\{\nu\} \oplus\{\delta\}$.

Osaka City University

References

[1] J.F. Adams: On the groups $J(X)$-IV, Topology 5 (1966), 21-71.
[2] - and G. Walker: On complex Stiefel manifolds, Proc. Camb. Phil. Soc. 61 (1965), 81-103.
[3] M.F. Atiyah and J.A. Todd: On complex Stiefel manifolds, Proc. Camb. Phil. Soc. 56 (1960), 342-353.
[4] M.F. Atiyah: Thom complexes, Proc. London Math. Soc. 11 (1961), 291-310.
[5] ——: K-theory, Benjamin, 1964.
[6] G.E. Bredon: Equivariant homotopy, Proc. Conference on Transformation Groups, 281-292, Springer 1968.
[7] Y. Hirashima and H. Ōshima: A note on stable James numbers of projective spaces, Osaka J. Math. 13 (1976), 157-161.
[8] H. Ōshima: On the stable James numbers of complex projective spaces, Osaka J. Math. 11 (1974), 361-366.
[9] ——: On stable James numbers of quaternionic projective spaces, Osaka J. Math. 12 (1975), 209-213.
[10] D. Randall: F-projective homotopy and F-projective stable stems, Duke Math. J. 42 (1975), 99-104.
[11] E. Rees: Symmetric maps, J. London Math. Soc. 3 (1971), 267-272.
[12] F. Sigrist and U. Suter: Cross-sections of symplectic Stiefel manifolds, Trans. Amer. Math. Soc. 184 (1973), 247-259.
[13] J. Strutt: Projective homotopy classes of spheres in the stable range, Bol. Soc. Mat. Mexicana 16 (1971), 15-25.

[^0]: *) Using S-duality and a theorem of Sigrist (Ill. J. Math. 13 (1969), 198-201), we can show that this hypothesis can be removed but then f must be canonical. The same remark is valid for the next corollary.

