4-FOLD TRANSITIVE GROUPS IN WHICH ANY 2-ELEMENT AND ANY 3-ELEMENT OF A STABILIZER OF FOUR POINTS ARE COMMUTATIVE

Yutaka HIRAMINE

(Received November 14, 1975)

1. Introduction

The known 4-fold transitive groups in which the stabilizer of four points is nilpotent are $S_{4}, S_{5}, S_{6}, A_{6}, A_{7}, M_{11}$ and M_{12}.

In this paper we shall prove the following
Theorem. Let G be a 4-fold transitive group on Ω. If any 2-element and any 3-element of a stabilizer of four points in G are commutative, then G is S_{4}, S_{5}, $S_{6}, A_{6}, A_{7}, M_{11}$ or M_{12}.

As a corollary of this theorem, we have that a 4 -fold transitive group in which the stabilizer of four points is nilpotent is one of the groups listed in our theorem.

Our notation is standard (cf. Wielandt [9]). For a subgroup X of G and a subset Δ of Ω, X_{Δ} is the point-wise stabilizer of Δ in X and if X fixes Δ as a set, the restriction of X on Δ will be denoted by $X^{\Delta} . F(X)$ is the set of points in $\Omega=\{1,2, \cdots, n\}$ fixed by every element of X.

2. Proof of the theorem

We proceed by way of contradiction and divide the proof in ten steps. From now on we assume that G^{α} is a counterexample to our theorem of the least possible degree. We set $D=G_{1234}$. Let P and R be a Sylow 2-subgroup and Sylow 3-subgroup of D, respectively.

By [2]-[8], we know the following.
(1) $F(D)=\{1,2,3,4\},|F(P)|=4$ or $5, R \neq 1$ and $P^{Q-F(P)}$ is not semi-regular. (2) $|F(P)|=4$.

Proof. From (1), we have only to show that $|F(P)| \neq 5$. Suppose $|F(P)|=5$. We set $F(P)=\{1,2,3,4, i\}$ and $L=\left\langle R^{d} \mid d \in D\right\rangle$. By assumption, P centralizes L and so $i \in F(L)$. Then it follows from $L \unlhd D$ that $i^{D} \subseteq F(L)$.

Since $2 \nmid D: D_{i}|, 3 X| D: D_{i}$ and $\left|D: D_{i}\right| \neq 1$ by (1), we have $\left|D: D_{i}\right| \geq 5$ and so $|F(L)| \geq 9$. By the Witt's theorem, $N_{G}(L)^{F(L)}$ is a 4-fold transitive group. Furthermore $|F(L)|<n=|\Omega|$ since $R \neq 1$. Hence by our minimal choice of Ω we have $N_{G}(L)^{F(L)} \simeq M_{11}$ or M_{12} because $|F(L)| \geq 9$. Since $|F(P)|=5$ and $[P, L]=1$, we have $|F(L)|$ is odd and so $N_{G}(L)^{F(L)} \simeq M_{11}$. Clearly $P^{F(L)}$ is a Sylow 2-subgroup of a stabilizer of four points in $N_{G}(L)^{F(L)}$, so $P^{F(L)}=1$ by the structure of M_{11}, hence $F(L)$ is a subset of $F(P)$, which is contrary to $|F(P)|=5$. Thus we get (2).

Now let m be the maximal number of $\left|P_{i}\right|$ with $i \in \Omega-F(P)$. There exists some $j \in \Omega-F(P)$ such that $\left|P_{j}\right|=m$. We set $P_{j}=Q$. Then we have
(3) $1 \neq Q \neq P$.

Proof. By (1), $P^{Q-F(L)}$ is not semi-regular, and so $Q \neq 1$. It is clear that $Q \neq P$.
(4) If Q^{*} is a 2-subgroup of G containing Q properly, then we have $\left|F\left(Q^{*}\right)\right| \leq 4$.

Proof. Suppose that $\left|F\left(Q^{*}\right)\right|>4$. Then there exists an element $g \in G$ with $\left(Q^{*}\right)^{g} \leq D$. Since P is a Sylow 2-subgroup of $D,\left(Q^{*}\right)^{g d} \leq P$ holds for some $d \in D$. By assumption we can choose an element k in $F\left(\left(Q^{*}\right)^{g d}\right)$ with $k \notin F(P)$. Then we have $m=|Q|<\left|Q^{*}\right|=\left|\left(Q^{*}\right)^{g d}\right| \leq\left|P_{k}\right|$, which is contrary to the choice of Q.
(5) $\quad N_{G}(Q)^{F(Q)}$ is 4-fold transitive.

Proof. In the lemma 6 of [1], we put $G^{Q}=N_{G}(Q)^{F(Q)}, p=2$ and $k=4$, then (5) follows immediately from (2) and (4).
(6) $\quad N_{G}(Q)^{F(Q)} \simeq S_{6}$ or M_{12}.

Proof. By (5), $N_{G}(Q)^{F(Q)}$ satisfies the assumption of our theorem. Since n is even by (2) and $Q \neq 1, n>|F(Q)| \geq 6$. By the minimal choice of Ω, we have $N_{G}(Q)^{F(Q)} \simeq A_{6}, S_{6}$ or M_{12}. On the other hand, we have $N_{P}(Q)>Q$ by (3), and so it follows from (4) that $\left|F\left(N_{P}(Q)\right)\right|=4$. Thus $N_{G}(Q)^{F(Q)} \neq A_{6}$, which shows (6).
(7) Let S be a nontrivial 3-subgroup of D. Then $F(S)=F(Q)$. Furthermore $R^{\mathrm{Q}-F(R)}$ is semi-regular and the set $F(Q)$ depends only on D but is independent of the choice of P and Q.

Proof. Since S centralizes Q, S is contained in $N_{D}(Q) . \quad$ By (6), $S^{F(Q)}=1$, that is, $F(Q)$ is a subset of $F(S)$, hence $|F(S)| \geq 6$.

In the lemma 6 of [1], we put $G^{\mathbf{Q}}=N_{G}(S)^{F(S)}, p=2$ and $k=4$, then we get
$N_{G}(S)^{F(S)}$ is 4-fold transitive. On the other hand $S \neq 1$, hence $n>|F(S)| \geq 6$. By the minimality of $\Omega, N_{G}(S)^{F(S)} \simeq A_{6}, S_{6}, A_{7}, M_{11}$ or M_{12}.

Suppose $F(S) \neq F(Q)$. Then we have $|F(S)| \geq 7$. Since P centralizes S, P acts on $F(S)-F(P)$ and so $|F(S)|$ is even by (2). Hence $N_{G}(S)^{F(S)} \simeq M_{12}$. Therefore $Q^{F(S)}=1$ by the structure of M_{12}. Hence $F(S)$ is a subset of $F(Q)$, a contradiction. Thus we conclude $F(Q)=F(S)$.

From this, the latter half of (7) immediately follows.
(8) Let T be a Sylow 2-subgroup of $N_{G}(Q)$ and R^{*} be an arbitrary Sylow 3 -subgroup of D. Then $\left[T, R^{*}\right]=1$.

Proof. By (6), there is a 2-element x in $N_{G}(Q)$ such that $|F(x) \cap F(Q)|=4$ and $\quad\left\langle x^{g} \mid g \in N_{G}(Q)\right\rangle^{F(Q)}=N_{G}(Q)^{F(Q)}$. We \quad set $\quad\left\langle x^{g} \mid g \in N_{G}(Q)\right\rangle=M$, $\left(N_{G}(Q)\right)_{F(Q)}=K$. Then $N_{G}(Q)=M K$. Let T^{*} be an arbitrary Sylow 2subgroup of M, then since by (4) Q is a unique Sylow 2 -subgroup of $K, T^{*} Q$ is a Sylow 2-subgroup of $N_{G}(Q)$. Applying (7), for any $u \in N_{G}(Q)$ we get $F(Q)=F\left(R^{*}\right)=F\left(\left(R^{*}\right)^{u}\right)$, hence $\left(R^{*}\right)^{u} \leq K$. Since $\left|F\left(x^{g}\right) \cap F\left(\left(R^{*}\right)^{u}\right)\right|=\mid F\left(x^{g}\right) \cap$ $F(Q) \mid=4$ for any $g \in N_{G}(Q), x^{g}$ centralizes $\left(R^{*}\right)^{u}$. Hence M centralizes $\left(R^{*}\right)^{u}$, so $\left[T^{*} Q,\left(R^{*}\right)^{u}\right]=1$. Since $T^{*} Q$ is a Sylow 2-subgroup of $N_{G}(Q)$, there exists an element $v \in N_{G}(Q)$ such that $T=\left(T^{*} Q\right)^{v}$. Thus we get $\left[T,\left(R^{*}\right)^{u v}\right]=1$. Put $u=v^{-1}$. Then (8) holds.
(9) There exists an involution in Q. Let t be an involution in Q, then $|F(t)| \equiv 0(\bmod 3)$.

Proof. From (3), the first statement is clear. Since $F(R)=F(Q) \subseteq F(t)$, $|F(Q)|=6$ or 12 and $[R, t]=1$, we have $|F(t)|=|F(R)|+|F(t)-F(R)| \equiv 0$ $(\bmod 3)$.
(10) We have now a contradiction in the following way.

Let t be an involution in Q. For $i \in \Omega-F(t)$, we set $i^{t}=j$. Then t normalizes $G_{12 i j}$. There exists an element z in G such that $G_{12 i j}=D^{z}$. By (7), $G_{12 i j}$ fixes $F\left(Q^{2}\right)$ as a set. We set $N=\left(G_{12 i j}\right)_{F\left(Q^{2}\right)}$, then by (4) Q^{z} is a Sylow 2-subgroup of N . Again by (7), t normalzes N, hence t normalizes at least one of the Sylow 2-subgroups of N, say $Q^{2 m}$ where m is an element of N. Now $t^{m^{-1} z^{-1}}$ normalizes Q, so $t^{m^{-1 z-1}}$ centralizes R by (8), hence t centralizes $R^{2 m}$. Since R^{2} is a subgroup of $G_{12 i j}, R^{z} \leq N$ by (7). Hence $R^{z m} \leq N$. By (6), $N_{G}\left(Q^{z m}\right)^{F\left(Q^{z m)}\right.} \simeq S_{6}$ or M_{12}. Since the set $F\left(R^{2 m}\right) \cap F(t)$ is not empty and $F\left(R^{2 m}\right) \cap F(t) \neq F\left(R^{2 m}\right)=$ $F\left(Q^{z m}\right)$, we have $\left|F\left(R^{z m}\right) \cap F(t)\right|=2$ or 4 . Since $R^{z m}$ centralizes t, it follows from (7) that $\left|\left(\Omega-F\left(R^{2 m}\right)\right) \cap F(t)\right| \equiv 0(\bmod 3)$. Hence $|F(t)|=\left|F(t) \cap F\left(R^{z m}\right)\right|+$ $\left|\left(\Omega-F\left(R^{z m}\right)\right) \cap F(t)\right| \equiv 1 \operatorname{or} 2(\bmod 3)$, contrary to (9).

Osaka Kyoiku University

References

[1] D. Livingstone and A. Wagner: Transitivity of finite permutation groups on unordered sets, Math. Z. 90 (1965), 393-403.
[2] H. Nagao: On umltiply transitive groups IV, Osaka J. Math. 2 (1965), 327-341.
[3] H. Nagao: On multiply transitive groups V, J. Algebra 9 (1968), 240-248.
[4] T. Oyama: On multiply transitive groups VII, Osaka J. Math. 5 (1968), 319-326.
[5] T. Oyama: On multiply transitive groups VIII, Osaka J. Math. 6 (1969), 315319.
[6] T. Oyama: On multiply transitive groups IX, Osaka J. Math. 7 (1970), 41-56.
[7] T. Oyama: On multiply transitive groups XI, Osaka J. Math. 10 (1973), 379-439.
[8] 'T. Oyama: On multiply transitive groups XIII, to appear.
[9] H. Wielandt: Finite permutation groups, Academic Press, New York, 1964.

