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In a study of the spectral theory of a random difference operator we utilized
without proof a Tauberian theorem on the Laplace transform of a Stieltjes
measure supported by (—oo, o) ([1]; Lemma 2). This is also used in [2] and
[3]. In the present note we first prove a nontrivial modification of the Minlos-
Povzner Tauberian theorem ([4]; Appendix) and then, as its consequence
(Corollary 2), derive the above-stated Tauberian theorem on the bilateral Laplace
transform. ;

1. Let ®,(B) and ¢,&) be functions on (0, o) related by, for each ¢,

(L) exp{p(O0P(B)} = | exp {p(t) (BE—p(EN}dE

where p(t) is a non-decreasing function tending to infinity as #— oo,

Theorem. (i) If ®,(B) converges to a function ®(B) as t— oo, ¢,(£) is a
non-decreasing function for each t such that there exists &(t) satisfying hm &)=

lim lof,(e)(t) 0, and llml¢>(0+) d(E(2))| =0, then ¢,(&) has a lzmzt at every
thoo
regular point £ ([4]) of ®(B) and

lim ¢,(§) = sup{BE—P(B)} .
tgo0 >0

(i1) If a non-deereasing function ¢(E) converges to ¢(£) unmiformly in any finite
interval and thete exists a function c¢(B) such that ®@,(B)<c(B) for any G and ¢,
then ®(B) has a limit and

lim ®(8) = sup{BE—¢(£)} .
tpo . E>0
For the proof of the first assertion we prepare four Lemmas.
Lemma 1. For any €>0
(1.2) BE—$(E)=(B—ME+K(Y; 1, 8), E>€ 8>0,7>0
where K(v; t, €) is such that lim lim K(v; t, &)=®(v)
e840 14
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Proof. For E=€
exp{p(O@M 2| _exp {p(t) (i (0O}at

=& exp{p(t) (V(E—E)—dLEN} -
Therefore

(1.3) — () =— vs+<1>t<v)—1°§ f+ve

Adding BE to each hand side and putting K(v; ¢, B8)=

() we

have the Lemma because of the assumption that lim ®(v)=®(v) and lim p(¢)
tgoo thoo

=00,

Lemma 2. There exists a constant ¢ such that — ¢0-+)> ¢ for all sufficiently
large t.

Proof. exp{p(t)®(B)} = S:exp {p(2) (BE—¢4(£))$ dE

+ [Texp {p(t) (BE— g
= Jib, B, O)+1b, B, 1).
By making use of (1.2), for 8<v
Jie, B, 1= exp {p(t) (B—mE-+K(v3 1, ©))}d

— exp{p(t) (B=7)b+K(v; , E))}
(v—R)p(2)

then

Jid, 8, t)gexp{p(t)qpt(lg)}[ effip{;b(t)((/8 Zy)b*}f){%)t &)= <I>,(B))}]

By taking sufficiently large ¢, it holds that
(B—7b+K(v; t, §)—2(8)<0

for all sufficiently large . So we have

(14) Jib, B, 121 exp{p(12(B)}

for all sufficiently large . On the other hand

76, 8, 0= exp 1) (85— 0+ )}

_ exp{Bb—gu0H) b
e =p0sH].
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Combining this with (1.4), we have

p(1)®,(8)<log Z(I‘CXP;(;)P(‘)‘*”}) () {Bb—$(0+)} .

Then
—¢t(0+)g®t(:8)“ﬁb+0(1) as t—oo ,

Therefore we get our Lemma.
Lemma 3. 2;1‘? {BE—(§)} has a limit as t—oo and 1‘1501 sup {BE— (&)}
=2(B)-
Proof. We have
Ji@, B, H)=a exp{P(t)sup (BE—,(£))
exp {—p(t)sup (BE— O} Ja, 6, 1

PO (B—=7)a+K(v; 1, B))
(v—B)p(t)

< exp{—cp(

for B<y.
Taking sufficiently large a, it holds that

—c+(B—7)a+K(v; t, £)<0

for all sufficiently large . Therefore

o a(E) s (G PR S
exp{p()®.(B)} =exp{p(t)sup ({65 ¢'<"5)}[ + (v—B)P(t)]

for all sufficiently large ¢, that is,
BB)+o(Ssup (S5O} a5 t—co
On the other hand we have, by (1.3),
__logé() —

D(B)-+Be(t) 20 =k, {BE—puE)} -

From the assumption with respect to &(2), it follows that
|sup {BE— (&)} — sup {BE—du(E)} | = o(1) ast—co.
£>0 aHOsE

Hence

() o) Zsup (BE— (B} as t>o .

Lemma 4. Let £ be an R-point ([4]) and B be a subordinate to £ ([4]), then
there exists S,(B;) such that lim d(Si(Be))=PB:E—D(B¢) and lim S,(B:)=E.
t4oo tyoo
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Proof. At first we note that there exists 4(3) < oo such that
sup {BE—¢«(E)} = sup {BE—¢,(£)}
o<t 0K ES AR

for all sufficiently large 2. We can verify this by making use of (1.2) and Lemma
2 in a similar way as the proof of Lemma 5 in [4]. Therefore we can define
S.(B:) such that

[sup {85 — 4O} — 1B:SB)— b(SB} | <,
and
S8 <A(Be)

for all sufficiently large . Since {S,(8¢)}nintese: is bounded, it has a subsequence
which converges. We write it S,(8:) and define S,(B:)=S;4(B:), then from
Lemma 3 it follows that

lim {B:S(Be)— b S{Be)} = (By) -
Putting E—lim S(85), we have
lim $,(S(By) = BeE—D(By) -
In the case that £=0, by (1.3) for any ¥
b(S(Be)Z7S(Be)—K(75 t, €)

for all sufficiently large ¢. Therefore for any « Bgé—(?(ﬁé)g'yg—d)('y), which
means

BeE—D(Be) = sup {rE—@(7)} .
Since S3; is subordinate to £ we get E=£. In the case that £=0 we can define
S/(B:) with additional condition S,(B¢)=&(f) because |sup{B:f— (&)} —
- o<¢ -
sup {B:L—¢i(£)} |=0(1). Then we get E=E in the same way as the case £=0.
aH=¢

Now we can get the first assertion of our theorem by making use of our
lemmas in the same way as in [4].

We turn to the proof of second assertion of our theorem.

Proof of (ii). From (1.3) and the assumptions it follows that

BE—p(E)=(B—7)E+c(V)+7€E .

Since the right hand side tends to —oco as §—oo for fixed B8<, there exists
A’(B) such that

soglg{ﬁs—cb(f)}= sup {BE—(E)} .

0<E<SA (B
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On the other hand,
exp {P(t)q)t(ﬁ)} = ]l(ly B’ t)+]2(l) Br t)

colplio—ncinsres 2]
() (v—0)

<lexp{ P(t)oggg (BE—p(E))} +

for I>¢€.
Taking sufficiently large /

(B—7)Le(v)+ve+ 1°(g)5

for all sufficiently large 2. Put 8(t, )= sup | $(E)— (&), then we have
¢t(ﬁ)§0§ggl {BE—p(E)} +8(t, D+o(1), ast—>oco .
Taking /> A’(8) in advance
¢,(B)§sogg {BE—p(E)} +0(1), ast—>co.

The converse inequality also follows from (1.3):

log €
d>,(6)>e<§1<15(3 {BE—(E)} — B£+p(t)

> sup {BE— ¢} — BE+1°(g)e 5, 4'(B)) .

Now take in the place of &, then

@(B)Z sup {BE—P(E)}+o(1), ast—oo.

<t
We arrive at the second statement of our theorem.

2. We now come to the proof of those results on the Laplace transform.

Corollary 1. Let p(\) be a non-decreasing function on (— oo, 0] with p(— o)
=0 and

0
2.1) x(t)ES e p(M)dN
then following two conditions (2.2) and (2.3) are equivalent:

2.2) lim 08PN _ _ 4 4>1, 4>0,
NN

(2.3) lim 1°g"(t) — B, y>1,B>0,

tyoo
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where o, v, A, B are related by

__a __ 7 ) B = (q—1)a®i-* V-
v a—1 (a y—1/’ (a=D)a
(A= (y—1)y"- "By,

Corollary 2. Let p(\) be a mon-decreasing function on (—oo, o) with
p(—o0)=0 and k(t) be its Laplace transform:

(2.4) k(t) = S“’ eMdp(\) < oo,
then (2.2) and (2.3) in which we take k(t) in the place of x(t), are equivalent.
Corollary 2 is immediate from Corollary 1. If k(f) is finite, then lim ep(—c)
C’N
=0 and so
0

|- 0ap0) = o] o0+ [Teaptn).

Since the last term decreases as {—co we have

(1]
log k(z>~‘°g[t§-f "f’(")""]gog (1)
:Y a t’f t’Y

t

t—oo, v>0. Hence we conclude Corollary 2 from Corollary 1.
Now we will give the proof of Corollary 1.

Proof. (2.2)=(2.3) Put cp,(,e):t_lw log x(8#*") and —4,,(5):%{10;; p(—E)
+log t}, then ®,(RB) and ¢,(£) are related by
exp i@, (B} = | expr(BE— @)t -

It follows from (2.3) that ¢,(£) converges to £°4 uniformly on each finite interval.
Since p(\) is non-decreasing, ¢,(£) is non-decreasing in £ for each z. Therefore
to apply the second part of our theorem, we have only to verify the existence of
¢(B) such that ®,(B)<¢(B) for each B and t. For any €>0 there exists ¢>0
such that

p(—r) <cfexp{—(A—&EM*}, A>0.
Therefore
exp{t*®(B)} = | exp {8\ p(— 1)

< S:c exp {Bt* A —(A—EN} dr
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< cS:texp {Bt* "} d)\—l—crexp {—[(4A—&n*1— B> a}tdn .

1Bl

Taki o
aking 7 1—¢

exp {10, (8) <E ORI o exp (—[(a—epr — Bl dr

¢ exp {n5t*} L€

! o1 ’
which means
D, (b)<n(B)+o(1) ast—oco.

Since 7 depends only on @ (not on ?) the existence of ¢(8) desired is assured.
Now it follows from our theorem that

lim ,(8) = Sup{BE —£*A} = (a—1)ah~*A=2BI"
t4oo >0
Putting 8=1 and #*"'=x, we arrive at (2.3).
(2.3)=(2.2) Put cp,’(,e):%log «(B8f) and —qS,’(f)—_—%{log(——Ef"l)—{—

log #-'}, then we can see in a similar way as above that they have the relation

(1.1) with p(t)=¢":
exp {£0/(B)} = | "exp{r(BE—p/ N}k
It follows from (2.2) that liIB D/ (B)=PB"B. ¢/(§) is clearly non-decreasing in &
for each 2. We can easily”see that e(g:% satisfies all conditions of the first
part of our theorem because v>1. Therefore the theorem applies and
lim /(&) = sup{8E— "B} = (y—1)yy"""B-r s
Putting £=1 and —#"'=2x, we get (2.2).
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