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A REMARK ON THE MINLOS-POVZNER
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In a study of the spectral theory of a random difference operator we utilized
without proof a Tauberian theorem on the Laplace transform of a Stieltjes

measure supported by (— °°, °°) ([!]; Lemma 2). This is also used in [2] and
[3]. In the present note we first prove a nontrivial modification of the Minlos-
Povzner Tauberian theorem ([4]; Appendix) and then, as its consequence
(Corollary 2), derive the above-stated Tauberian theorem on the bilateral Laplace
transform.

1. Let Φt(β) and φt(ξ) be functions on (0, oo) related by, for each t,

(1.1) exp \p(t)Φt(β)} = J~exp (p(t) (βξ-φtm<lξ

where p(f) is a non-decreasing function tending to infinity as ί-> oo .

Theorem, (i) If Φt(β) converges to a function Φ(β) as Z-^oo, φt(ξ) is a
non-decreasing function for each t such that there exists 8(t) satisfying lim £(£)— 0,

f Λ.OO

limlogg^=0, and lim\φt(Q+)— φt(B(t))\ =0, then φt(ξ) has a limit at every
't°° p(t) >t~

regular point ξ ([4]) of Φ(β) and

/t~ β>o

(ii) If a non-deer easing function φt(ξ) converges to φ(ξ) uniformly in any finite
interval and thete exists a function c(β) such that Φt(β)<c(β) for any β and t,

then Φt(β) has a limit and

For the proof of the first assertion we prepare four Lemmas.

Lemma 1. For any £>0

(1.2) βξ-φt(ξ)£(β-Ύ)ξ+K(<y; t, £), ξ>εy /3>0,

where K(^\ t, £) is such that lim lim K(j\ t, £)— Φ(γ)
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Proof. For

Therefore

(1.3) -

Adding βξ to each hand side and putting K(<γ\ t, β)=Φt(<γ)—^f—+ε<γ, we
PVJ

have the Lemma because of the assumption that lim φ,(γ)=φ(γ) and lim p(t)
°

Lemma 2. There exists a constant c such that — φ/(0+ ) > c for all sufficiently

large t.

Proof, exp \p(t)Φt(β)} = ( 'exp {/>(*) (βξ-φt(ξ))} dξ
Jo

, β,t).
By making use of (1.2), for /3<7

; t,

(Ύ-β)P(t)

then

Mb, A ̂ exp{χθΦ^)}[l-eXp{P^^

By taking sufficiently large ί, it holds that

(β-7)b+K(7; t, e)~Φt(β)<0

for all sufficiently large t. So we have

(1 .4) Mb, β,t)>±- exp {/WW)}

for all sufficiently large ί. On the other hand

Mb, β, t)^\t^p{p(t)(βξ-φt(0+))}dξ
Jo
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Combining this with (1.4), we have

Then

-φ,(0+)^Φt(β)-βb+o(l) as *->oo .

Therefore we get our Lemma.

Lemma 3. sup{/3£— φt(ξ)} has a limit as t-+oo and lim sup{βξ—φt(ξ)}
ξ>0 ft~ £>0

=ΦOS).

Proof. We have

J,(a, β, t)^a exp{P(t)Bvg(βξ-φt(ζ))

exp{-p(ί)sup(βξ-φ,(ξ))}J2(a, β, t)

<exp{-l(f)}exP {P(t)((β-^+K(Ύ t, β))

~~ (Ύ
for β<j.
Taking sufficiently large α, it holds that

-c+(β-Ύ)a+K(Ύ; t,

for all sufficiently large t. Therefore

exp {p(t)Φt(β)} ^exp (p(t) sup ( (βζ-φtf)} [a+ *

for all sufficiently large t, that is,

{βξ-φt(ξ)} as t->™ .

On the other hand we have, by (1.3),

From the assumption with respect to 8(t), it follows that

\*^{βζ-φt(ξ)}-*up{βξ-φt(ξ)} I = o(l) as *->oo .

Hence

as t-*oo .

Lemma 4. Le£ f όβ ^w R-point ([4]) αnrf /3ξ i^ a subordinate to ξ ([4]), then

there exists St(β^) such that lim φt(St(βξ))=βg—Φ(βξ) and lim St(β^)=ξ.
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Proof. At first we note that there exists A(β) < °o such that

*up{βξ-φt(ξ)} = sup {βξ-φt(ξ)}
0<£

for all sufficiently large t. We can verify this by making use of (1.2) and Lemma
2 in a similar way as the proof of Lemma 5 in [4]. Therefore we can define

St(βξ) such that

and

St(β,)<A(βξ)

for all sufficiently large t. Since {S n(β ξ)} n:ίntegeτ is bounded, it has a subsequence
which converges. We write it Sn(β%) and define St(β^) = SLt:ι(β^y then from

Lemma 3 it follows that

f f o

Putting !=lim St(βξ)y we have
ί to*

lim φ,(S,(/3{)) = /M-Φ(/9ί)
/t 0 0

In the case that IΦO, by (1.3) for any γ

for all sufficiently large t. Therefore for any γ y^ξ?— Φ(yS^)^τl— Φ(γ), which

means

= sup{γl-Φ(τ)} .
0<γ

Since β% is subordinate to ξ we get ζ=ξ. In the case that ?— 0 we can define

St(βξ) with additional condition St(βξ)^β(t) because |sup{yS^— φt(ζ)} —

0<^sup {βξζ— φt(ζ)} \ =o(l). Then we get ξ=ξ in the same way as the case

Now we can get the first assertion of our theorem by making use of our

lemmas in the same way as in [4],
We turn to the proof of second assertion of our theorem.
Proof of (ii). From (1.3) and the assumptions it follows that

Since the right hand side tends to —°o as ξ^oo for fixed /3<γ, there exists

A'(β) such that

8up{/3f-φ(f)} = su£ {βξ-φ(ξ)} .
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On the other hand,

exp{χθΦ,(/3)} = Jι(l, β, t)+J2(l, β, t)

< / exp {#* ) sup (βξ- φt(ξ))} +„ - t - - - p(t)(Ύ_

for l>ε.
Taking sufficiently large /

P(t)

for all sufficiently large t. Put S(t, /)= sup | φ,(f)— φ(ξ) \ , then we have

Φ,(/9)£ sup {βξ-φ(ξ)}+8(t, /)+o(l), as
»<ί<'

Taking l>A'(/3) in advance

), as

The converse inequality also follows from (1.3):

^ suP

Now take - in the place of £ , then
P(t)

Φt(β)^ sup {βξ-φ(ξ)}+o(l), as ί-H.oo .

. ^<f
We arrive at the second statement of our theorem.

2. We now come to the proof of those results on the Laplace transform.

Corollary 1. Let p(λ) be a non-decreasing function on (— °o, 0] with p(— °°)
=0and

(2.1) ^W^ e-tλp(\)d\,

then following two conditions (2.2) and (2.3) are equivalent:

(2.2) lim
λi °°

(2.3) ιim
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where a, 7, A, B are related by

- - - - -
a—l\ γ— I/

Corollary 2. Let p(λ) be a non-decreasing function on (—00,00) zvi

P(~ °°)=0 and k(t) be its Laplace transform:

(2.4)

then (2.2) and (2.3) in which we take k(t) in the place of κ(t), are equivalent.

Corollary 2 is immediate from Corollary 1. If k(t) is finite, then lim ectp(—c)

=0 and so

Γ e-"
J -oo

Since the last term decreases as t-^oo We have

:*(0

t^oo^ γ>0. Hence we conclude Corollary 2 from Corollary 1.

Now we will give the proof of Corollary 1 .

Proof. (2.2)-»(2.3) Put Φt(β)=^ log«(/3f->) and -φt(ξ)=~

+ log t} , then Φ,(/3) and φt(ξ) are related by

It follows from (2.3) that φt(ζ) converges to ξ *A uniformly on each finite interval.

Since p(λ) is non-decreasing, φt(ξ) is non-decreasing in ξ for each t. Therefore

to apply the second part of our theorem, we have only to verify the existence of

c(β) such that Φt(β)<c(β] for each β and t. For any £>0 there exists c>0

such that

p(~- λ)<c{exp{— (A— £)λα}, λ>0.

Therefore

exp{ί"Φ((/3)} =

< ("cex.p{βta-1\-(A-ε)\'}d\
Jo
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J O

Taking V«-l=

exp {ί"Φ,08)} -̂

which means

Since -η depends only on β (not on t) the existence of c(β) desired is assured.
Now it follows from our theorem that

lim Φt(β) = sup{βξ—ξ*A} = (α-lW^-
't0* ξ>o

Putting β=l and t*~l=x, we arrive at (2.3).

(2.3)-*(2.2) Put Φ/(/8)=-logΛ(/80 and -φ/(?)=

log ί^"1}, then we can see in a similar way as above that they have the relation
(1.1) with p(t)=£>:

exp {f Φ/G8)} = Qexp {^f- φ/(

It follows from (2.2) that lim Φ^β^β^B. φt'(ξ) is clearly non-decreasing in ξ

for each £. We can easily see that ξ(t)=^— satisfies all conditions of the first

part of our theorem because 7> 1. Therefore the theorem applies and

/ t o o β>0

Putting ξ= 1 and — fί~1=\ί we get (2.2).
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