A REMARK ON THE MINLOS-POVZNER TAUBERIAN THEOREM

Hideo NAGAI

(Received November 26, 1975)

In a study of the spectral theory of a random difference operator we utilized without proof a Tauberian theorem on the Laplace transform of a Stieltjes measure supported by $(-\infty, \infty)$ ([1]; Lemma 2). This is also used in [2] and [3]. In the present note we first prove a nontrivial modification of the MinlosPovzner Tauberian theorem ([4]; Appendix) and then, as its consequence (Corollary 2), derive the above-stated Tauberian theorem on the bilateral Laplace transform.

1. Let $\Phi_{t}(\beta)$ and $\phi_{t}(\xi)$ be functions on $(0, \infty)$ related by, for each t,

$$
\begin{equation*}
\exp \left\{p(t) \Phi_{t}(\beta)\right\}=\int_{0}^{\infty} \exp \left\{p(t)\left(\beta \xi-\phi_{t}(\xi)\right)\right\} d \xi \tag{1.1}
\end{equation*}
$$

where $p(t)$ is a non-decreasing function tending to infinity as $t \rightarrow \infty$.
Theorem. (i) If $\Phi_{t}(\beta)$ converges to a function $\Phi(\beta)$ as $t \rightarrow \infty, \phi_{t}(\xi)$ is a non-decreasing function for each t such that there exists $\varepsilon(t)$ satisfying $\lim _{t \uparrow \infty} \varepsilon(t)=0$, $\lim _{t \uparrow^{\infty}} \frac{\log \varepsilon(t)}{p(t)}=0$, and $\lim _{t \uparrow^{\infty}}\left|\phi_{t}(0+)-\phi_{t}(\varepsilon(t))\right|=0$, then $\phi_{t}(\xi)$ has a limit at every regular point $\xi([4])$ of $\Phi(\beta)$ and

$$
\lim _{t \uparrow \infty} \phi_{t}(\xi)=\sup _{\beta>0}\{\beta \xi-\Phi(\beta)\}
$$

(ii) If a non-deereasing function $\phi_{t}(\xi)$ converges to $\phi(\xi)$ uniformly in any finite interval and thete exists a function $c(\beta)$ such that $\Phi_{t}(\beta)<c(\beta)$ for any β and t, then $\Phi_{t}(\beta)$ has a limit and

$$
\lim _{t \uparrow^{\infty}} \Phi_{t}(\beta)=\sup _{\xi>0}\{\beta \xi-\phi(\xi)\}
$$

For the proof of the first assertion we prepare four Lemmas.
Lemma 1. For any $\varepsilon>0$

$$
\begin{equation*}
\beta \xi-\phi_{t}(\xi) \leqq(\beta-\gamma) \xi+K(\gamma ; t, \varepsilon), \xi>\varepsilon, \beta>0, \gamma>0 \tag{1.2}
\end{equation*}
$$

where $K(\gamma ; t, \varepsilon)$ is such that $\lim _{\varepsilon \downarrow 0} \lim _{t \uparrow^{\infty}} K(\gamma ; t, \varepsilon)=\Phi(\gamma)$

Proof. For $\xi \geqq \varepsilon$

$$
\begin{aligned}
\exp \left\{p(t) \Phi_{t}(\gamma)\right\} & \geqq \int_{\xi-\varepsilon}^{\xi} \exp \left\{p(t)\left(\gamma \zeta-\phi_{t}(\zeta)\right\} d \zeta\right. \\
& \geqq \varepsilon \exp \left\{p(t)\left(\gamma(\xi-\varepsilon)-\phi_{t}(\varepsilon)\right)\right\} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
-\phi_{t}(\xi) \leqq-\gamma \xi+\Phi_{t}(\gamma)-\frac{\log \varepsilon}{p(t)}+\gamma \varepsilon . \tag{1.3}
\end{equation*}
$$

Adding $\beta \xi$ to each hand side and putting $K(\gamma ; t, \beta)=\Phi_{t}(\gamma)-\frac{\log \varepsilon}{p(t)}+\varepsilon \gamma$, we have the Lemma because of the assumption that $\lim _{t \uparrow \infty} \Phi_{t}(\gamma)=\Phi(\gamma)$ and $\lim _{t \uparrow \infty} p(t)$ $=\infty$.

Lemma 2. There exists a constant c such that $-\phi_{t}(0+)>c$ for all sufficiently large t.

$$
\text { Proof. } \begin{aligned}
\exp \left\{p(t) \Phi_{t}(\beta)\right\} & =\int_{0}^{b} \exp \left\{p(t)\left(\beta \xi-\phi_{t}(\xi)\right)\right\} d \xi \\
& +\int_{b}^{\infty} \exp \left\{p(t)\left(\beta \xi-\phi_{t}(\xi)\right\} d \xi\right. \\
& \equiv J_{1}(b, \beta, t)+J_{2}(b, \beta, t) .
\end{aligned}
$$

By making use of (1.2), for $\beta<\gamma$

$$
\begin{aligned}
J_{2}(b, \beta, t) & \leqq \int_{b}^{\infty} \exp \{p(t)((\beta-\gamma) \xi+K(\gamma ; t, \varepsilon))\} d \xi \\
& =\frac{\exp \{p(t)((\beta-\gamma) b+K(\gamma ; t, \varepsilon))\}}{(\gamma-\beta) p(t)}
\end{aligned}
$$

then

$$
J_{1}(b, \beta, t) \geqq \exp \left\{p(t) \Phi_{t}(\beta)\right\}\left[1-\frac{\exp \left\{p(t)\left((\beta-\gamma) b+K(\gamma ; t, \varepsilon)-\Phi_{t}(\beta)\right)\right\}}{(\gamma-\beta) p(t)}\right]
$$

By taking sufficiently large t, it holds that

$$
(\beta-\gamma) b+K(\gamma ; t, \varepsilon)-\Phi_{t}(\beta)<0
$$

for all sufficiently large t. So we have

$$
\begin{equation*}
J_{1}(b, \beta, t) \geqq \frac{1}{2} \exp \left\{p(t) \Phi_{t}(\beta)\right\} \tag{1.4}
\end{equation*}
$$

for all sufficiently large t. On the other hand

$$
\begin{aligned}
J_{1}(b, \beta, t) & \leqq \int_{0}^{b} \exp \left\{p(t)\left(\beta \xi-\phi_{t}(0+)\right)\right\} d \xi \\
& =\frac{\exp \left\{\beta b-\phi_{t}(0+)\right\}}{\beta p(t)}[1-\exp \{-p(t) \beta b\}] .
\end{aligned}
$$

Combining this with (1.4), we have

$$
p(t) \Phi_{t}(\beta) \leqq \log \frac{2(1-\exp \{-p(t) \beta b\})}{p(t)}+p(t)\left\{\beta b-\phi_{t}(0+)\right\} .
$$

Then

$$
-\phi_{t}(0+) \geqq \Phi_{t}(\beta)-\beta b+o(1) \quad \text { as } t \rightarrow \infty .
$$

Therefore we get our Lemma.
Lemma 3. $\sup _{\xi>0}\left\{\beta \xi-\phi_{t}(\xi)\right\}$ has a limit as $t \rightarrow \infty$ and $\lim _{t \uparrow \infty} \sup _{\xi>0}\left\{\beta \xi-\phi_{t}(\xi)\right\}$ $=\Phi(\beta)$.

Proof. We have

$$
\begin{aligned}
& J_{1}(a, \beta, t) \leqq a \exp \left\{P(t) \sup _{\substack{\xi>0}}\left(\beta \xi-\phi_{t}(\xi)\right)\right. \\
& \exp \left\{-p(t) \sup _{\xi>0}\left(\beta \xi-\phi_{t}(\xi)\right)\right\} J_{2}(a, \beta, t) \\
& \quad \leqq \exp \{-c p(t)\} \frac{\exp \{p(t)((\beta-\gamma) a+K(\gamma ; t, \beta))}{(\gamma-\beta) p(t)}
\end{aligned}
$$

for $\beta<\gamma$.
Taking sufficiently large a, it holds that

$$
-c+(\beta-\gamma) a+K(\gamma ; t, \varepsilon)<0
$$

for all sufficiently large t. Therefore

$$
\exp \left\{p(t) \Phi_{t}(\beta)\right\} \leqq \exp \left\{p (t) \operatorname { s u p } _ { \xi > 0 } \left(\left\{\beta \xi-\phi_{t}(\xi)\right\}\left[a+\frac{1}{(\gamma-\beta) p(t)}\right]\right.\right.
$$

for all sufficiently large t, that is,

$$
\Phi_{t}(\beta)+o(1) \leqq \sup _{\xi>0}\left\{\beta \xi-\phi_{t}(\xi)\right\} \quad \text { as } t \rightarrow \infty .
$$

On the other hand we have, by (1.3),

$$
\Phi_{t}(\beta)+\beta \varepsilon(t)-\frac{\log \varepsilon(t)}{p(t)} \geqq \sup _{\mathrm{g}(t) \leqq \xi}\left\{\beta \xi-\phi_{t}(\xi)\right\} .
$$

From the assumption with respect to $\varepsilon(t)$, it follows that

$$
\left|\sup _{\xi>0}\left\{\beta \xi-\phi_{t}(\xi)\right\}-\sup _{\varepsilon(t) \leq \xi}\left\{\beta \xi-\phi_{t}(\xi)\right\}\right|=o(1) \quad \text { as } t \rightarrow \infty .
$$

Hence

$$
\Phi_{t}(\beta)+o(1) \geqq \sup _{\xi>0}\left\{\beta \xi-\phi_{t}(\xi)\right\} \quad \text { as } t \rightarrow \infty .
$$

Lemma 4. Let ξ be an R-point ([4]) and β_{ξ} be a subordinate to ξ ([4]), then there exists $S_{t}\left(\beta_{\xi}\right)$ such that $\lim _{t \uparrow \infty} \phi_{t}\left(S_{t}\left(\beta_{\xi}\right)\right)=\beta_{\xi} \xi-\Phi\left(\beta_{\xi}\right)$ and $\lim _{t \uparrow \infty} S_{t}\left(\beta_{\xi}\right)=\xi$.

Proof. At first we note that there exists $A(\beta)<\infty$ such that

$$
\sup _{0<\xi}\left\{\beta \xi-\phi_{t}(\xi)\right\}=\sup _{0<\xi<\Delta(\beta)}\left\{\beta \xi-\phi_{t}(\xi)\right\}
$$

for all sufficiently large t. We can verify this by making use of (1.2) and Lemma 2 in a similar way as the proof of Lemma 5 in [4]. Therefore we can define $\bar{S}_{t}\left(\beta_{\xi}\right)$ such that

$$
\left|\sup _{0<\zeta}\left\{\beta_{\xi} \zeta-\phi_{t}(\zeta)\right\}-\left\{\beta_{\xi} \bar{S}_{t}\left(\beta_{\xi}\right)-\phi_{t}\left(\bar{S}_{t}\left(\beta_{\xi}\right)\right)\right\}\right|<\frac{1}{t}
$$

and

$$
\bar{S}_{t}\left(\beta_{\xi}\right)<A\left(\beta_{\xi}\right)
$$

for all sufficiently large t. Since $\left\{\bar{S}_{n}\left(\beta_{\xi}\right)\right\}_{\text {n:integer }}$ is bounded, it has a subsequence which converges. We write it $S_{n}\left(\beta_{\xi}\right)$ and define $S_{t}\left(\beta_{\xi}\right) \equiv S_{[t]}\left(\beta_{\xi}\right)$, then from Lemma 3 it follows that

$$
\lim _{t \uparrow \infty}\left\{\beta_{\xi} S_{t}\left(\beta_{\xi}\right)-\phi_{t}\left(S_{t}\left(\beta_{\xi}\right)\right)\right\}=\Phi\left(\beta_{\xi}\right) .
$$

Putting $\xi=\lim _{t \uparrow \infty} S_{t}\left(\beta_{\xi}\right)$, we have

$$
\lim _{t \uparrow \infty} \phi_{t}\left(S_{t}\left(\beta_{\xi}\right)\right)=\beta_{\xi} \bar{\xi}-\Phi\left(\beta_{\xi}\right) .
$$

In the case that $\xi_{\neq 0}$, by (1.3) for any γ

$$
\phi_{t}\left(S_{t}\left(\beta_{\xi}\right)\right) \geqq \gamma S_{t}\left(\beta_{\xi}\right)-K(\gamma ; t, \varepsilon)
$$

for all sufficiently large t. Therefore for any $\gamma \beta_{\xi} \bar{\xi}-\Phi\left(\beta_{\xi}\right) \geqq \gamma \bar{\xi}-\Phi(\gamma)$, which means

$$
\beta_{\xi} \bar{\xi}-\Phi\left(\beta_{\xi}\right)=\sup _{0<\gamma}\{\gamma \bar{\xi}-\Phi(\gamma)\}
$$

Since β_{ξ} is subordinate to ξ we get $\bar{\xi}=\xi$. In the case that $\bar{\xi}=0$ we can define $S_{t}\left(\beta_{\xi}\right)$ with additional condition $S_{t}\left(\beta_{\xi}\right) \geqq \varepsilon(t)$ because $\mid \sup _{0<\zeta}\left\{\beta_{\xi} \zeta-\phi_{t}(\zeta)\right\}-$ $\sup _{\varepsilon(t) \geqslant \zeta}\left\{\beta_{\xi} \zeta-\phi_{t}(\zeta)\right\} \mid=o(1)$. Then we get $\bar{\xi}=\xi$ in the same way as the case $\bar{\xi}_{\neq 0}$.

Now we can get the first assertion of our theorem by making use of our lemmas in the same way as in [4].

We turn to the proof of second assertion of our theorem.
Proof of (ii). From (1.3) and the assumptions it follows that

$$
\beta \xi-\phi(\xi) \leqq(\beta-\gamma) \xi+c(\gamma)+\gamma \varepsilon
$$

Since the right hand side tends to $-\infty$ as $\xi \rightarrow \infty$ for fixed $\beta<\gamma$, there exists $A^{\prime}(\beta)$ such that

$$
\sup _{0<\xi}\{\beta \xi-\phi(\xi)\}=\sup _{0<\xi \leqq d^{\prime}(\beta)}\{\beta \xi-\phi(\xi)\}
$$

On the other hand,

$$
\begin{gathered}
\exp \left\{p(t) \Phi_{t}(\beta)\right\}=J_{1}(l, \beta, t)+J_{2}(l, \beta, t) \\
<l \exp \left\{p(t) \sup _{0<\xi<l}\left(\beta \xi-\phi_{t}(\xi)\right)\right\}+\frac{\exp \left\{p(t)\left((\beta-\gamma) l+c(\gamma)+\gamma \varepsilon+\frac{\log \varepsilon}{p(t)}\right)\right\}}{p(t)(\gamma-\beta)}
\end{gathered}
$$

for $l>\varepsilon$.
Taking sufficiently large l

$$
(\beta-\gamma)+c(\gamma)+\gamma \varepsilon+\frac{\log \varepsilon}{p(t)}<0
$$

for all sufficiently large t. Put $\delta(t, l)=\sup _{0<\zeta \leq l}\left|\phi_{t}(\xi)-\phi(\xi)\right|$, then we have

$$
\Phi_{t}(\beta) \leqq \sup _{0<\zeta<l}\{\beta \xi-\phi(\xi)\}+\delta(t, l)+o(1), \quad \text { as } t \rightarrow \infty .
$$

Taking $l>A^{\prime}(\beta)$ in advance

$$
\Phi_{t}(\beta) \leqq \sup _{0<\xi}\{\beta \xi-\phi(\xi)\}+o(1), \quad \text { as } t \rightarrow \infty
$$

The converse inequality also follows from (1.3):

$$
\begin{aligned}
\Phi_{t}(\beta) & \geqq \sup _{\varepsilon<\xi<A^{\prime}(\beta)}\left\{\beta \xi-\phi_{t}(\xi)\right\}-\beta \xi+\frac{\log \varepsilon}{p(t)} \\
& >\sup _{\varepsilon<\xi}\{\beta \xi-\phi(\xi)\}-\beta \varepsilon+\frac{\log \varepsilon}{p(t)}-\delta\left(t, A^{\prime}(\beta)\right)
\end{aligned}
$$

Now take $\frac{1}{p(t)}$ in the place of ε, then

$$
\Phi_{t}(\beta) \geqq \sup _{\frac{1}{p(t)}<\xi}\{\beta \xi-\phi(\xi)\}+o(1), \quad \text { as } t \rightarrow \infty
$$

We arrive at the second statement of our theorem.
2. We now come to the proof of those results on the Laplace transform.

Corollary 1. Let $\rho(\lambda)$ be a non-decreasing function on $(-\infty, 0]$ with $\rho(-\infty)$ $=0$ and

$$
\begin{equation*}
\kappa(t) \equiv \int_{-\infty}^{0} e^{-t \lambda} \rho(\lambda) d \lambda, \tag{2.1}
\end{equation*}
$$

then following two conditions (2.2) and (2.3) are equivalent:

$$
\begin{align*}
& \lim _{\lambda \downarrow-\infty} \frac{\log \rho(\lambda)}{|\lambda|^{\alpha}}=-A, \alpha>1, A>0, \tag{2.2}\\
& \lim _{t \uparrow \infty} \frac{\log \kappa(t)}{t^{\gamma}}=B, \gamma>1, B>0, \tag{2.3}
\end{align*}
$$

where α, γ, A, B are related by

$$
\begin{aligned}
\gamma=\frac{\alpha}{\alpha-1}\left(\alpha=\frac{\gamma}{\gamma-1}\right), B & =(\alpha-1) \alpha^{\alpha / 1-\alpha} A^{1 /-\alpha} \\
(A & \left.=(\gamma-1) \gamma^{\gamma / 1-\gamma} B^{1 / 1-\gamma}\right) .
\end{aligned}
$$

Corollary 2. Let $\rho(\lambda)$ be a non-decreasing function on ($-\infty, \infty$) with $\rho(-\infty)=0$ and $k(t)$ be its Laplace transform:

$$
\begin{equation*}
k(t)=\int_{-\infty}^{\infty} e^{-t \lambda} d \rho(\lambda)<\infty, \tag{2.4}
\end{equation*}
$$

then (2.2) and (2.3) in which we take $k(t)$ in the place of $\kappa(t)$, are equivalent.
Corollary 2 is immediate from Corollary 1. If $k(t)$ is finite, then $\lim _{c \uparrow \infty} e^{c t} \rho(-c)$ $=0$ and so

$$
\int_{-\infty}^{\infty} e^{-t \lambda} d \rho(\lambda)=\rho(0)+t \int_{-\infty}^{0} e^{-t \lambda} \rho(\lambda) d \lambda+\int_{0}^{\infty} e^{-t \lambda} d \rho(\lambda)
$$

Since the last term decreases as $t \rightarrow \infty$ we have

$$
\frac{\log k(t)}{t^{\gamma}} \sim \frac{\log \left[t \int_{-\infty}^{0} e^{-t \lambda} \rho(\lambda) d \lambda\right]}{t^{\gamma}} \sim \frac{\log \kappa(t)}{t^{\gamma}}
$$

$t \rightarrow \infty, \gamma>0$. Hence we conclude Corollary 2 from Corollary 1.
Now we will give the proof of Corollary 1.
Proof. $(2.2) \Rightarrow$ (2.3) Put $\Phi_{t}(\beta)=\frac{1}{t^{\alpha}} \log \kappa\left(\beta t^{\alpha-1}\right)$ and $-\phi_{t}(\xi)=\frac{1}{t^{\alpha}}\{\log \rho(-\xi t)$ $+\log t\}$, then $\Phi_{t}(\beta)$ and $\phi_{t}(\xi)$ are related by

$$
\exp \left\{t^{a} \Phi_{t}(\beta)\right\}=\int_{0}^{\infty} \exp \left\{t^{a}\left(\beta \xi-\phi_{t}(\xi)\right)\right\} d \xi
$$

It follows from (2.3) that $\phi_{t}(\xi)$ converges to $\xi^{\infty} A$ uniformly on each finite interval. Since $\rho(\lambda)$ is non-decreasing, $\phi_{t}(\xi)$ is non-decreasing in ξ for each t. Therefore to apply the second part of our theorem, we have only to verify the existence of $c(\beta)$ such that $\Phi_{t}(\beta)<c(\beta)$ for each β and t. For any $\varepsilon>0$ there exists $c>0$ such that

$$
\rho(-\lambda)<c\left\{\exp \left\{-(A-\varepsilon) \lambda^{\infty}\right\}, \lambda>0 .\right.
$$

Therefore

$$
\begin{aligned}
\exp \left\{t^{\alpha} \Phi_{t}(\beta)\right\} & =\int_{0}^{\infty} \exp \left\{\beta t^{\alpha-1} \lambda\right\} \rho(-\lambda) d \lambda \\
& <\int_{0}^{\infty} c \exp \left\{\beta t^{\alpha-1} \lambda-(A-\varepsilon) \lambda^{\alpha}\right\} d \lambda
\end{aligned}
$$

$$
<c \int_{0}^{n t} \exp \left\{\beta t^{\alpha-1} \lambda\right\} d \lambda+c \int_{n t}^{\infty} \exp \left\{-\left[(A-\varepsilon) \lambda^{\alpha-1}-\beta t^{\alpha-1}\right] \lambda\right\} d \lambda .
$$

Taking $\eta^{\alpha-1}=\frac{\beta+1}{A-\varepsilon}$

$$
\begin{aligned}
\exp \left\{t^{\omega} \Phi_{t}(\beta)\right\} & \leqq \frac{c \exp \left\{\eta \beta t^{\alpha}\right\}}{\beta t^{\alpha-1}}+c \int_{0}^{\infty} \exp \left\{-\left[(A-\varepsilon) \eta^{\alpha-1}-\beta\right] t^{\alpha-1} d \lambda\right\} d \lambda \\
& \leqq \frac{c \exp \left\{\eta \beta t^{\alpha}\right\}}{t^{\alpha-1}}+\frac{c}{t^{\alpha-1}}
\end{aligned}
$$

which means

$$
\Phi_{t}(b)<\eta(\beta)+o(1) \quad \text { as } t \rightarrow \infty .
$$

Since η depends only on β (not on t) the existence of $c(\beta)$ desired is assured. Now it follows from our theorem that

$$
\lim _{t \uparrow \infty} \Phi_{t}(\beta)=\sup _{\xi>0}\left\{\beta \xi-\xi^{\infty} A\right\}=(\alpha-1) \alpha^{\alpha / 1-\infty} A^{1 / 1-\infty} B^{\alpha / \alpha-1}
$$

Putting $\beta=1$ and $t^{\alpha-1}=x$, we arrive at (2.3).

$$
(2.3) \Rightarrow(2.2) \quad \text { Put } \quad \Phi_{t}^{\prime}(\beta)=\frac{1}{t^{\gamma}} \log \kappa(\beta t) \quad \text { and } \quad-\phi_{t}^{\prime}(\xi)=\frac{1}{t^{\gamma}}\left\{\log \left(-\xi t^{\gamma-1}\right)+\right.
$$

$\left.\log t^{\gamma-1}\right\}$, then we can see in a similar way as above that they have the relation (1.1) with $p(t)=t^{\gamma}$:

$$
\exp \left\{t^{\gamma} \Phi_{t}^{\prime}(\beta)\right\}=\int_{0}^{\infty} \exp \left\{t^{\gamma}\left(\beta \xi-\phi_{t}^{\prime}(\xi)\right)\right\} d \xi
$$

It follows from (2.2) that $\lim _{t \uparrow^{\infty}} \Phi_{t}^{\prime}(\beta)=\beta^{\gamma} B . \quad \phi_{t}^{\prime}(\xi)$ is clearly non-decreasing in ξ for each t. We can easily see that $\varepsilon(t)=\frac{1}{t^{\gamma-1}}$ satisfies all conditions of the first part of our theorem because $\gamma>1$. Therefore the theorem applies and

$$
\lim _{t \uparrow \infty} \phi_{t}^{\prime}(\xi)=\sup _{\beta>0}\left\{\beta \xi-\beta^{\gamma} B\right\}=(\gamma-1) \gamma^{\gamma / 1-\gamma} B^{1 / 1-\gamma} \xi^{\gamma / \gamma-1}
$$

Putting $\xi=1$ and $-t^{\gamma-1}=\lambda$, we get (2.2).

Osaka University

References

[1] M. Fukushima, H. Nagai and S. Nakao: On an asymptotic property of spectra of a random difference operator, Proc. Japan Acad. 51 (1975), 100-102.
[2] S. Nakao: On the spectral distribution of the Schrödinger operator with random potential, Japan. J. Math. 3 (1977)
[3] L.A. Pastur: Spectra of random self-adjoint operator, Russian Math Surveys 28 (1973), 1-67.
[4] R.A. Minlos and A. Ja Povzner: Thermodynamic limit for entropy, Trudy Moscow Mat. Obsč. 17 (1967). 243-272.

