UNIPOTENT ELEMENTS AND CHARACTERS OF FINITE CHEVALLEY GROUPS

NORIAKI KAWANAKA*

(Received January 6, 1975)

Introduction

Let © be a connected semisimple linear algebraic group defined over an algebraically closed field K of characteristic $p>0$, and σ a surjective endomorphism of © such that the group \mathfrak{G}_{σ} of elements fixed by σ is finite. The finite groups \mathscr{S}_{σ} obtained in this manner can be classified as follows (Steinberg [20]): If © is simple, \mathscr{G}_{σ} is either the group of rational points of a F-formof © for an appropriate finite field F or one of the groups defined by M. Suzuki and R. Ree. If © is not simple, \mathbb{S}_{σ} is essentially a direct product of the groups mentioned above.

In this paper, a finite group G is called a finite Chevalley group ${ }^{1)}$ if it can be realized as \mathbb{E}_{σ} for some © and σ. Let (G, B, N, S) be a Tits system (or $B N$ pair) associated to a finite Chevalley group G. We denote by W itsWeyl group. Let G^{1} be the set of unipotent elements (or p-elements) of G and U the p-Sylow subgroup of G contained in B. The main purpose of this paper is to establish the following two results:
(I) Let w be an arbitraryelement of W, and w_{s} the element of W of maximal length. Then the number of unipotentelements contained in the double coset BwB is I $B w B \Pi w_{S} U w_{S}^{-1}| | U \mid$, which can be written explicitly as a polynomial in $q_{s}=|B s B / B|(s \in S)^{2}$. (As a corollary, we obtain $\left|G^{1}\right|=|U|$, a result of Steinberg [20].)
(II) Assume that the characteristicp is good (see Definition 6.2) for ©. Let g be an element of $G=\mathscr{S}_{\sigma}$, and C a regular unipotent conjugacy class of G. Then the number $|B g \cap C|$ depends neither on g nor C.

As far as the author knows, these results are new even for $G=S L_{n}(F)$ with F a finite field. In this case an arbitrary prime is good and a unipotent element

[^0]is regular if and only if its Jordan normal form consists of a single block.
The proof of (I) is given in $\S 4$. The main tool is the construction of the Steinberg character of G due to C.W. Curtis. In $\S 5$, combining (I) with an elementary lemma 2.4 we show
(III) Let X be an irreducible complex character of G contained in the character $i\left[1_{B} \mid B \rightarrow G\right]$ inducedfrom the trivial character 1_{B} of B. Then
$$
\sum_{u \in G^{1}} \chi(u)=|U| \hat{\chi}(1)
$$
where $\hat{\mathrm{X}}$ is the "dual character" (see Definition 2.8) of χ.
In particulr, if $\%$ is trivial, $\hat{\%}$ is the Steinberg character, whose degree is known to be $|U|$. Hence we obtain the equality $\left|G^{1}\right|-|U|^{2}$ again.

It may be remarked that all the properties of G required for the proofs of (I) and (III) are formal consequences of the following two facts:
(1) (B, N) is a split $B N$-pair (see [2; part $B]$).
(2) The commutator relations (Proposion 1.3(c)) are satisfied.

In §6 after recalling some known facts on regular unipotent elements, we prove a key lemma 6.10. As the first application of this, we obtain
(IV) Assume tht \mathbb{G} is adjoint and p is goodfor ${ }^{\circledR}$. Let $\%$ be an irreducible cuspidal character of $G=\mathbb{S}_{\sigma}$, and $и$ a regular unipotent element of G. Then $\chi(u)= \pm 1$ if χ is contained in the character induced from a linear character of U in "general position" in the sense of Gel'fand and Graev [10], and $\chi(u)=0$ otherwise.

The proof of (II) is given in §7. We first prove the following result.
(V) Assume thatp isgoodfor (8). Let χ be a non-trivial irredubcile character of $G=\mathscr{\oiint}_{\sigma}$ contained in $i\left[1_{B} \mid B \rightarrow G\right]$. Then \% vanishes on the set of regular unipotent elements of G.

The main tool for the proof of (V) is Lemma 6.10 again. We also use a result (Theorem 3.4) in §3. It allows us to assume that © is adjoint, in which case the set of regular unipotent elements of \mathscr{S}_{σ} forms a single conjugacy class. Combining (V) with Lemma 2.4 we obtain (II).

It is quite likely that the main results (I) (II) reflect interesting relations between the variety of unipotent elements and the Bruhat decomposition of \mathbb{E}.

Notations. Let A be a set. If σ is a transformation of A, A_{σ} denotes the set of fixed points of σ. If f is a mapping from A into another set and B is a subset of $A, f \mid B$ denotes the restriction of / to B. Let G be a group and H a subset of G. Then $C_{G}(H)$ denotes the conjugacy class of H. Let G be finite. The inner product for complex valued functions $/, g$ on G is defined by $(/, g)_{G}=$ I $\left.G\right|^{-1} \sum_{x \in G} f(x) \overline{g(x)}$. Let H be a subgroupf G and $\%$ a character of H. The
character of G induced from \% is denoted by $i[\chi \mid H \rightarrow G]$.

1. Finite Che valley groups \mathbb{E}_{σ}

Let $G=\mathscr{S}_{\sigma}$ be as in Introduction. In this section we recall some known facts about G and establish some notations frequently used in the paper. References are Steinberg [19], [20] and Bourbaki [3].

Let S 3 be a Borel subgroup of @, and \mathfrak{I} a maximal torus of © contained in S3. We can choose S3 and $£$ to be fixed by σ. Then the unipotent radical \mathfrak{U} of S3 and the normalizer \mathfrak{N} of \mathfrak{I} in © are also fixed by σ. We shall write $B, \mathrm{~T}, U$ and N for the groups $\mathfrak{B}_{\sigma}, \mathfrak{I}_{\sigma}, \mathfrak{l}_{\sigma}$ and \mathfrak{R}_{σ} respectively. Let $\mathfrak{M}=\mathfrak{N} / \mathfrak{I}$, the Weyl group of © with respect to \mathfrak{I}. Then σ acts naturally on \mathfrak{W} and the group $W=\mathfrak{W}_{\sigma}$ of fixed points is called the Weyl group of G (with respect to T). It is known that W is canonically isomorphic to N / T.

Let $X(\mathfrak{I})$ be the character module of \mathfrak{I}, and $\Sigma \mathrm{C} X(\mathfrak{I})$ the root system of © with respect to \mathfrak{T}. For $\alpha \in \Sigma$ there is an isomorphism x_{α} of the additive group (of K) onto a closed subgroup \mathfrak{l}_{a} of © such that

$$
\begin{equation*}
t x_{\omega}(k) t^{-1}=x_{\alpha}(\alpha(t) k) \quad(t \in \mathfrak{I}, k \in \mathrm{tf}) \tag{1.1}
\end{equation*}
$$

Choose an order on Σ so that $\mathfrak{U}=\prod_{a>0} \mathfrak{U}_{\infty} \quad$ Let Σ^{+}and Π be the set of positive and simple roots respectively. We denote by σ^{*} the dual action of $\sigma \mid T$ on the real vector space $V=X(\mathfrak{I}) \otimes_{\boldsymbol{z}} \boldsymbol{R}$.

Lemma 1.1. ($[20 ; \S 11])$ Let the notations be as above.
(a) There exists a permutation p of Σ andfor each $\alpha \in \Sigma$ a power $q(\alpha)$ of p such that $\sigma^{*} \rho \alpha=q(\alpha) \alpha$.
(b) $\quad \sigma x_{a}(k)=x_{\rho \alpha}\left(c_{\alpha} k^{q(\alpha)}\right)$ for some $c_{\alpha j} \in K^{*}$ and all $k \in K$.
(c) Σ^{+}and Π are stable under p.
(d) Let π be a p-orbit of Π. Then $\Pi_{a \in \pi} q(\alpha)>1$.

For each p-orbit π of Π, let Σ_{π}^{+}be the set of positive roots which are linear combinations of the elements of π. Then $R^{\prime}=\left\{w \Sigma_{\pi}^{+} \mid w \in W, \pi\right.$ is a $\rho-$ orbit of $\Pi\}$ forms a partition of Σ.

We fix a W-invariant positive definite inner product on $V=X(\mathfrak{I}) \otimes_{\boldsymbol{z}} \boldsymbol{R}$. Then \mathfrak{W} can be identified with the Weyl group $W(\Sigma)$ of the root system Σ.

Proposition 1.2. ([19; §11)]) Consider the projections a of roots a on the subsapce $V_{\sigma^{*}}$ of V.
(a) Let α_{1} and α_{2} be roots. Then $\bar{\alpha}_{1}$ is a positive multiple of α_{2} if and only if there exists an element $a \in R^{\prime}$ containing α_{1} and α_{2}.
(b) For each $a \in R^{\prime}$, let a be the shortest vector in $\{\bar{\alpha} \mid \alpha \in a\}$. Then $R=\left\{\bar{a} \mid a \in R^{\prime}\right\}$ is a reduced root system in $V_{\sigma^{*}}$.
(c) The Weylgroup W of G is canonically isomorphic to the Weylgroup $W(R)$ of the root system R.

By Proposition 1.2 we can identify R with R and W with $W(R)$. For $a \in R$ we write w_{a} for the corresponding reflection. Put $R(S)=\left\{\Sigma_{\pi}^{+} \mid \pi\right.$ is a p-orbit of $\Pi\}$. This is a set of fundamental roots (or base) of R. We denote by R^{+}the set of positive roots with respect to $R(S)$. Let $S=\left\{w_{a} \mid a \in R(S)\right\}$. Then (W, S) is a Coxeter system. Hence a reduced decomposition $\boldsymbol{s}(w)=$ $\left(s_{1}, s_{2}, \cdots, s_{l}\right)\left(s_{i} \in S\right)$ and the length $l(w)$ of $w \in W$ can be defined (see [3]). The element of W of maximal length is denoted by w_{S}.

Proposition 1.3. ([19; §11]) For $a \in R\left(=R^{\prime}\right)$, et $\mathfrak{U}_{a}=\prod_{a \in a} \mathfrak{l}_{a}$.
(a) \mathfrak{U}_{a} is σ-stable.
(b) Let $U_{a}=\left(\mathfrak{U}_{a}\right)_{\sigma}$ and $q_{a}=\left|U_{a}\right|$. Then $q_{a}=\prod_{a \in a} q(\alpha)$, where $q(\alpha)$ 'sare defined by Lemma 1.1 (a).
(c) If $a, b \in R$ and $a \neq \pm b$, the commutator $\left(U_{a}, U_{b}\right)$ is contained in $\Pi U_{i a+j b}$,where the product is taken over all roots $i a+j b(i, j>0)$ arranged in some fixed order.
(d) $w U_{a} w^{-1}-U_{w a}$ forany $w \in W$ and $a \in R$.

For $\quad w \in W$, let $\quad R_{w}^{+}=\left\{a \in R^{+} \mid w a>0\right\}, R_{w}^{-}=\left\{a \in R^{+} \mid w a<0\right\}, U_{w}^{+}=$ $U \cap w^{-1} U w a n d \quad U_{w}^{-}=U \cap w^{-1} U^{-} w$, where $U^{-}=w_{S} U w_{S}^{-1}$.

Lemma 1.4. ([19; §11]) Let w be any element of W.
(a) $U=U_{w}^{+} U_{w}^{-}$and $U_{w}^{+} \cap U_{w}^{-}=\{1\}$.
(b) $U_{w}^{+}=\Pi_{a} U_{a}\left(a \in R_{w}^{+}\right)$with the product taken in some fixed order and there is uniqueness of expression on the right.

The quadruplet (G, B, N, S) is a Tits system. In particular G has the Bruhat decomposition:

$$
\mathrm{G}=\cup_{w \in W} B w B \quad \text { (disjoint union) }
$$

Lemma 1.5. ([20; 11.1]) If $\left\{n_{w} \mid w \in W\right\}$ is a system of representativesfor $W=N / T, B w B=B n_{w} U_{\bar{w}}$ and each element $x \in G$ can be expressed uniquely in the form $x=b n_{w} u$ with $b \in B, w \in W$ and $u \in U$...

A subgroup of G which is conjugate to B is called a Borel subgroup. A subgroup of G which contains a Borel subgroup is called a parabolic subgroup.

Proposition 1.6. ([3; Ch. 4, §2]) For each subset X of S, Let W_{X} be the subgroup of W generated by X. Then
(a) $\quad P_{X}=B W_{X} B$ is a parabolic subgroup of G containing B. Conversely, any parabolic subgroup containing B may be obtained in this manner.
(b) Two parabolic subgroups P_{X} and $P_{Y}(X, Y \subset S)$ are conjugate to each other if and only if $X=Y$.
(c) For $X, Y \subset S$, there is a bijection between $W_{X} \backslash W / W_{Y}$ and $P_{X} \backslash G / P_{Y}$ given by $\Xi \rightarrow B \Xi B, \Xi \in W_{X} \backslash W / W_{Y}$.

Lemma 1.7. Let X be an arbitrary subset of S, and w_{X} the element of W_{X} of maximal length. Then the normalizer of $U_{w_{X}}^{+}$in G is the parabolic subgroup P_{X}.

Proof. Let 57 be the normalizer of $U_{w_{X}}^{+}$in G. By Lemma 1.4(b) and Proposition $1.3(\mathrm{c})$, it sufficiesto show that $n_{w}(w \in W)$ is contained in 57 if and only if w is contained in W_{X}. By Lemma 1.4 (b), $U_{w_{X}}^{+}=\Pi_{a} U_{a}\left(a \in R_{w_{X}}^{+}\right)$. Hence $n_{w} \in \mathscr{N}$ if and only if $R_{w_{X}}^{+} \subset R_{w}^{+}$, i.e. $R_{w_{X}}^{-} \supset R_{w}^{-}$. By [3; p. 158, Cor. 2], this is the case if and only if $w \in W_{X}$. This proves the lemma.

DEFINITION 1.8. Let X be an arbitrary subset of S. Put $V_{X}=U_{w_{X}}^{+}$. We call V_{X} the unipotent radical of the parabolic subgroup P_{X}. In general, the unipotent radical V_{P} of a parabolic subgroup $P=g P_{X} g^{-1}(g \in G)$ is defined by $V_{P}=g V_{X} g^{-1}$. (The well-definedness of V_{P} follows from Lemma 1.7 and the fact that P is its own normalizer in G.)

Lemma 1.9. ([3; p. 37, Ex. 3]) Let $X, Y \subset S$. There exists a unique element of minimal length in each $\left(W_{X}, W_{Y}\right)$-cosetin W. Moreover, thefollowing conditions for an element w of W are equivalent:
(1) w is the element of minimal length in $W_{X} w W_{Y}$.
(2) $l\left(w_{1} w\right)=l\left(w_{1}\right)+l(w)$ and $\quad l\left(w w_{2}\right)=l(w)+l\left(w_{2}\right)$ for all $\quad w_{1} \in W_{X} \quad$ and $w_{2} \in W_{Y}$.
(3) $\quad l(x w)>l(w)$ and $l(w y)>l(w)$ for all $x \in X$ and $y \in Y$.

DEFINITION 1.10. An element w of W satisfying the conditions in Lemma 1.9 is called a (X, Y)-reduced element.

Lemma 1.11. Let $X \subset S$. There exists a unique element of maximal length in each W_{X}-coset in W. Moreover, the following conditionsfor an element v of W are equivalent:
(1) v is the element of maximal length in $v W_{X}$.
(2) $v=w w_{X}$ for some (ϕ, X)-reduced element w of W.
(3) $l\left(v w_{1}\right)=l(v)-l\left(w_{1}\right)$ for all $w_{1} \in W_{X}$.
(4) $l(v x)<l(v)$ forall $x \in X$.

Proof. Let w be an arbitary (ϕ, X)-reduced element of W. Any element v^{\prime} of $w W_{X}$ can be written in the form $v^{\prime}=w w_{1}^{\prime}$ with $w_{1}^{\prime} \in W_{X}$. By Lemma 1.9 (2), $l\left(v^{\prime}\right)=l(w)+l\left(w_{1}^{\prime}\right)$. Thus the length of v^{\prime} is maximal among the elements in $w W_{X}$ if and only if $w_{1}^{\prime}=w_{X}$. This proves the first assertion in the lemma
and the equivalence of the conditions (1) and (2). If (2) holds and $w_{1} \in W_{X}$, then $l\left(v w_{1}\right)=l\left(w w_{X} w_{1}\right)=l(w)+l\left(w_{X} w_{1}\right)$ by Lemma 1.9 (2). On the other hand, we have $l\left(w_{X} w_{1}\right)=l\left(w_{X}\right)-l\left(w_{1}\right)$ from [3; p. 43, Ex. 22]. Hence

$$
l\left(v w_{1}\right)=l(w)+l\left(w_{X}\right)-l\left(w_{1}\right)=l(v)-l(w),
$$

which is (3). It is trivial that (3) implies (4). Assume that (4) holds. Let v_{1} be the element of maximal length in $v W_{X}$. Then $v=v_{1} w_{1}^{\prime}$ with $w_{1}^{\prime} \in W_{X}$. If $z v_{1}^{\prime} \neq 1$, there is an element x of X such that $l\left(w_{1}^{\prime} x\right)<l\left(w_{1}^{\prime}\right)$. We have $l(v x)=$ $l\left(v_{1} w_{1}{ }^{\prime} x\right)=l\left(v_{1}\right)-l\left(w_{1}{ }^{\prime} x\right)=l\left(v_{1}\right)-l\left(w_{1}{ }^{\prime}\right)+l(x)=l\left(v_{1} w_{1}{ }^{\prime}\right)+l(x)=l(v)+l(x)>l(v)$, a contradiction. Therefore $w_{1}{ }^{\prime}=1$. Hence $v=v_{1}$, which is (1). This completes the proof of the lemma.

Lemma 1.12. Any parabolic subgroup P of G can be uniquely written in the form $P=u w \mathrm{P}_{X} w^{-1} u^{-1}$, where X is a subset of S, w is a (φ, X)-reducedelement of W and u is an element of $U_{-. .}^{-1}$.

Proof. By Proposition 1.6 (b), X is uniquely determined by P. Assume that $u_{1} w_{1} P_{X} w_{1}^{-1} u_{1}^{-1}=u_{2} w_{2} P_{X} w_{2}^{-1} u$ for two distinct (ϕ, X) -reduced elements w_{1}, w_{2} of W and some elements u_{1}, u_{2} of U. Then $w_{1}^{-1} u_{1}^{-1} u_{2} w_{2} \in P_{X}$ because P_{X} is its own normalizer in G. Thus $w_{2} \in B w_{1} P_{X}$. On the other hand, we have $w_{1} W_{X} \neq w_{2} W_{X}$ from Lemma 1.9. Hence $B w_{1} P_{X} \cap B w_{2} P_{Y}=\phi$ Proposition 1.6 (c), a contradiction. This proves the uniqueness of w in the lemma. Next, assume that $u_{1} w P_{X} w^{-1} u_{1}^{-1}=u_{2} w P_{X} w^{-1} u_{2}^{-}$for a (ϕ, X)-reduced element w of W and elements u_{1}, u_{2} of $U_{. .-}^{-1}$. Then $w^{-1} u_{2}^{-1} u_{1} w \in P_{X}$. Thus we have

$$
\begin{equation*}
u_{1} u \in u_{2} w\left(\mathrm{U}_{v \in W_{X}} B v B\right) . \tag{1.2}
\end{equation*}
$$

By Lemma 1.9, $l(w v)=l(w)+l(v)$ for all $v \in W_{X}$. Hence $u_{2} w B v B \subset B w v B$ by [3; p. 26, Cor. 1]. Therefore (1.2) implies that $u_{1} w \in u_{2} w B$. Hence we have $u_{1}=u_{2}$ from Lemma 1.5. This completes the proof of the uniqueness part of the lemma. Let P be an arbitrary parabolic subgroup. By Proposition 1.6 and Lemma 1.9 there exist a subset X of S and a (ϕ, X)-reduced element w of W and an element u of U such that $P=u w P_{X} w^{-1} u^{-1}$. By Lemma 1.4 (a), $u=u_{1} u_{2}$ for some $u_{1} \in U_{. .-1}^{--1}$ and $u_{2} \in U_{. . .-1}^{+}$. Thus $P=u_{1} w P_{X} w^{-1} u_{1}^{-1}$. The proof of Lemma 1.12 is now complete.

2. Hecke algebra $H_{C}(G, B)$ and characters in $\boldsymbol{i}\left[1_{B} \mid B \rightarrow G\right]$

Let G be an arbitrary finite group, and B a subgroup of G . We denote by $\mathrm{C}[\mathrm{G}]$ the group algebra of G over a complex number field C. Then $e_{1}=|B|^{-1} \sum_{x \in B} x$ is an idempotent in C[G] and the left $\boldsymbol{C}[G]$-module $\boldsymbol{C}[G] e_{1}$ affords the character $i\left[1_{B} \mid B \rightarrow G\right]$ induced from the trivial character 1_{B} of B.

DEFINITION 2.1. The Heche algebra $H_{c}(G, B)$ is defined to be the subalgebra $e_{1} \boldsymbol{C}[G] e_{1}$ of the group algebra $\boldsymbol{C}[G]$.

Lemma 2.2. (Curtis-Fossum [8]) Let \% be an irreducible complex character of G contained in $i\left[1_{B} \mid B \rightarrow G\right]$. We also denote by X the corresponding irreduicble character of $\boldsymbol{C}[G]$.
(a) The restriction $\chi \mid H_{C}(G, B)$ of χ to $H_{C}(G, B)$ is an irreducible character of $H_{C}(G, B)$. Conversely, each irreducible character of $H_{C}(G, B)$ is the restriction to $H_{C}(G, B)$ of a unique irreducible character of $\boldsymbol{C}[G]$.
(b) Let a_{x} be a primitive idempotentin $H_{C}(G, B)$ corresponding to $\% \mid H_{c}(G, B)$. Then a_{x} is also a primitive idempotent in $\left.C / G\right]$ and the left $\boldsymbol{C}[G]$-module $\boldsymbol{C}[G] a_{\mathrm{x}}$ affords χ.

Lemma 2.3. (Littlewood [15; §4.4]) Let $\sum_{x \in G} \lambda_{x} x$ be a primitive idempotent in $C[G]$ corresponding to an irreducible character χ. Then

$$
\chi(g)=I G \| C_{G}\left(g^{-1}\right) I^{-1}\left\{\sum_{x} \lambda_{x}\right\} \quad\left(x \in C_{G}\left(g^{-1}\right)\right) .
$$

Let A be a set of representatives for the (B, B)-double cosets decomposition of G. For $a \in A$, let
(2.1) $\quad e_{a}=|B|^{-1} \sum_{x \in B a B} x$.

Then $\left\{e_{a} \mid a \in A\right\}$ forms a \boldsymbol{C}-basis for $H_{C}(G, B)$. For an arbitrary element $h=\sum_{a \in A} h_{a} e_{a}\left(h_{a} \in C\right)$ of $H_{C}(G, B)$, define the following complex valued class functions on G :

$$
\begin{equation*}
f_{h}(g)=\sum_{a \in A} h_{a}|B|-|G| \text { I } C_{G}\left(g^{-1}\right) \mathrm{I}^{-1} \mid B a B \cap C_{G}\left(g^{-1}\right) \backslash . \tag{2.2}
\end{equation*}
$$

Later, we shall often require the following lemma.
Lemma 2.4. (a) Let $\%$ be an irreducible character of G contained in $i\left[1_{B} \mid B \rightarrow G\right]$, and a_{x} a primitive idempotent in $H_{C}(G, B)$ corresponding to $\%$ in the sense of Lemma 2.2. Then

$$
\chi(g)=f_{a_{\mathrm{x}}}(g) \quad(g \in G)
$$

where $f_{a_{x}}$ is the class function on G defined by (2.2).
(b) Each function $f_{h}\left(h \in H_{C}(G, B)\right)$ can be written as a linear combination of irreducible characters contained in $i\left[1_{B} \mid B \rightarrow G\right]$.

Proof. (a) This is a consequence of Lemma 2.3, (2.1) and (2.2).
(b) Let $X(G, B)$ be the set of all irreducible characters of G contained in $i\left[1_{B} \mid B \rightarrow G\right]$. It suffices to show that each $f_{e_{a}}(a \in A)$ can be written as a linear combination of elements of $X(G, B)$. Since $H_{c}(G, B)$ is a semisimple algebra,
it is isomorphic to a direct sum of full matrix algebras $M\left(n_{i}, C\right)(i=1,2, \cdots, m)$. It is easy to see that each algebra $M\left(n_{i}, C\right)$ has a basis which consists of primitive idempotents. Hence $H_{c}(G, B)$ also has such a basis $\left\{v_{j} \mid 1 \leqq j \leqq N\right\}$ $(N=\backslash A \backslash) . \quad$ Let $v_{j}=\sum_{a \in A} c_{j, a} e_{a}\left(c_{j}, \in \boldsymbol{C}, 1 \leqq j \leqq N\right) \quad$ Then, from part (a) we have
(2.3) $\quad \sum_{a \in A} c_{j, a} f_{i a}=\chi_{j} \quad(1 \leqq j \leqq N)$
for some $\chi_{j} \in X(G, B)$. Solving (2.3) in $f_{e_{a}}(a \in A)$, we get the required result.
We shall also need the following
Lemma 2.5. $\quad f_{h k}=f_{k h}$ foall elements h, k of $H_{C}(G, B)$.
Proof. Let x and y be any elements of G. Then $x y$ and $y x$ belong to the same conjugacy class of G. The assertion follows from this fact and (2.2).

Assume henceforth that G is a finite Chevalley group and B is a Borel subgroup of G. We shall also use other notations given in $\S 1$. By the Bruhat decomposition of G, $\left\{e_{w} \mid w \in W\right\}$ (see (2.1)) forms a basis for $H_{c}(G, B)$. Hence for any element h of $H_{C}(G, B)$ there exist unique complex numbers $\left[h: e_{w}\right]$ (we W) such that $h=\sum_{w \in W}\left[\mathrm{~A}: e_{w}\right] e_{w}$.

Theorem 2.6. (Iwahori [2], Matsumoto [16]) Let ind $e_{w}=|B w B| B \mid$ for $w \in W$, and $q_{s}=$ inde $_{s}$ for $s \in S$. Then
(a) $q_{s}=q_{a}=\Pi_{b \in a} q(\alpha) \quad$ if $s=w_{a} \quad$ with $a \in R(S)$.
(b) $\left[e_{w} e_{w^{\prime}}: e_{w^{\prime \prime}}\right]=B w B \cap n_{w}{ }^{\prime \prime} U_{w}^{-\prime} n_{w^{\prime}-1} \mid$ for all elements w, w^{\prime}, $w^{\prime \prime}$ of W.
(c) For $s \in S$ and $w \in W$,

$$
\begin{aligned}
& e_{1} e_{w}=e_{w} e_{1}=e_{w} \\
& e_{s} e_{w}=e_{s w} \quad \text { if } l(s w)>l(w) \\
& \text { and } \quad e_{s} e_{w}=q_{s} e_{s w}+\left(q_{s}-1\right) e_{w} \quad \text { if } \quad l(s w)<l(w) .
\end{aligned}
$$

(d) If $s(w)=\left(s_{1}, s_{2}, \cdots, s_{l}\right)\left(s_{i} \in S\right)$ is a reduced decomposition of $w \in W$, then

$$
\boldsymbol{z}_{w}-P_{s_{s_{1}}}{ }_{c_{s 2}} \quad \rho_{s_{l}} .
$$

(e) Let the notations be as in (d). Then

$$
\text { ind } e_{w}=\left|U_{w}^{-}\right|=q_{s_{1}} q_{s_{2}} \cdots q_{s_{l}} .
$$

Proof. (a) This is a consequence of Lemma 1.5 and Proposition 1.3 (b).
(b) By [12; (3)], the left hand side is equal to $\left|\left(B w B \cap w^{\prime \prime} U w^{\prime-1} B\right)\right| B \mid$, which is equal to $\left|B w B \cap n_{w^{\prime \prime}} U_{w}^{-\prime} n_{w^{\prime}-1}\right|$ by Lemma 1.5.
(c) and (d) are proved in [12] and [16].
(e) is a consequence of (d) and [12; Lemma 1.2].

By Theorem 2.6 (c) we have

$$
\begin{equation*}
\left(e_{s}\right)^{-1}=q_{s}^{-1}\left\{e_{s}+\left(1-q_{s}\right) e_{1}\right\} \quad(s \in S) \tag{2.4}
\end{equation*}
$$

By (2.4) and Theorem 2.6 (d), e_{w} is invertible for an arbitrary $w \in W$. The following theorem was obtained by O. Goldman (see [12]) for untwisted Chevalley groups G and by R. W. Kilmoyer [14] for general G.

Theorem 2.7. The Hecke algebra $H_{C}(G, B)$ has an involutoryautomorphism defined by

$$
\hat{e}_{w}=(-1)^{l(w)}\left|U_{w}^{-}\right|\left(e_{w^{-1}}\right)^{-1}
$$

Let $\%$ be an irreducible character of G contained in $i\left[1_{B} \mid B \rightarrow G\right]$, and a_{x} a primitive idempotent in $H_{C}(G, B)$ corresponding to \% (see Lemma 2.2). Then a_{x} is also a primitive idempotent in $H_{C}(G, B)$. It is easy to see that the irreducible character of G corresponding to a_{x} is independent of the choice of a_{x}.

DEFINITION 2.8. Let the notations be as above. The dual $\hat{\%}$ of $\%$ is defined as the irreducible character of G corresponding to a_{x}.

REMARK 2.9. In [14], R. Kilmoyer defined ${ }^{\wedge} \%$ by $\left.\hat{(\chi \mid} H_{C}(G, B)\right)(h)=$ $\left(\chi\right.$ I $\left.H_{C}(G, B)\right)(h)$. It is easy to see that these two definitions are in fact identical.

Notation 2.10. Let w, w^{\prime} and $w^{\prime \prime}$ be any elements of W, and $s(w)=$ $\left(s_{l}, s_{l-1}, \cdot \cdot, s_{1}\right)$ a reduced decomposition of w. We denote by $\mathcal{G}\left(s(w), w^{\prime}{ }^{\prime}, w^{\prime \prime}\right)$ the set of all integer sequences $J=\left(j_{k}, j_{k-1}, \cdots, j_{0}\right)$ satisfying the following conditions (cf. [2; (3.19)]):
(a) $l(w)=l \geqq j_{k}>i_{k-1}>\cdots>j_{1}>i_{0}=0$
(b) $s_{j_{k}} s_{j_{k}-1} \cdots s_{j_{0}} w^{\prime}=w^{\prime \prime}$ where we put $s_{j_{0}}=s_{0}=1$ for convention.
(c) $\quad\left(s_{p} s_{j_{h}} s_{j_{h-1}} \cdots s_{j_{0}} w^{\prime}\right)<l\left(s_{j_{h}} s_{j_{h}} s_{j_{0}} w^{\prime}\right.$ for $j_{h}<p<j_{h+1}$ if $0 \leqq h \leqq k-1$ and $j_{k}<p \leqq l$ if $h=k$.

For each $J \in \mathcal{G}\left(s(w), w^{\prime}, w^{\prime \prime}\right)$ we put $J_{1}=\left\{j_{h} \in J \mid l\left(s_{j_{h}} s_{j_{h-1}} \cdots s_{j_{0}} w^{\prime}\right)<l\left(s_{j_{h-1}} \cdots\right.\right.$ $\left.\left.s_{j_{0}} w^{\prime}\right)\right\}$ and $J_{2}=\left\{j_{h} \in J \mid j_{h} \neq 0, j_{h} \notin J_{1}\right\}$.

Notation 2.11. Let $S_{i}(i \in I)$ be the equivalence classes for the relation " s is conjugate to r in $W^{\prime \prime}$ between elements s, r of S. Let $t=\left(t_{i}\right)_{i \in I}$ be a family of indeterminates indexed by $/$, and for each $s \in S$ define t_{s} to be t_{i} if $s \in S_{i}$.

DEFINITION 2.12. Let w, w^{\prime} and $w^{\prime \prime}$ be any elements of W. Using the
above notations we define the following polynomial in $\boldsymbol{t}=\left(\boldsymbol{t}_{i}\right)_{i \in I}$:

$$
\begin{aligned}
& F\left(w, w^{\prime}, w^{\prime \prime}\right)(\boldsymbol{t})=F\left(w, w^{\prime}, w^{\prime \prime}\right)\left(\left(t_{i}\right)_{i \in I}\right) \\
= & \sum_{J}\left\{\Pi_{j \in J_{1}} \vee \Pi_{i \notin J}\left(t_{s_{j}}-1\right)\right\} \quad\left(J \in \mathscr{G}\left(s(w), w^{\prime}, w^{\prime \prime}\right)\right)
\end{aligned}
$$

where $s(w)=\left(s_{l}, s_{l-1}, \cdots, s_{1}\right)$ is a reduced decomposition of w.
REMARK 2.13. The polynomial $F\left(w, w^{\prime}, w^{\prime \prime}\right)(\boldsymbol{t})$ does not depend on the choice of a reduced decomposition $s(w)$ of w. This fact follows from Lemma 2.14 (b) given below.

Lemma 2.14. (a) Let s, r be elements of S. Then $q_{s}=q_{r}$ if s and r belong to the same equivalence class S_{i} defined in Notation 2.11.
(b) Put $q_{i}=q_{s}$ if $s \in S_{i}$. Then $\left[e_{w} e_{w}{ }^{\prime}: e_{w}{ }^{\prime \prime}\right]=F\left(w, w^{\prime}, w^{\prime \prime}\right)\left(\left(q_{i}\right)_{i \in I}\right)$ for all elements w, w^{\prime} and $w^{\prime \prime}$ of W.
(c) $\left[e_{w} e_{w^{\prime}}: e_{w^{\prime}}\right]=\left[\hat{e}_{w} e_{w^{\prime} w_{S}}: e_{w^{\prime} w_{S}}\right]$ for all elements w and w^{\prime} of W.

Proof. (a) This is a consequence of Theorem 2.6 (a) and Proposition 1.3 (d).
(b) We will prove this by the induction on the length $l(w)$ of w. It is easy to see that (b) is true if $w=1$. Let $s(w)=\left(s_{l}, s_{l-1}, \cdots, s_{1}\right)$ be a reduced decomposition of $w \neq 1$. Then $l\left(s_{l} w\right)<l(w)$. By the induction assumption,

$$
e_{s_{l} w} e_{w^{\prime}}=\sum_{v \in W} F\left(s_{l} w, w^{\prime}, v\right)\left(\left(q_{i}\right)_{i \in I}\right) e_{v} .
$$

Multiplying $e_{s_{l}}$ from the left, we have

$$
e_{w} e_{w}^{\prime}=\sum_{v \in W} F\left(s_{l} w, w^{\prime}, v\right)\left(\left(q_{i}\right)_{i \in I}\right) e_{s_{l}} e_{v}
$$

by Theorem 2.6 (c).
Comparing this formula with (b) and using Theorem 2.6 (c), we see that it suffices to prove the following:

$$
\begin{equation*}
F\left(w, w^{\prime}, w^{\prime \prime}\right)(\boldsymbol{t})=F\left(s_{l} w w^{\prime}, s_{l} w^{\prime \prime}\right)(\boldsymbol{t})+\left(t_{s_{1}}-1\right) F\left(s_{l} w w^{\prime}, w^{\prime \prime}\right)(\boldsymbol{t}) \quad \text { if } l\left(s_{l} w^{\prime \prime}\right)< \tag{1}
\end{equation*}
$$ $l\left(w^{\prime \prime}\right)$.

(2) $\quad F\left(w, r f, w^{\prime \prime}\right)(\boldsymbol{t})=t_{s}, F\left(s_{l} w, w^{\prime}, s_{l} w^{\prime \prime}\right)(\boldsymbol{t})$ if $l\left(s_{l} w^{\prime \prime}\right)>l\left(w^{\prime \prime}\right)$.

We first prove (1). Let $J^{\prime}=\left(j_{m}{ }^{\prime}, \cdot \cdot, j_{0}{ }^{\prime}\right)$ be an element of $\mathscr{g}\left(s\left(s_{l} w\right), w^{\prime}, s_{l} w^{\prime \prime}\right)$, where $s\left(s_{l} w\right)=\left(s_{l-1}, s_{l-2}, \cdots, s_{1}\right)$. Then $J=\left(l, j_{m}{ }^{\prime}, \cdots, j_{0}{ }^{\prime}\right)$ is an element of $\mathscr{F}\left(s(w), w^{\prime}, w^{\prime \prime}\right)$. Next, let $J^{\prime \prime}=\left(j_{n}{ }^{\prime \prime}, \cdots, j_{0}^{\prime \prime}\right)$ be an element of $\mathscr{J}\left(s\left(s_{l} w\right), w^{\prime}, w^{\prime \prime}\right)$. Then $J=J^{\prime \prime}$ is an element of $\mathscr{f}\left(s(w), w^{\prime}, w^{\prime \prime}\right)$. In fact the condition in Notation 2.10 (c) is satisfied by the assumption that $l\left(s_{l} w^{\prime \prime}\right)<l\left(w^{\prime \prime}\right)$. Moreover, every element $J \in J\left(s(w), w^{\prime}, w^{\prime \prime}\right)$ can be obtained from $J^{\prime} \in \mathcal{G}\left(s\left(s_{l} w\right), s^{\prime}, s_{l} w^{\prime \prime}\right)$ or $J^{\prime \prime} \in \mathscr{G}\left(s\left(s_{l} w\right) w w^{\prime}, w^{\prime \prime}\right)$ in this manner. Hence, from the definition of
$F\left(w, w^{\prime}, w^{\prime \prime}\right)(\boldsymbol{t})$, we obtain (1). To prove (2), we note that for any element $J=\left(j_{k}, j_{k-1}, \cdots, j_{0}\right)$ of $\mathscr{G}\left(s(w), w^{\prime}, w^{\prime \prime}\right), j_{k}$ must be $/$ and $J^{\prime}=\left(j_{k-1}, j_{k-2}, \cdots, j_{0}\right)$ is an element of $\mathscr{g}\left(s\left(s_{l} w\right), w^{\prime}, s_{l} w^{\prime \prime}\right)$. This follows from the assumption that $l\left(s_{l} w^{\prime \prime}\right)>l\left(w^{\prime \prime}\right)$.The rest of the proof is similar to that of (1). The proof of (b) is over.
(c) By Theorem 2.6 (c) and (2.4), it is easy to see that for $s \in S$ and $w \in W$,

$$
\begin{aligned}
e_{s} e_{w w S} & =-q_{s} e_{s w w_{S}} \text { if } l(s w)>l(w) \\
\text { and } e_{s} e_{w w S} & =-e_{s w w_{S}}+\left(q_{s}-1\right) e_{w w_{S}} \text { if } l(s w)<l(w) .
\end{aligned}
$$

By the almost same argument as in (a), we get

$$
\left[\hat{e}_{w} e_{w^{\prime} w_{S}} e_{w w^{\prime \prime} w_{S}}\right]_{=}=E\left(w, w^{\prime}, w^{\prime \prime}\right)\left(\left(q_{i}\right)_{i \in I}\right),
$$

where $E\left(w, w^{\prime}, w^{\prime \prime}\right)(\boldsymbol{t})$ is a polynomial in $\boldsymbol{t}=\left(t_{i}\right)_{i \in I}$ defined as follows:

$$
\begin{aligned}
& E\left(w, w^{\prime}, w^{\prime \prime}\right)(\boldsymbol{t}) \\
= & \sum_{J}\left\{(-1)^{\left|J_{1}\right|} \Pi_{j \in J_{2}}\left(-t_{s_{j}}\right) \Pi_{j \notin J}\left(t_{s_{j}}-1\right) \quad\left(J \in \mathscr{g}\left(s(w), w^{\prime}, w^{\prime \prime}\right)\right)\right.
\end{aligned}
$$

where $s(w)=\left(s_{l}, s_{l-1}, \cdots, s_{1}\right)$ is a reduced decomposition of w.
Therefore, for the proof of (c) it sufficies to show
(2.5) $\quad \Pi_{j \in J_{1}} t_{s_{j}}=\Pi_{j \in J_{2}} t_{s_{j}}$
for all $J \in \mathscr{g}\left(s(w), w^{\prime}, w^{\prime \prime}\right)\left(w, w^{\prime} \in W\right)$. Let $J=\left(j_{k}, j_{k-1}, \cdots, j_{0}\right)$. Then $s_{j_{k}} s_{j_{k-1}} \ldots$ $s_{j_{1}} w^{\prime}=w^{\prime \prime}$. Hence (2.5) is a special case of Lemma 2.15 (b) below.

Lemma 2.15. (a) Let w be an element of W, and $\boldsymbol{s}(w)=\left(s_{1}, s_{2}, \cdots, s_{l}\right)$ a reduced decomposition of W. Then the monomial $\boldsymbol{t}_{w}=t_{s_{1}} t_{s_{2}} t_{s_{l}}$ is independent of the choice of reduced decomposition $s(w)$.
(b) Let $\left(s_{1}, s_{2}, \quad, s_{m}\right)$ be a sequence of elements of $S . \quad$ Put $w=s_{1} s_{2} \cdots s_{m}$. Then

$$
\boldsymbol{t}_{w}=t_{s_{1}}^{a_{1}} a_{s_{m}}^{a_{2} \ldots t_{s_{m}}^{a_{m}},}
$$

where $a_{i}=1$ or -1 according as $l\left(s_{1} s_{2} \cdot s_{i-1}\right)<l\left(s_{1} s_{2} \cdot s_{i}\right)$ or $l\left(\begin{array}{ll}s_{1} s_{2} & s_{i-1}\end{array}\right)>l\left(s_{1} s_{2} s_{i}\right)$ respectively.

Proof. (a) This follows from [3: p. 16, Proposition 5.].
(b) We prove this by induction on m. If $m=l$ the assertion is trivially true. Put $w^{\prime}=s_{1} s_{2} s_{m-1}$. Then by the induction assumption we have $\boldsymbol{t}_{w^{\prime}}=t_{s_{1}}^{a_{1}} t_{s_{2}}^{a_{2}} \cdots t_{s_{m-1}}^{a_{m-1}} \quad$ If $l(w)=l\left(w^{\prime} s_{m}\right)>l\left(w^{\prime}\right), \boldsymbol{t}_{w}=\boldsymbol{t}_{w^{\prime}} t_{s_{m}}$ by part (a). If $l(w)=$ $l\left(w^{\prime} s_{m}\right)<l\left(w^{\prime}\right), \boldsymbol{t}_{w^{\prime}}=\boldsymbol{t}_{w} t_{s_{m}}$ by part (a). In any case we have $\boldsymbol{t}_{w}=t_{s_{1}}^{a_{1}} t_{s_{2}}^{a_{2}} \cdot t_{s_{m}}^{a_{m}}$, as required.

3. Central isogenies and characters in $\boldsymbol{i}\left[1_{\boldsymbol{B}} \mid \boldsymbol{B} \rightarrow \boldsymbol{G}\right]$

The main purpose in this section is to prove Theorem 3.4. This result, which is of independent interest, will be used in $\S 7$.

First we recall some facts on central isogenies. References are [5] and [2; §2]. Let © and ©' be connected semisimple linear algebraic groups defined over an algebraically closed field K, 33 a Borel subgroup of \mathbb{C}, and \mathfrak{I} a maximal torus of © contained in 33 . We also use other notations in $\S 1$. Assume that there exists a central isogeny $\psi:(8) \rightarrow\left(8^{\prime}\right.$. Then the following statements are valid:
(3.1) $\quad \mathfrak{B}^{\prime}=\psi(\mathfrak{B})$ is a Borel subgroup of \mathbb{C}^{\prime}.
(3.2) $\quad \mathfrak{V}^{\prime}=\psi(\mathfrak{T})$ is a maximal torus of \mathfrak{C}^{\prime} contained in \mathfrak{B}^{\prime}.
(3.3) Let $X(\mathfrak{T})$ and $X\left(\mathfrak{T}^{\prime}\right)$ be character modules of X and \mathfrak{T}^{\prime} respectively. Let $\psi^{*}: X\left(\mathfrak{X}^{\prime}\right) \otimes_{\boldsymbol{z}} \boldsymbol{Q} \rightarrow X(\mathfrak{X}) \otimes_{\boldsymbol{z}} \boldsymbol{b}$ be the \boldsymbol{Q}-linearextention of the transpose of $\psi \mid \mathfrak{I}$. Then ψ^{*} is injective and $\psi^{*}\left(X\left(\mathfrak{I}^{\prime}\right)\right) \subset X(\mathfrak{T})$ and $\psi^{*}\left(\Sigma^{\prime}\right)=\Sigma$, where Σ^{\prime} is the root system of © ${ }^{\text {' }}$ with respect to \mathfrak{T}^{\prime}.
(3.4) $\quad \mathfrak{U}^{\prime}=\psi(\mathfrak{U})$ is the unipotent radical of \mathfrak{B}^{\prime} and $\psi \mid \mathfrak{U}: \mathfrak{U} \rightarrow \mathfrak{U}^{\prime}$ is an isomorpism.
(3.5) For $\alpha \in \Sigma, \mathrm{tt} £ /=\psi\left(\mathfrak{l}_{\alpha}\right)$ is the root subgroup of © ${ }^{\prime}$ with respect to a ! corresponding to $\alpha^{\prime}=\psi^{*-1}(\alpha)$.
(3.6) $\quad \mathfrak{K}^{\prime}=\psi(\mathfrak{N})$ is the normalizer of 37 and ψ induces an isomorphism ψ from the Weyl group $\mathfrak{M}=\mathfrak{R} / \mathfrak{T}$ of \mathbb{C} onto the one $\mathfrak{Y}^{\prime}=\mathfrak{N}^{\prime} / \mathfrak{T}^{\prime}$ of \mathscr{S}^{\prime}. If $w_{a}(\alpha \in \Sigma)$ is a reflection in W, then $\bar{\psi}\left(w_{c}\right)=w_{a^{\prime}}$, where $\alpha^{\prime}=\psi^{*-1}(\alpha)$.

In the following, let ©, $33, \sigma, \mathrm{G}, B$, etc. be as in $\S 1$.
Theorem 3.1. (a) Let $\widetilde{(C)}$ be the simply connected group of the same type as $\sqrt{(3)}$, and let $\psi: \widetilde{(S)} \rightarrow$ (5S be a central isogeny. Then there exists a unique surjective endomorphism σ of $\tilde{\mathscr{S}}$ such that (1) $\psi \circ \tilde{\sigma}=\sigma \circ \psi$ and (2) $\tilde{\mathscr{S}}_{\tilde{\sigma}}<\infty$.
(b) Let ©' be the adjointgroup of the sme type as ©, and let ψ : $\mathbb{S H}^{(\$)} \mathcal{S H}^{\prime}$ be a central isogeny. Then there exists a unique surjective endomorphism σ^{\prime} of ©' such that (1) $\psi \circ \sigma=\sigma^{\prime} \circ \psi$ and (2) $\mid\left(5^{\prime}{ }_{\sigma^{\prime}} \mid<\infty\right.$.

Proof. (a) First we remark that $\sigma:(\$ \rightarrow(8)$ is an isogeny because of the fact that ker σ is trivial ($[20 ; 7.1]$). The unique existence of an isogeny $\tilde{\sigma}: \widetilde{\widetilde{s}} \rightarrow \widetilde{(5)}$ satisfying (1) follows from [20; 9.16]. Next, we prove that (1) implies (2). Let $x \in \widetilde{\mathscr{S}}_{\tilde{\sigma}}$. By $(1), \psi(x) \in \widetilde{\mathscr{S}}_{\tilde{\sigma}}$. Because ker ψ and \mathscr{S}_{σ} are finite, $\widetilde{\mathscr{S}} \tilde{\tilde{\sigma}}$ is finite also.
(b) The uniqueness of σ follows from (1) and the surjectivity of ψ. We
prove the existence of an isogeny σ^{\prime} satisfying (1). Since (3' $^{\prime \prime}$ is adjoint, $X\left(\mathfrak{Z}^{\prime}\right)$ is the \boldsymbol{Z}-module generated by $\boldsymbol{\Sigma}^{\prime}$. By (3.3) $\psi^{*}\left(X\left(T^{\prime}\right)\right.$)is the \boldsymbol{Z}-module $\Sigma_{\boldsymbol{Z}}$ generated by Σ. Since σ^{*} preserves $\Sigma_{\boldsymbol{Z}}$ by Lemma 1.1, we can define an automorphism γ of $X\left(\mathfrak{T}^{\prime}\right)$ by $\gamma=\left(\psi^{*}\right)^{-1} \circ \sigma^{*} \circ \psi^{*}$. From Lemma 1.1 we have $\gamma\left(\alpha^{\prime}\right)=q\left(\rho^{-1} \circ \psi^{*}\left(\alpha^{\prime}\right)\right)\left(\psi^{*}\right)^{-1} \circ \rho^{-1} \circ \psi^{*}\left(\alpha^{\prime}\right)$ for all $\alpha^{\prime} \in \Sigma^{\prime}$. Thus the existence of an isogeny σ^{\prime} satisfying (1) follows from [5; 18-07, Proposition 5]. Next, we prove that (1) implies (2). Assume that $\mathscr{E}_{\sigma^{\prime}}^{\prime}$ is infinite. From the surjectivity of ψ and the finiteness of ker ψ, we see that the set $A-\left\{x \in G \mid \sigma^{\prime} \circ \psi(x)=\psi(x)\right\}$ is infinite. Since $A=\left\{x \in G \mid x^{-1} \sigma(x) \in \operatorname{ker} \psi\right\}$ by (1) and ker ψ is finite, this fact implies that $A_{c}=\left\{x \in G \mid x^{-1} \sigma(x)=c\right\}$ is infinite for some $c \in \operatorname{ker} \psi$. If y and z are elements of A_{c} we have $y^{-1} \sigma(y)=z^{-1} \sigma(z)$,i.e. $y z^{-1} \in \mathbb{S}_{\sigma}$. Hence \mathbb{B}_{σ} must be infinite, a contradiction. This proves (b).

Let $\psi:$ © ${ }^{\prime} \rightarrow$ © $^{\prime}$ be a central isogeny and σ^{\prime} is a surjective endomorphism of (5') such that $\psi^{\circ} \circ \sigma=\sigma^{\prime} \circ \psi$. By the proof of Theorem 3.1 (b), such σ is unique and $G^{\prime}=\left({ }_{S}{ }_{\sigma}{ }^{\prime}\right.$, is finite. In the following, the endomorphism σ^{\prime} is denoted simply by σ.

Theorem 3.2. Let the notations be as above.
(a) $\mathfrak{B}^{\prime}=\psi(\mathfrak{B})$ and $\mathfrak{X}^{\prime}=\psi(\mathfrak{T})$ is fixed by $\sigma . \quad$ (In the following, we write B^{\prime} and T^{\prime} for $\mathfrak{B}_{\sigma}{ }^{\prime}$ and $\mathfrak{I}_{\sigma}{ }^{\prime}$ respectively.)
(b) ψ^{*} induces an isomorphism, which is also denoted by ψ^{*}, from the root system R^{\prime} associated to $\left(G^{\prime}, T^{\prime}\right)$ (see Proposition 1.2) onto the one R associated to ($G, \quad T$).
(c) ψ induces an isomorphism between U and $U^{\prime}=\mathfrak{u}_{\sigma}^{\prime}$.
(d) If $a \in R$,then $\psi\left(U_{a}\right)=U_{a^{\prime}}^{\prime}=\left(\prod_{a \in a^{\prime}} \mathfrak{U}_{a}^{\prime}\right)_{\sigma}$, where $a^{\prime}=\psi^{*-1}(a)$.
(e) ψ induces an isomorphism, which is also denoted by ty, from the Weyl group $W=\mathfrak{N}_{\sigma} / \mathfrak{\mathfrak { L } _ { \rho } \rho f} G$ onto the one $W^{\prime}=\mathfrak{N}_{\sigma}{ }^{\prime} / \mathfrak{N}_{\sigma}{ }^{\prime}$ of G^{\prime}. If $a \in R$, then $\bar{\psi}\left(w_{a}\right)=w_{a}{ }^{\prime}$, where $a^{\prime}=\psi^{*-1}(a)$.

Proof. These are easy consequences of the properties (3.1)~(3.6) of ψ, the assumption " $\psi \circ \sigma=\sigma \circ \psi$ " and the definitions (of R, W, U, \cdots).

Corollary 3.3. Let the notations be as in Theorem 3.2. The Hecke algebras $H_{C}(G, B)$ and $H_{C}\left(G^{\prime}, B^{\prime}\right)$ are isomophic by the natural mapping: $e_{w} \rightarrow e_{\bar{\Psi}(w)}(w \in W)$.

Proof. This follows from Theorem 3.2 and Theorem 2.6.
From Theorem 3.2 and Corollary 3.3, we may identify $R, W, U, U_{a}(a \in R)$ and $H_{C}(G, B)$ with $R^{\prime}, W^{\prime}, U^{\prime}, U_{a^{\prime}}^{\prime \prime}\left(a^{\prime}=\psi^{*-1}(a)\right)$ and $H_{c}\left(G^{\prime}, B^{\prime}\right)$ respectively. Put $H=H_{C}(G, B)=H_{C}\left(G^{\prime}, B^{\prime}\right)$. Let $X(G, B)$ (resp. $X\left(G^{\prime}, B^{\prime}\right)$) be the set of irreducible characters of G (resp. G^{\prime}) contained in $i\left[1_{B} \backslash B \rightarrow G\right]$ (resp. $i\left[1_{B^{\prime}} \backslash B^{\prime} \rightarrow G^{\prime}\right]$). Let $\%$ be an element of $X(G, 5)$, and h a primitive idempotent in H such that
the left $\boldsymbol{C}[G]$-module $C[G] h$ affords χ^{\prime} (see Lemma 2.2). Let χ^{\prime} be an element of $X\left(G^{\prime}, B^{\prime}\right)$ afforded by the left $\boldsymbol{C}\left[G^{\prime}\right]$-module $C\left[G^{\prime}\right] h$. The correspondence: $\chi \rightarrow \chi^{\prime}$ from $X(G, B)$ into $X\left(G^{\prime}, B^{\prime}\right)$ is clearly well defined and bijective.

Now, we can state the main result in this section:
Theorem 3.4. Let the notations be as above. For $h \in H$, let f_{h} be the class function on G defined by (2.2) and $f_{h}{ }^{\prime}$ the classfunction on G^{\prime} definedin the same manner.
(a) For any $h \in H, f_{h}$ equals f_{h}^{\prime} identically on $U\left(=U^{\prime}\right)$.
(b) $/ / \chi \in X(G, B)$ and $\chi^{\prime} \in X\left(G^{\prime}, B^{\prime}\right)$ corresponds to each other in the sense mentioned above, \% equals χ^{\prime} identically on $U\left(=U^{\prime}\right)$.

For the proof, we require some preliminary results.
Lemma 3.5. Let \mathscr{B} be the set of all Borel subgroups of G, and for $w \in W$, let \mathcal{O}_{w} be the set of all couples $\left(B_{1}, B_{2}\right) \in \mathscr{B X} \mathscr{B}$ which are G-conjugate to the pair $\left(B, w B w^{-1}\right)$. Then

$$
\mathscr{B} \times \mathscr{B}=\mathrm{U}_{w \in W} \mathcal{O}_{w} \quad \text { (disjointunion) }
$$

Proof. Let $\left(B_{1}, B_{2}\right)$ be an arbitrary element of $\mathcal{B} \times \mathscr{B}$, and let g_{1}, g_{2} be elements of G such that $B_{i}=g_{i} B g_{i}^{-1}(i=1,2)$. Then, the couple $\left(B_{1}, B_{2}\right)$ is conjugate to ($B, g_{1}^{-1} g_{2} B g_{2}^{-1} g_{1}$). By the Bruhat decomposition of G , there exist $b, b^{\prime} \in B$ and $w \in W$ such that $g_{1}^{-1} g_{2}=b w b^{\prime}$. Hence $\left(B_{1}, B_{2}\right)$ is conjugate to $\left(B, w B w^{-1}\right)$, i.e. contained in \mathcal{O}_{w}. Thus we have $\mathcal{B} \times \mathscr{B}=\cup_{w \in W} \mathcal{O}_{w}$. Next, we prove the disjointness of this decomposition. Let w and w^{\prime} be distinct elements of W. Assume that $\mathcal{O}_{w} \Pi \mathcal{O}_{w^{\prime}} \neq \phi$. Then $\left(B, w B w^{-1}\right)$ and $\left(B, w^{\prime} B w^{\prime-1}\right)$ are conjugate to each other. Hence there exist an element x of G such that $x B x^{-1}=B$ and $x w B w^{-1} x^{-1}=w^{\prime} B w^{\prime-1}$. Because B is its own normalizer in G , we have $x \in B$ and $w^{\prime-1} x w \in B$. Hence $B w B \ni w^{\prime}$, a contradiction. Therefore, the decomposition is disjoint.

Lemma. 3.6. Let the notations be as in Lemma 3.5. For $w \in W$ and $g \in G$, define the subset $F_{g w}$ of \mathscr{B} by

$$
F_{g, w}=\left\{B_{1} \in \mathcal{B} \mid\left(g B_{1} g^{-1}, B_{1}\right) \in \mathcal{O}_{w}\right\}
$$

Then
(a) $\mathscr{B}=\cup_{w \in W} F_{g, w} \quad$ (disjointunion).
(b) $\quad\left|F_{g, w}\right|=G \quad|B|^{-1}\left|B w B \cap C_{G}\left(g^{-1}\right)\right| C_{G}\left(g^{-1}\right)^{-1}=f_{e_{w}}(g)$ for all $g \in G$.

Proof. Part (a) follows from Lemma 3.5. We shall prove (b). Let g be a fixed element of G , and for $w \in W$, let A_{w} be the set of all $\left(B^{\prime}, g^{\prime}\right) \in \mathcal{B} \times C_{G}(g)$ such that $B^{\prime} \in F_{g^{\prime}, w}$. Then we have

$$
A_{w}=\cup_{B_{1} \in \mathscr{B}} A_{w}\left(B_{1}\right)
$$

where $A_{w}\left(B_{1}\right)=A_{w} \cap\left(\left\{B_{1}\right\} X C_{G}(g)\right)$. Let $B_{1}=x_{1} B x_{1}^{-1}$ with $x_{1} \in \mathrm{G}$. Assume that $A_{w}\left(B_{1}\right) \ni\left(B_{1}, g^{\prime}\right)$, i.e. $\left(g^{\prime} x_{1} B x_{1}^{-1} g^{\prime-1} x_{1} B x_{1}^{-1}\right) \in \mathcal{O}_{w}$. This is the case if and only if $g^{\prime-1} \in x_{1}(B w B) x_{1}^{-1}$. Hence $\quad A_{w}\left(B_{1}\right) \mid$ is equal to $\mid x_{1}(B w B) x_{1}^{-1} \cap C_{G}\left(g^{-1}\right) \rightleftharpoons$ $\left|B w B \cap C_{G}\left(g^{-1}\right)\right|$. Therefore
(3.7) $\quad\left|A_{v}\right|=|G||B|^{-1}\left|B w B \cap C_{G}\left(g^{-1}\right)\right|$.

On the other hand, we have

$$
A_{w}=\cup_{g_{1} \in C_{G}(g)}\left(F_{w, g_{1}} \times\left\{g_{1}\right\}\right)
$$

Clearly $\left|F_{w}\left(g_{1}\right)\right|=\backslash F_{w}(g) \backslash \quad$ for $g_{1} \in C_{G}(g)$. Hence

$$
\begin{equation*}
\left|A_{w}\right|=\mathrm{I} F_{w, g} \mathrm{I}\left|C_{G}(g)\right|=\left|F_{w, G}\right|\left|C_{G}\left(g^{-1}\right)\right| \tag{3.8}
\end{equation*}
$$

From (3.7) and (3.8), we have

$$
\left|F_{w, G}\right|=|G||B|^{-1}\left|B w B \cap C_{G}\left(g^{-1}\right)\right|\left|C_{G}\left(g^{-1}\right)\right|^{-1}
$$

as required.
REMARK 3.7. Let G be a (finite or infinite) group with a $B N$-pair (B, N), and W its Weyl group. Then, by the same arguments as above, we get a decomposition of $\mathscr{B}=C_{G}(B)$:

$$
\mathscr{B}=\cup_{w \in W} F_{g, w} .
$$

Proof of Theorem 3.4.
(a) It sufficies to prove the assertion for $h=e_{w}(w \in W)$. Let B_{1} be a Borel subgroup. By Lemma 1.12, B_{1} can be written uniquely in the form $B_{1}=u_{1} w_{1} B w_{1}^{-1} u_{1}^{-1}$ with $w_{1} \in W$ and $u_{1} \in U_{-w_{1}^{-1}}^{-}$. Let u be an element of U and assume that B_{1} is contained in $F_{u, w}$, i.e. $\left(u u_{1} w_{1} B w_{1}^{-1} u_{1}^{-1} u^{-1}, u_{1} w_{1} B w_{1}^{-1} u_{1}^{-1}\right) \in \mathcal{O}_{w}$. This is the case if and only if $w_{1}^{-1} u_{1}^{-1} u^{-1} u_{1} w_{1} \in B w B$. Hence

$$
\left|F_{u, w}\right|=\sum_{w_{1} \in W}\left|\left\{u_{1} \in U_{w_{1}^{-1}}^{-} \mid w_{1}^{-1} u_{1}^{-1} u^{-1} u_{1} w_{1} \in B w B\right\}\right| .
$$

By Theorem 3.2, the right hand side of this formula remains invariant when G, B, W etc. are replaced with $G^{\prime}, B^{\prime}, W^{\prime}$,etc. Since $f_{e_{w}}(u)=\mathrm{I} F_{u, w}$ I by Lemma 3.6, the proof of part (a) is over.
(b) Let $h \in H\left(=H_{C}(G, B)=H_{c}\left(G^{\prime}, B^{\prime}\right)\right)$ be a primitive idempotent corresponding to $\%$ and χ^{\prime}. Then $\chi=f_{h}$ and $\chi^{\prime}=f_{h}^{\prime}$ by Lemma 2.4. This fact, together with part (a), implies (b).

4. Unipotent elements in (B, B)-double cosets

Let P be a parabolic subgroup of a finite Chevalley group G. By Lemma 1.12, $\quad P$ can be written uniquely in the form $P=u w^{\prime} P_{X} w^{\prime-1} u^{-1}$, where X is a subset of $5, w^{\prime}$ is a (ϕ, X)-reduced element of W and u is an element of $U-. .-1$. Let G^{1} be the set of all unipotent elements of G. The main purpose of this section is to prove the following

Theorem 4.1. Let $P=u w^{\prime} P_{X} w^{\prime-1} u^{-1}$ as above. For an arbitrary element w of W, the following formula holds.

$$
\left|G^{1} \mathrm{n} B w B \cap \mathrm{PI}=\left|B w B \cap w^{\prime} w_{X} U_{w^{\prime} w_{X}}^{-\prime} w_{X}^{-1} w^{\prime-1}\right|\right| U \mid
$$

Before proving the theorem we state some corollaries which can be deduced easily from it.

Corollary 4.2. $\left|G^{1} n \boldsymbol{B} \boldsymbol{w} \boldsymbol{B} \backslash=\left|w_{s} U w_{s}^{-1} \cap B w B\right|\right| U \mid$.
Proof. Put $P=G$ in the above theorem. In this case, $X=S$ and $w^{\prime}=1$. Hence we have the desired formula.

Corollary 4.3. Let P be as in Theorem 4.1, and let $F\left(w_{1}, w_{2}, w_{3}\right)(t)\left(w_{i} \in W\right.$, $i=1,2,3)$ be polynomials defined in $\S 2$. Then $\backslash G^{1} \cap B w B \cap P=F\left(w, w^{\prime} w_{X}, w^{\prime} w_{X}\right)$ $\left(\left(q_{i}\right)_{i \in I}\right) \Pi_{a \in R^{+}\left(w^{\prime}\right)} q_{a}$. Inparticular, $\backslash G^{1} \Pi B w B \mid=F\left(w, w_{s}, w_{S}\right)\left(\left(q_{i}\right)_{i \in I}\right) \Pi_{a>0} q_{a}$.

Proof. This follows from Theorem 4.1, Theorem 2.6(b), Lemma 2.14(b) and Lemma 1.4(b).

Corollary 4.4. $\quad\left|G^{1}\right|=|U|^{2}$.
Proof. From the Bruhat decomposition of G we have $\left|G^{1}\right|=\sum_{w \in W} \mid G^{1}$ $\Pi B w B \mid$. Applying Corollary 4.2 we get $G^{1}\left|=\sum_{w \in W} \mathrm{I} w_{S} U w_{S}^{-1} \Pi B w B \quad\right| U \mid$, which equals $|U|^{2}$. This proves the corollary.

REMARK 4.5. The Collorary 4.4 was originally proved by R. Steinberg [20]. We shall give another, more direct, proof of Corollary 4.4 in Remark 4.9.

The proof of Theorem 4.1 requires several lemmas.
Lemma 4.6. Let X be a subset of S, and ξ_{X} the character of the parabolic subgroup P_{X} of G defined by

$$
\xi X=\sum_{Y \subset X}(-1)^{|Y|} i\left[1_{P_{Y}} \mid P_{Y} \rightarrow P_{X}\right]
$$

where $1_{P_{Y}}$ is the trivial character of P_{Y}. Then the following statements are valid:
(a) ξ_{X} is an irreducible character of the group P_{X}.
(b) $\xi_{X}(x)= \begin{cases}\left|U_{w_{X}}^{-}\right| & \text {if } x \in V_{X}, \\ 0 & \text { if } x \in U-V_{X} .\end{cases}$

Proof. (a) Let N_{X} be the subgroup of P_{X} generated by T and $\left\{n_{w} \backslash w \in W_{X}\right\}$. Then (B, N_{X}) is a $B N$-pair in P_{X}. Hence (a) follows from [6; Theorem 2].
(b) Applying [6; (3.5)] to P_{X} we obtain $\xi_{X}(x)=i\left[1_{T \cdot V_{X}} T \quad V_{X} \rightarrow B\right](x)$ for $x \in B$. Since $V_{X}=U_{w_{X}}^{+}$is normal in B (see Lemma 1.7), $\xi_{X}(x)=0 \mathrm{f} x \in U-V_{X}$ and $\xi_{X}(x)=|B|\left|T V_{X}\right|^{-1}=|U|\left|U_{w_{X}}^{+}\right|^{-1}=\mid U_{w_{X}}$ for $x \in V_{X}$, where we used Lemma 1.4(a). This proves part (b).

DEFINITION 4.7. The irreducible character ξ_{X} of the group P_{X} is called the Steinberg character of P_{x}.

Lemma 4.8. Let $X \subset S$. Then

$$
1_{P_{X}}=\sum_{Y \subset X}(-1)^{|Y|} i\left[\xi_{Y} \mid P_{Y} \rightarrow P_{X}\right]
$$

Proof. By Lemma 4.6 and transitivity of induction, the right hand side of the above formula equals

$$
\sum_{Y \subset X}(-1)^{|Y|}\left\{\sum_{Z \subset Y}(-1)^{\left.\mid Z_{\mid} i\left[1_{P_{Z}} \mid P_{Z} \rightarrow P_{X}\right]\right\}}\right.
$$

The coefficients of $i\left[1_{P_{Z}} \mid P_{Z} \rightarrow P_{X}\right]$ in this expression is

$$
\left\{\sum_{z \subset Y \subset X}(-1)^{|Y|}\right\}(-1)^{|Z|}
$$

which is equal to 0 if $Z \neq X$ and 1 if $Z=X$. This proves the lemma.
REMARK 4.9. Here we show that Corollary 4.4 follows easily from Lemma 4.6 and Lemma 4.8. As already remarked in [6], Lemma 4.6 with $X=S$ implies

$$
\begin{equation*}
|U|=\sum_{Y \subset S}(-1)^{|Y|}|G|\left|P_{Y}\right|^{-1} \tag{4.1}
\end{equation*}
$$

Let θ be the class function on G which is defined to be 1 on G^{1} and 0 outside of it. Then using Lemma 4.8 with $X-S$ and Frobenius reciprocity we obtain

$$
\left(\theta, 1_{G}\right)_{G}=\sum_{X \subset S}(-1)^{|Y|}\left(\theta \mid P_{Y}, \xi_{Y}\right)_{P_{Y}} .
$$

Hence, by Lemma 4.6 (b),

$$
\begin{equation*}
|G|^{-1}\left|G^{1}\right|=\sum_{Y \subset S}(-1)^{|Y|}\left|P_{Y}\right|^{-1}|U| \tag{4.2}
\end{equation*}
$$

Combining (4.1) and (4.2) we obtain $\left|G^{1}\right|=|U|^{2}$, as required.
Lemma 4.10. Let X and Y be subsets of S such that $Y \subset X$. For $x \in G$, let

$$
\mathscr{P}_{X, Y}(x)=\left\{P^{\prime} \in C_{P_{X}}\left(P_{Y}\right) \mid V_{P^{\prime}} \ni x\right\}
$$

Then

$$
\left|\mathscr{P}_{X, Y}(x)\right|= \begin{cases}\left|U_{w_{Y}}^{-}\right|^{-1} i\left[\xi_{Y} \mid P_{Y} \rightarrow P_{X}\right](x) & \text { if } \quad x \in G^{1} \cap P_{X} \\ 0 & \text { if } x \in G-G^{1} \cap P_{X}\end{cases}
$$

Proof. It is clear that $\left|\mathscr{P}_{X, Y}(x)\right|=0$ if $x \in G-G^{1} \cap P_{X} \quad$ Let x be an element of $G^{1} \cap P_{X}$. Let $\mathcal{A}_{X, Y}(x)$ be the set of all couples $\left(P^{\prime}, x^{\prime}\right) \in C_{P_{X}}\left(P_{Y}\right) \mathbf{X}$ $C_{P_{X}}(x)$ such that $V_{P^{\prime}} \ni x^{\prime}$. Then

$$
\mathcal{A}_{X, Y}(x)=\mathrm{U}_{P_{1}} \mathcal{A}_{X, Y}\left(x, P_{1}\right) \quad\left(P_{1} \in C_{P_{X}}\left(P_{Y}\right)\right),
$$

where $\mathcal{A}_{X, Y}\left(x, P_{1}\right)=\mathcal{A}_{X, Y}\left(x \cap\left(\left\{P_{1}\right\} X C_{P_{X}}(x)\right)\right.$.
Clearly $\left|\mathcal{A}_{X, Y}\left(x, P_{1}\right) \mathrm{I}=\mathrm{I} \mathcal{A}_{X, Y}\left(x, P_{Y}\right) \mathrm{I}=\mathrm{I} V_{Y} \Pi C_{P_{X}}(x)\right|$. Thus we have

$$
\begin{equation*}
\left|\mathcal{A}_{X, Y}(x)\right|=\left.P_{X}| | P_{Y}\right|^{-1}\left|V_{Y} \cap C_{P_{X}}(x)\right| . \tag{4.3}
\end{equation*}
$$

On the other hand, we have

$$
\mathcal{A}_{X, Y}(x)=\cup_{x_{1}}\left(P_{X, Y}\left(x_{1}\right) \times\left\{x_{1}\right\}\right) \quad\left(x_{1} \in C_{P_{X}}(x)\right)
$$

Hence
(4.4) $\mathrm{I} \mathcal{A}_{X, Y}(x) \mathrm{I}=\mathrm{I} \mathscr{P}_{X, Y}(x) \mathrm{I}\left|C_{P_{X}}(x)\right|$.

By (4.3) and (4.4),

$$
\left|\mathscr{P}_{X, Y}(x)\right|=\left.\left|P_{X}\right| P_{Y}\right|^{-1} \mid V_{Y} \cap C_{P_{X}}(x) \mathrm{I} \text { I }\left.C_{P_{X}}(x)\right|^{-1}
$$

Hence, using Lemma 4.6 (b) we obtain

$$
\left|\mathscr{P}_{X, Y}(x)\right|=\left|U_{\bar{w}_{Y}}^{-}\right|^{-1} i\left[\xi_{Y} \mid P_{Y} \rightarrow P_{X}\right](x)
$$

as required.
Proof of Theorem 4.1.
Since $G^{1} \Pi B w B$ is invariant under conjugations by elements of B, we may assume that $u=l$. Then from Lemma 4.8 and Lemma 4.10 the left hand side of the equality stated in the theorem is

$$
\begin{equation*}
\sum_{Y \subset X}(-1)^{|Y|} \sum_{P^{\prime}}\left|w^{\prime} V_{P^{\prime} w^{\prime-1}} \cap B w B\right|\left|U_{w_{Y} \mid}\right| \tag{4.5}
\end{equation*}
$$

where the second sum is taken over the set $C_{P_{X}}\left(P_{Y}\right)$ for each Y. By Lemma 1.12 each element P^{\prime} of $C_{P_{X}}\left(P_{Y}\right)$ can be written uniquely in the form $P^{\prime}=$ $u^{\prime} w^{\prime \prime} P_{Y} w^{\prime \prime-1} u^{\prime-1}$, where $w^{\prime \prime}$, is a (ϕ, Y)-reduced element of W_{X} and u^{\prime} is an element of $U . . . \prime-1$. Thus the expression (4.5) is equal to
(4.6) $\quad \sum_{Y \subset X}(-1)^{|Y|} \sum_{w^{\prime \prime}}\left|w^{\prime} w^{\prime \prime} V_{Y} w^{\prime \prime-1} w^{\prime-1} \cap B w B\right| U_{w^{\prime \prime-1}}^{-1}| | U_{\bar{w}_{Y}} \mid$,
where the second sum is over the set of all (ϕ, Y)-reduced elements of W_{X} for each Y. The summand corresponding to Y and $w^{\prime \prime}$ is

$$
\begin{equation*}
\left|w^{\prime} w^{\prime \prime}\left(U \cap w_{Y} U w_{Y}^{-1}\right) w^{\prime \prime-1} w^{\prime-1} \cap B w B \backslash U_{w^{\prime \prime}}^{-\prime}\right|\left|U_{w_{Y}}^{-}\right| . \tag{4.7}
\end{equation*}
$$

Using Lemma 1.4 and the fact that $w^{\prime} w^{\prime \prime}$ is (ϕ, Y)-reduced the first factor in (4.7) can be written as

$$
\begin{aligned}
& \left|\left(w^{\prime} w^{\prime \prime} U_{w^{\prime} w^{\prime \prime} w^{\prime \prime-1} w^{-1}}\right)\left(w^{\prime} w^{\prime \prime} w_{Y} U w_{Y}^{-1} w^{\prime \prime-1} w^{\prime-1} \cap U\right) \cap B w B\right| \\
= & \left|w^{\prime} w^{\prime \prime} U_{w}^{-\prime} w^{\prime \prime} w^{\prime \prime-1} w^{\prime-1} \cap B w B\right|\left|w^{\prime} w^{\prime \prime} w_{Y} U w_{Y}^{-1} w^{\prime \prime-1} w^{\prime-1} \cap U\right| .
\end{aligned}
$$

We have also $\left|w^{\prime} w^{\prime \prime} w_{Y} U w_{Y}^{-1} w^{\prime / 1} w^{\prime-1} \cap U\right| \backslash U_{w^{\prime \prime}-1}^{-\prime}\left|\backslash U_{\bar{w}_{Y}}\right|=\left|U_{w}^{+{ }^{\prime}}\right| \quad$ from Lemma 1.5 and Theorem 2.6 (e). Hence (4.6) is equal to

$$
\begin{equation*}
\sum_{Y \subset X}(-1)^{|Y|} \sum_{w^{\prime \prime}}\left|w^{\prime} w^{\prime \prime} U_{w^{\prime} w^{\prime \prime} w^{\prime \prime-1} w^{\prime-1}}^{-1} B w B \| U_{w^{\prime}}^{+\prime}\right| . \tag{4.8}
\end{equation*}
$$

For each $w^{\prime \prime}$ ', let $X\left(w^{\prime \prime}\right)=\left\{s \in X \mid l\left(w^{\prime \prime} s\right)>l\left(w^{\prime \prime}\right)\right\}$. Then the coefficient of $\mid w^{\prime} w^{\prime \prime} U_{w^{\prime} w^{\prime}}^{-1} w^{\prime \prime-1} w^{\prime-1} \Pi B w B$ I I $U^{+. . \mid} \mid$in (4.8) is

$$
\sum_{Y \subset X\left(w^{\prime \prime}\right)}(-1)^{|Y|}
$$

which is 0 if $X\left(w^{\prime \prime}\right) \neq \phi$ and 1 if $X\left(w^{\prime \prime}\right)=\phi$, i.e. $w^{\prime \prime}=w_{X}$. Hence (4.8) is equal to

$$
\mid w^{\prime} w_{X} U_{w^{\prime} w_{X}}^{-} w_{X}^{-1} w^{\prime-1} \Pi B w B \text { I I } U_{w^{\prime}}^{+\prime} \mid .
$$

This proves Theorem 4.1.

5. Unipotent elements and characters in $i\left[1_{B} \mid B \rightarrow G\right]$

The purpose of this section is to prove the following
Theorem 5.1. Let \% be an irreducible character of a finite Chevalley group G contained in the induced character $i\left[1_{B} \mid B \rightarrow G\right]$. Let X be a subset of S, and ξ_{X} the Steinberg character of P_{X}. Then

$$
\sum_{u \in G^{1}} \chi(u) i\left[1_{P_{X}} P_{X} \rightarrow G\right](u)=\sum_{u \in G^{1}} \hat{\chi}(u) i\left[\xi_{X} \mid P_{X} \rightarrow G\right](u),
$$

where G^{1} is the set of all unipotent elements in G and $\hat{\mathrm{X}}$ is the dual (see Definition 2.8) of χ.

Consider the special case where $P=G$. Then using Lemma 4.6 we obtain
Corollary 5.2. Let the notations be as in Theorem 5.1. Then

$$
\sum_{u \in G^{1}} \chi(u)=|U| \hat{\chi}(1)
$$

REMARK 5.3. Let t be a semisimple element of G. Denote by $Z^{1}(t)$ the set of unipotent elements of G which commute with t. It is likely that the following formula holds for any irreducible chatacters χ_{1} and χ_{2} of G which are contained in $i\left[1_{B} \mid B \rightarrow G\right]$:

$$
\begin{equation*}
\sum_{\in Z^{1}(t)} \chi_{1}(t u) \chi_{2}(t u)=\sum_{u \in Z^{1}(t)} \hat{\chi}_{1}(t u) \hat{\chi}_{2}(t u) . \tag{5.1}
\end{equation*}
$$

We shall state some evidences for (5.1). (1) Theorem 5.1 follows from the formula (5.1) with $t=l$. (2) Let t be an element of T such that its centralizer coincides with Γ. From a result of C.W. Curtis [7] we have $\chi(t)=\zeta_{x}(1)$ for any $\%$ in $i\left[1_{B} \mid B \rightarrow G\right]$, where ζ_{x} is the character of W corresponding to $\%$ by a fixed isomorphism between $\boldsymbol{C}[W]$ and $H_{C}(G, B)$ (see [19; Theorem 48]). Since $\zeta_{\hat{x}}(w)=(-1)^{\iota(w)} \zeta_{x}$ (w) for we W, (5.1) holds in this case. (3) When G is of type A_{n} and $G=\mathbb{S}_{\sigma}$ is untwisted, (5.1) can be proved for an arbitrary semisimple element t using a result of J.A. Green [11] (see also [13]).

Now we turn to the proof of Theorem 5.1. First we prepare some lemmas.
Lemma 5.4. (a) Let X be a subset of S. Then $X^{*}=\left\{x^{*}=w_{S} x w_{S} \backslash w \in X\right\}$ is also a subset of S.
(b) Let X and X^{*} be as above. An element w of W is $(~ \varphi, X)$-reducedif and only if $w w_{X} w_{s} i s\left(\varphi, X^{*}\right)-\imath$ educed.

Proof. (a) This appears in [3; p. 43, Ex. 22].
(b) Since $\left(X^{*}\right)^{*}=X$ and $w_{X} w_{S} w_{X^{*}} w_{S}=1$, it suffices to prove the if-part. Assume that $w w_{X} w_{S}$ is $\left(\varphi, X^{*}\right)$-reduced. Then, $l\left(w w_{X^{\prime}} w_{S} w_{X^{*}} *^{*}\right)=l\left(w w_{X} w_{S}\right)+$ $l\left(w_{X^{*}} x^{*}\right)$ for all $x \in X$. Hence, for all $x \in X, l\left(w x w_{S}\right)=l\left(w w_{X} w_{S}\right)+l\left(w_{X^{*}}\right)-l=$ $l\left(w w_{X} w_{s} w_{*}\right)-1=l\left(w w_{s}\right)-1$. Therefore $l(w x)=l(w)+1$ for all $x \in X$. Thus w is (φ, X)-reduced.

Lemma 5.5. Let X and X^{*} be as in Lemma 5.4. Let w^{\prime} be a ($\left.\varphi, X\right)$ reduced element of W. Put $P=w^{\prime} P_{X} w^{\prime-1}$ and $P^{*}=w^{\prime} w_{X} w_{S} P_{X^{*}} w_{S}^{-1} w_{X}^{-1} w^{\prime-1}$. Then, for an arbitrary element w of W, the following formula holds.

$$
\left|G^{1} \cap B w B \cap P\right|\left|U_{w^{\prime}}^{-\prime}\right|=\sum_{v \in W}\left[\hat{e}_{w}: e\right]\left|B v B \cap V_{P^{*}}\right|\left|U_{w^{\prime}}^{+\prime}\right| .
$$

Proof. By Theorem 4.1, the left hand side of the above formula is equal to
$\mathrm{I} B w B \Pi r f w_{x} U_{w^{\prime} w_{X}}^{-} w_{X}^{-1} w^{\prime-\uparrow} \mathrm{I} U$.
By Theorem 2.6 (b) and Lemma 2.14(c), this is equal to

$$
\begin{aligned}
& {\left[e_{w} e_{w^{\prime} w_{X}}: e_{w^{\prime} w_{X}}\right]_{I}^{\prime} U_{\mathbf{I}}^{\prime}=\left[\hat{e}_{w} e_{w_{w_{X}} w_{S}} e_{w^{\prime} w_{X} w_{S}} \bar{I}^{\prime} U_{\mathbf{I}}^{\top}\right.} \\
&= \sum_{v \in W}\left[\hat{e}_{w}: e_{v}\right]\left[e_{v} e_{w^{\prime}} w_{X} w_{S}: e_{w^{\prime} w_{X} w_{S} J_{I}^{\prime} \tilde{U}_{\mathbf{I}}^{\top}}\right. \\
&=\sum_{v \in} w\left[\hat{e}_{w}: e_{v}\right] \mathbf{I} B v B \Pi w^{\prime} w_{X} w_{S} U w_{S}^{-1} w_{X}^{-1} w^{\prime-} \cap U^{-}| | U \mid .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
V_{P^{*}} & =w^{\prime} w_{X} w_{S} V_{X^{*}} w_{S}^{-1} w_{X}^{-1} w^{\prime-1} \\
& =w^{\prime} w_{X} w_{S}\left(U \cap w_{S} w_{X} w_{S} U w_{S}^{-1} w_{X}^{-1} w_{S}^{-1}\right) w_{S}^{-1} w_{X}^{-1} w^{\prime-1} \\
& =w^{\prime} w_{X} w_{S} U w_{S}^{-1} w_{X}^{-1} w^{\prime-1} \cap w^{\prime} w_{S} U w_{S}^{-1} w^{\prime-1} \\
& =\left(w^{\prime} w_{X} w_{S} U w_{S}^{-1} w_{X}^{-1} w^{\prime-1} \cap U^{-}\right)\left(w^{\prime} w_{S} U w_{S}^{-1} w^{\prime-1} n U\right),
\end{aligned}
$$

where we used Lemma 1.4. Hence we have

$$
\mathrm{I} B v B \cap V_{P^{*}}=B v B \cap w^{\prime} w_{X} w_{S} U w_{S}^{-1} w_{X}^{-1} w^{\prime-} \cap U^{-}\left|U_{w^{\prime}}^{-\prime}\right| .
$$

Therefore

$$
\mid G^{1} \cap B w B \cap P \text { I }\left.U_{w^{\prime}}^{-}\left|=\sum_{v \in W}\left[\hat{e}_{w}: e_{v}\right]\right| B v B \cap V_{P^{*}}| | U| | U\right|^{-1} .
$$

Since $\left.\left|U^{\prime}\right| U_{-. .}^{-1}\right|^{-1}=\left|U_{\ldots} \neq\right|$ by Lemma 1.4 (a), the proof of Lemma 5.5 is over
Lemma 5.6. (a) For $w \in W$, let $w^{*}=w_{s} w w_{s}^{-1}$. Then $|B w B \cap C|=$ I $B w^{*} B \cap C \mid$ for any conjugacy class C of G.
(b) Let X and X^{*} be as in Lemma 5.4 (a). Then $i\left[\xi_{X} \mid P_{X} \rightarrow G\right]=$ $i\left[\xi_{X^{*}} \mid P_{\left.X^{*} \rightarrow G\right] .}\right.$

Proof. (a) By Theorem 2.6 (c), $e_{w_{S}} e_{w}\left(e_{w_{S}}\right)^{-1}=e_{w^{*}} e_{w_{S} w^{-1}} e_{w}\left(e_{w_{S} w^{-1}} e_{w}\right)^{-1}=e_{w^{*}}$. Hence, by Lemma 2.5 we get $f_{e_{e_{v}}}=f_{e_{w^{*}}}$ from which (a) follows.
(b) By Lemma 4.6 and the definition of Y^{*} for $Y \subset S$,

$$
i\left[\xi_{X} \mid P_{X} \rightarrow G\right]=\sum_{Y \subset X}(-1)^{|Y|} i\left[1_{P_{Y}} \mid P_{Y} \rightarrow G\right]
$$

and $\quad i\left[\xi_{X^{*}} \mid P_{X^{*}} \rightarrow G\right]=\sum_{Y \subset X}(-1)^{|Y *|} i\left[1_{P_{Y^{*}}} \mid P_{Y^{*}} \rightarrow G\right]$.
Hence, for the proof of (b) it suffices to prove

$$
\begin{equation*}
i\left[1_{P_{Y}} \mid P_{Y} \rightarrow G\right]=i\left[1_{P_{P^{*}}} \mid P_{Y^{*}} \rightarrow G\right] \tag{5.2}
\end{equation*}
$$

for $Y \subset S$. By the Bruhat decomposition of P_{Y} and $P_{Y^{*}}$, we have

$$
\mid P_{Y \mathrm{n}} C_{G}(x) \mathrm{I}=\sum_{w \in W_{Y}} \backslash B w B \Pi C_{G}(x) \mathrm{I}
$$

and

$$
\mathrm{I} P_{Y^{*}} \Pi C_{G}(x) \backslash=\sum_{w \in W_{Y}} \mathrm{I} B w^{*} B \Pi C_{G}(x) \mid
$$

for any $x \in G$. Hence $\left|P_{Y} \cap C_{G}(x)\right|=\left|P_{Y^{*}} \cap C_{G}(x)\right| \phi y$ part (a). This fact, together with the definition of induced characters, implies (5.2). The proof of (b) is over.

Lemma 5.7. Let X be a subset of S, w an element of W, and x an element of G. Then
(a)

$$
\begin{array}{ll}
\text { (a) } & f_{e_{w}}(x) i\left[\xi_{X} \mid P_{X} \rightarrow G\right](x)\left|C_{G}(x)\right| \\
& =|G||B|^{-1} \sum_{P^{\prime} \in C_{G}\left(P_{X}\right)} \mathrm{I} B w B \mathrm{n} V_{P^{\prime}} \Pi C_{G}(x)| | U_{w_{X}}^{-} \mid \\
\text {(b) } & f_{e_{w}}(x) i\left[1_{P_{X}} \mid P_{X} \rightarrow G\right](x) \mathrm{I} C_{G}(x) \mathrm{I} \\
& =|G||B|^{-1} \sum_{P^{\prime} \in C_{G}\left(P_{X}\right)} \mathrm{I} B w B \Pi P^{\prime} \Pi C_{G}(x) \mathrm{I} .
\end{array}
$$

Proof. (a) Consider the set $\mathcal{H}=\mathscr{H}(x, w, X)$ of all triplets $\left(x^{\prime}, B^{\prime}, P^{\prime}\right) \in$ $C_{G}(x) \times \mathscr{B}>C_{G}\left(P_{X}\right)$ such that $\left(x^{\prime} B^{\prime} x^{\prime-1} B^{\prime}\right) \in \mathcal{O}_{w}$ and $x^{\prime} \in V_{P^{\prime}}$, where \mathscr{B} and \mathcal{O}_{w} ($w \in W$) are as in Lemma 3.5. From Lemma 3.6 (b) and Lemma 4.10, we have

$$
\begin{equation*}
S i=\left.f_{e_{w}}(x) i\left[\xi_{X} \mid P_{\vec{X}} G\right](x)\left|C_{G}(x)\right| \backslash U_{w_{X}}^{-}\right|^{-1} \tag{5.3}
\end{equation*}
$$

On the other hand, \mathscr{H} can be decomposded into a disjoint union $\mathrm{U}_{B_{1} \in B} \mathcal{H}\left(B_{1}\right)$, where $\mathscr{H}\left(B_{1}\right)=\mathscr{H}\left(C_{G}(x) \times\left\{B_{1}\right\} \times C_{G}\left(P_{X}\right)\right)$. Clearly $\quad\left|\mathscr{H}\left(B_{1}\right)\right|=|\mathscr{H}(B)|=$ $\sum_{\left.P^{\prime} \in C_{G^{\prime}} P_{X}\right)} I B w B \cap V_{P^{\prime}} \Pi C_{G}(x) \mid$. Hence
(5.4) $\quad \mathrm{I} \mathscr{H}=\left|G \| B \mathrm{I}^{-1} \sum_{P^{\prime} \in C_{\left.G^{(} P_{X}\right)}} \mathrm{I} B w B \Pi V_{P^{\prime}} \Pi C_{G}(x)\right|$.

The formula (a) follows from (5.3) and (5.4).
(b) Consider the set $Q(x, X)$ of all $P^{\prime} \in C_{G}\left(P_{X}\right)$ such that $x \in P^{\prime}$. Then, by a similar argument as in the proof of Lemma 4.10, we get
(5.5) $\quad \mathrm{I} Q(x, X) \mathrm{I}=i\left[1_{P_{X}} P_{X} \rightarrow G\right](x)$.

Next, consider the set $\mathcal{L}=\mathcal{L}(x, w, X)$ of all triplets $\left(x^{\prime}, B^{\prime}, P^{\prime}\right) \in C_{G}(x) \times \mathscr{B} \times$ $C_{G}\left(P_{X}\right)$ such that $\left(x^{\prime} B^{\prime} x^{\prime-1}, B^{\prime}\right) \in \mathcal{O}_{w}$ and $x^{\prime} \in P^{\prime}$. Using (5.5) instead of Lemma 4.10, we get

$$
\begin{aligned}
|\mathcal{L}| & =f_{e_{w}}(x) i\left[1_{P_{X}} \mid P_{X} \rightarrow G\right](x)\left|C_{G}(x)\right| \\
& =|G||B|^{-1} \sum_{P^{\prime} \in C_{G}\left(P_{X^{\prime}}\right)} \mathrm{I} B w B \mathrm{n} P^{\prime} \Pi C_{G}(x) \mathrm{I}
\end{aligned}
$$

by a similar argument as in (a). This proves (b).
Proof of Theorem 5.1.
Let a_{x} be a primitive idempotent of $H_{C}(G, B)$ corresponding to $\%$ (see Lemma 2.2). Then $\chi=f_{a_{\bar{\chi}}}=\sum_{w \in W}\left[a_{\chi}: e_{w}\right] f_{e_{w}}$ by Lemma 2.4 (a). Since $\mathrm{tf} \chi=\Sigma \operatorname{Lepr}\left[{ }^{\beta} \nsim e_{w}\right] \hat{e}_{w}=\sum_{w \in W}\left[a_{\mathrm{x}}: e_{w}\right]\left(\sum_{v \in W}\left[\hat{e}_{w}: e_{v}\right] e_{v}\right), \quad \hat{\chi}=f_{\hat{a}_{\mathrm{x}}}=\sum_{w \in W}\left[a_{\chi}: e_{w}\right]$ ($\sum_{v \in W}\left[\hat{e}_{w}: e_{v}\right] f_{e_{v}}$) Hence, for the proof of Theorem 5.1 it suffices to show

$$
\begin{align*}
& \sum_{u \in G^{1}} f_{e_{w}}(u) i\left[1_{P_{X}} \mid P_{X} \rightarrow G\right](u) \tag{5.6}\\
= & \sum_{v \in W}\left[\hat{e}_{w}: e_{v}\right]\left(\sum_{u \in G^{1}} f_{e_{v}}(u) i\left[\xi_{X} \mid P_{X} \rightarrow G\right](u)\right)
\end{align*}
$$

for each $w \in W$ and $X \subset S$. By Lemma 5.7 (b) and Lemma 1.12, the left side of (5.6) is

$$
|G||B|^{-1} \sum_{w^{\prime}}\left|G^{1} \cap B w B \cap w^{\prime} P_{X} w^{\prime-1}\right|\left|U_{w^{\prime}-1}^{-1}\right|
$$

where the sum is over the set of all (ϕ, X)-reduced elements w^{\prime} of W, By Lemma 5.5, this is equal to

$$
|G||B|^{-1} \sum_{w^{\prime}} \sum_{v \in W}\left[\hat{e}_{w}: e,\right] \backslash B v B \cap w^{\prime} w_{X} w_{S} V_{X^{*}} w_{S}^{-1} w_{X}^{-1} w^{\prime-1}| | U_{w}^{+\prime} \mid .
$$

By Lemma 5.7 (a) and Lemma 1.12, this is

$$
\sum_{v \in W}\left[\hat{e}_{w}: e_{v}\right]\left(\sum_{u \in G^{1}} f_{e_{v}}(u) i\left[\xi_{X^{*}} \mid P_{X^{*}} \rightarrow G\right](u)\right)
$$

which is the right hand side of (5.6) by Lemma 5.6 (b). This completes the proof of Theorem 5.1.

6. Regular unipotent elements and induction from the subgroup \boldsymbol{U}

The main results in this section are Lemma 6.10 and Theorem 6.12. We begin by recalling some known facts on regular unipotent elements.

An element x of a connected semisimple linear algebraic group © is called regular if the dimension of its centralizer $Z_{\mathfrak{G}}(x)$ is equal to the rank of © R . Steinberg [18] proved the following

Theorem 6.1. Let $(\mathscr{S}$ be a connected semisimple linear algebraicgroup, \mathfrak{B} a Borel subgroup, and \mathfrak{I} a maximal torus contained in \mathfrak{B}. Let $\mathrm{U}, \Sigma, \Sigma^{+}$and $\mathfrak{U}_{a b}(\alpha \in \Sigma)$ be as in $\S 1$.
(a) A unipotent element is regular if and only if it is contained in a unique Borel subgroup.
(b) An element $x=\Pi_{a \in \Sigma+} x_{\omega}\left(x_{\alpha} \in \mathfrak{U}_{a}\right)$ of (\mathcal{S} contained in 11 is regular if and only if $x_{a} \neq 1$ for every simple root a.

DEFINITION 6.2. Let $\Sigma=\Sigma_{1} \cup \Sigma_{2} \cup \cdots \cup \Sigma_{k}$ be the decmposition of the root system Σ of a connected semisimple group © into its irreducible components. Let $\widetilde{\alpha}_{i}$ be the highest root of Σ_{i} in some order. Express α_{i} as an integral linear combination of the simple roots of Σ_{i}. If p is a prime number which does not devide any coefficient in such expressions for each τ, p is called good for © .

REMARK 6.3. For each simple type, good primes p can be directly defined as follows:
$A_{n}: p$ arbitrary $B_{n}, C_{n}, D_{n}: p \neq 2 ; E_{6}, E_{7}, F_{4}, G_{2}: p \neq 2,3 ; E_{8}: p \neq 2,3,5$.
In the following, the notations in $\S 1$ will be used. We denote by G_{r}^{1} the set of regular unipotent elements in a finite Chevalley group $G=\mathscr{O}_{\sigma}$.

Lemma 6.4. (a) Each element of G_{1}^{1} is contained in a unique Borel subgroup.
(b) Let C be a regular unipotent conjugacy class of G. Then $|C|=$ $|G||B|^{-1}|B \cap C|$.
(c) $Z_{G}(u)=Z_{B}(u)=Z(G) Z_{U}(u) f u \in B \cap G_{r}^{1}$, where $Z(G)$ is the center of G, and $Z_{G}(u), Z_{B}(u)$ and $Z_{U}(u)$ are centralizers of u in G, B and U respectively.

Proof. Part (a) follows from Theorem 6.1 (a) and part (b) follows from part (a) and the fact that B is its own normalizer in G. Part (c) follows from [1 E-54, 1.14 (a)].

Theorem 6.5. (Springer and Steinberg [1; E-55]) Let $G=\mathbb{S}_{\sigma}$, andp the characteristic of the field K over which \circledR is defined. Assume that \mathbb{C} is adjoint and p is good for © . Then the set G_{r}^{1} of regular unipotent elements of G forms a single conjugacy class.

Lemma 6.6. (Steinberg [19; p. 197 (2)]) For $a \in R(S)$, let $U_{a}=\left(\Pi_{a \in d} \mathfrak{l}_{\alpha}\right)_{\sigma}$ as in $\S 1$ and U_{a}^{1} the set of all elements $u_{a}=\Pi_{\omega \in a} x_{\alpha}\left(x_{a} \in \mathfrak{U}_{a}\right)$ of U_{a} such that $x_{a}=1$ for every $\alpha \in a \cap \Pi$.
(a) The quotient group U_{a} / U_{a}^{1} is isomorphicto the additivegroup of the Galois field \boldsymbol{F}_{q}, where $q=\Pi_{w \in a \cap \amalg} q(\alpha)$.
(b) U_{a}^{1} is the derivedgroup of U_{a}.

Proof. (a) Let $\mathfrak{U}_{a}^{1}=\Pi_{a} \mathfrak{U}_{\infty}(\alpha \in a-a \cap \Pi)$. This is σ-stable by Lemma 1.1. The quotient group $\mathfrak{U}_{a} / \mathfrak{U}_{a}^{1}$ is cannonically isomorphic to the direct product \mathfrak{D}_{a} of the groups \mathfrak{U}_{ω} for $\alpha \in a \cap \Pi$, and σ acts on the factors according to the formula in Lemma 1.1 (b). Let $a \cap \Pi=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\}$, where the suffixes are so chosen that

$$
\begin{aligned}
& \sigma x_{\omega_{i}}(k)=x_{\alpha_{i}+1}\left(c_{i} k^{q(i)}\right) \quad(1 \leqq i \leqq n-1) \\
& \sigma x_{\alpha_{n}}(k)=x_{\alpha_{1}(}\left(c_{n} k^{q(n)}\right)
\end{aligned}
$$

for some $c_{i} \in K^{*}$ and all $k \in K$, where we wrote $q(i)$ for $q\left(\alpha_{i}\right)$. Let $\left(x_{w_{i}}\left(k_{i}\right)\right)_{1 \leq i \leq n}$ $\left(k_{i} \in K\right)$ be an element of $\left(\mathfrak{D}_{a}\right)_{\sigma}$. Then $c_{1} k_{1}^{q(1)}=k_{2}, c_{2} k_{2}^{q(2)}=k_{3}, \cdots, c_{n} k_{n}^{q(n)}=k_{1}$. From this fact and Lemma 1.1 (d), it follows that $\left(\mathfrak{D}_{a}\right)_{\sigma}$, hence $\left(\mathfrak{u}_{a} / \mathfrak{U}_{a}^{1}\right)_{\sigma}$, is isomorphic to $\boldsymbol{F}_{\boldsymbol{q}}$. To complete the proof of (a) it suffices to notice that $U_{a} / U_{a}^{1} \cong$ $\left(\mathfrak{U}_{a} / \mathfrak{U}_{a}^{1}\right)_{\sigma}$, which follows from [20; 10.11].
(b) This can be checked directly using [19; Lemma 63].

Lemma 6.7. (a) $\left|B \cap G_{r}^{1}\right|=|B|\left(\Pi_{a \in \mathbb{I}} q(\alpha)\right)^{-1}$.

$$
\text { (b) }\left|G_{r}^{1}\right|=|G|\left(\Pi_{\infty \in \Pi} q(\alpha)\right)^{-1} .
$$

Proof. Part (b) follows from part (a) and Lemma 6.4 (b). We shall prove part (a). Let \mathfrak{U}^{1} be the subgroup of \mathfrak{U} generated by the group \mathfrak{U}_{α} for $\alpha \in \Sigma^{+}-\Pi$. Since \mathfrak{U}^{1} is normalized by \mathfrak{I} and fixed by $\sigma,\left|\mathfrak{U}_{\sigma}^{1}\right|=\Pi_{\omega \in \Sigma}+-\pi q(\alpha)$ by [20; 11.8]. It follows from $[20 ; 10.11]$ that a coset $u \mathfrak{U}^{1}(u \in \mathfrak{U})$ contains a σ-fixed elements if and only if $u \mathfrak{U}^{1} \in\left(\mathfrak{u} / \mathfrak{U}^{1}\right)_{\sigma}$. In that case, the number of σ-fixed elements in $u \mathfrak{U}^{1}$ is clearly $\left|\mathfrak{U}_{\sigma}^{1}\right|$. On the other hand, it follows from Theorem 6.1 (b) that the set \mathfrak{U}^{r} of regular unipotent elements is a union of \mathfrak{U}^{1}-cosets. The quotient set $\mathfrak{U}^{r} / \mathfrak{U}^{1}$ is canonically isomorphic to the direct product of the sets $\mathfrak{U}_{\alpha}-\{1\}$ for $\alpha \in \Pi$. Hence, by the proof of Lemma 6.6 (a) we get

$$
\left|\left(\mathfrak{U}^{r} / \mathfrak{U}^{1}\right)_{\sigma}\right|=\Pi_{a \in R(S)}\left\{\left(\Pi_{\omega \in a \cap \mathbb{I}} q(\alpha)\right)-1\right\} .
$$

Therefore, the number of regular unipotent elements in B is

$$
\Pi_{a \in R(S)}\left\{\left(\Pi_{w \in a \cap \Pi} q(\alpha)\right)-1\right\} \Pi_{\infty \in \Sigma^{+}-\Pi} q(\alpha) .
$$

Since $|B|=\Pi_{a \in R(S)}\left\{\left(\Pi_{\infty \in a \cap \mathrm{H}}(q(\alpha))-1\right\} \Pi_{\infty \in \Sigma^{+}} q(\alpha)([20 ; 11.9,10.10])\right.$, the proof of Lemma 6.7 is over.

For $a \in R(S)$, let L_{a} be the set of non-trivial linear character of U_{a} and L
the direct product of the sets L_{a} for $a \in R(S)$.
DEFINITION 6.8. For $X \subset S$ and $l=\left(l_{a}\right)_{a \in R(S)} \in L$, the linear character $\gamma_{X, l}$ of U is defined by $\gamma_{X, l}(u)=1$ if $\phi=X$ and by $\left.\gamma_{X, l}(u)=\Pi_{a} l_{a}\left(u_{a}\right) a \in R(S)_{X}\right)$ if $X \neq \phi$, where $u=\Pi_{a>0} u_{a}\left(u_{a} \in U_{a}\right)$ and $R(S)_{X}=\left\{a \in R(S) \mid w_{a} \in X\right\}$.

Lemma 6.9. Let $G=\mathscr{S}_{\sigma}$, where © is adjoint. For $X \subset$ Sand $l \in L$, let

$$
\Gamma_{X, l}=i\left[\gamma_{X, l} \mid U \rightarrow G\right] .
$$

Then the character $\Gamma_{X, l}$ is independent of $l \in L$.
Proof. Let \mathfrak{U}^{1} and \mathfrak{U}^{r} be as in the proof of Lemma 6.7 (a). By (1.1) \mathfrak{I} acts naturally on the set $\mathfrak{U}^{r} / \mathfrak{U}^{1}$. Hence T acts on $\left(\mathfrak{U}^{r} / \mathfrak{U}^{1}\right)_{\sigma}$. Let t be an arbitrary element of $\mathfrak{I}-\{1\}$. Since $\mathfrak{C S}$ is adjoint, $\alpha(t) \neq 1$ for some $\alpha \in \Pi$. Hence the action of each $t \in T$ on $\left(\mathfrak{U}^{r} / \mathfrak{U}^{1}\right)_{\sigma}$ is non-trivial. On the other hand, $|T|=\left|\left(\mathfrak{U}^{r} / \mathfrak{U}^{1}\right)_{\sigma}\right|=\Pi_{a \in R(S)}\left\{\left(\Pi_{\omega_{\in \alpha \cap} \cap \mathbb{H}} q(\alpha)\right)-1\right\}$ by [20; 11.2] and the proof of Lemma 6.7 (a). Hence the action of T on $\left(\mathfrak{U}^{r} / \mathfrak{U}^{1}\right)_{\sigma}$ is simply transitive. This fact, together with Lemma 6.6, implies that the action of T on L defined by

$$
l_{a}^{t}\left(u_{a}\right)=l_{a}\left(t u_{a} t^{-1}\right)\left(t \in T, a \in R(S), l_{a} \in L_{a}, u_{a} \in U_{a}\right)
$$

is simply transitive. Hence, for $u \in U$, we have

$$
i\left[\gamma_{X, l} \mid U \rightarrow B\right](u)=\sum_{l \in L} \gamma_{X, l^{\prime}}(u)
$$

which is independent of $/ \in L$. The lemma follows from this fact and transitivity of induction.

In the following, if © is adjoint, we write Γ_{X} for the character $\Gamma_{X, l}$ $(X \subset S, l \in L)$ of $G=\mathscr{S}_{\sigma}$.

We can now prove a key lemma:
Lemma 6.10. For $X \subset$ Sand $l \in L$, let $\Lambda_{l}=\sum_{X \subset S}(-1)^{|X|} \Gamma_{X, l}$.
(a) $\sum_{l \in L} \Lambda_{l}(x)$ is equal to $|L||G|\left|G_{r}^{1}\right|^{-1}$ if $x \in G_{r}^{1}$ and 0 if $x \in G-G_{r}^{1}$.
(b) Assume that © is adjoint. Then $\Lambda(x)=\sum_{x \subset s}(-1)^{\mid X_{\mid} \Gamma_{X}}(x)$ is equal to $|G|\left|G_{r}^{1}\right|^{-1}$ if $x \in G_{r}^{1}$ and 0 if $x \in G-G_{r}^{1}$.

Proof. The proof depends on the following two results.
(1) For any $l \in L, \Lambda_{l}(x)=0$ if $x \in G-G_{r}^{1}$.
(2) For any $l \in L,\left(\Lambda_{l}, 1_{G}\right)_{G}=1$.

Let us deduce the lemma from (1) and (2).
(a) By Lemma 6.6 the function $\sum_{l \in L} \gamma_{X, l}$ on U takes the constant value $(-1)^{|:|}$on the set of regular unipotent elements of U. Hence, by (1), we see that $\sum_{l \in L} \Lambda_{l}$ vainshes on $G-G_{r}^{1}$ and takes a constant value Q on G_{r}^{1}. Therefore $\left(\sum_{l \in L} \Lambda_{l}, 1_{G}\right)=|G|^{-1} \backslash G_{r}^{1} \backslash O$. On the other hand, we have
$\left(\sum_{l \in L} \Lambda_{l}, 1_{G}\right)_{G}=|L|$ from (2). Hence we obtain $Q=|L \backslash| G \backslash\left|G_{r}^{1}\right|^{-1}$, as required.
(b) This follows from part (a) and Lemma 6.9.

Next, we consider (1). Let $u=\prod_{a>0} u_{a}\left(u_{a} \in U_{a}\right)$ be an element of U. Then

$$
\sum_{X \subset S}(-1)^{|:|} \gamma_{X, l}(u)=\Pi_{a}\left(1-l_{a}\left(u_{a}\right)\right) \quad(a \in R(S))
$$

By Lemma 6.6, this is 0 if u is not regular unipotent. Hence Λ_{l} vaishes on $G-G_{r}^{1}$. This proves (1).

It remains to prove (2). By Frobenius reciprocity,

$$
\left(\Gamma_{X, l}, 1_{G}\right)_{G}=|U|^{-1} \sum_{u \in U} \gamma_{X, l}(u)
$$

which is 0 if $X \neq \phi$ and 1 if $X=\phi$. The assertion (2) follows from this. The proof of Lemma 6.10 is now complete.

To state the first application of Lemma 6.10 we require the following notion due to Harish-Chandra.

DEFINITION 6.11. A complex valued function/on G is called a cusp form if

$$
\sum_{u \in V_{P}} f(x u)=0
$$

for all elements x of G and all parabolic subgroup $P \neq G$. A character of G which is a cusp form is called a cuspidal character.

The importance of this notion is explained e.g. in [1; part C]. Some examples are given in [1; part D].

Theorem 6.12. Let $G=\mathcal{S}_{\sigma}$, and let $\%$ be an irreducible cuspidal character of G.
(a) $\left|G_{r}^{1}\right|^{-1} \sum_{u \in G_{r}^{1}} \chi(u)=(-1)^{|S|}|L|^{-1}\left\{l \in L \mid \Gamma_{S, l}\right.$ contains $\left.\chi\right\} \mid$.
(b) Assume that © is adjoint and the characteristic p of K is good for (G). Then for any regular unipotent element $u \in G, \chi(u)$ equals $(-1)^{|S|}$ if Γ_{S} contains X and 0 if Γ_{S} does not contain χ.

For the proof of Theorem 6.12 we require the following
Lemma 6.13. Let $\%$ be a class function on G which is a cusp form. Then

$$
\left(\chi, \Gamma_{X, l}\right)_{G}=0
$$

for any $X \subsetneq S$ and $l \in L$.
Proof. Put $\Gamma_{X, l}^{\prime}=i\left[\gamma_{X, l} \mid U \rightarrow P_{X}\right]$. Since the unipotent radical V_{X} of P_{X} is normal in P_{X} and $\gamma_{X, l}$ istrivial on $V_{X}, \Gamma_{X, i}^{\prime}$ s constant on each $V_{X^{-}}$ coset in $\boldsymbol{P}_{\boldsymbol{X}}$. Hence, using transitivity of induction and Frobenius reciprocity we have

$$
\begin{aligned}
\left(\chi, \Gamma_{X, l}\right)_{G} & =\left(\chi, i\left[\Gamma_{X, l}^{\prime} \mid P_{X} \rightarrow G\right]\right)_{G} \\
& =\left|P_{X}\right|^{-1} \sum_{x} \Gamma_{X, l}^{\prime}(x)\left(\sum_{u \in V_{X}} \chi(x u)\right)
\end{aligned}
$$

where the first sum is taken over a set of representatives for V_{X}-cosets in P_{X}. Therefore, from the definition of cusp forms, we obtain the lemma.

Proof of Theorem 6.12.
Part (b) follows from part (a), Theorem 6.5 and Lemma 6.9. We shall prove part (a). By Lemma 6.10 (a),

$$
\left|G_{r}^{1}\right|^{-1} \sum_{u \in G_{r}^{1}} \chi(u)=|L|^{-1}\left(\chi, \sum_{l \in L} \Lambda_{l}\right)_{G} .
$$

Hence, by Lemma 6.13,

$$
\mathrm{I} G_{r}^{1} \mathrm{I}^{-1} \sum_{u \in G_{r}^{1}} \chi(«)=(-1)^{|S|} \mid L \mathrm{I}^{-1} \sum_{l \in L}\left(\chi, \Gamma_{S, l}\right)_{G}
$$

Therefore, the proof of Theorem 6.12 is completed by the following theorem, which is proved by I.M. Gelfand and M.I. Graev [10] for $S L_{n}$, and by R. Steinberg [19; Theorem 49] for general G.

Theorem 6.14. Let l be an element of L, and $\%$ an irreducible character of G. Then

$$
\left(\mathrm{X}, \Gamma_{S, l}\right)_{G}=1 \operatorname{or} 0
$$

7. Regular unipotent elements in B-cosets and characters in
$\mid \boldsymbol{B} \rightarrow \boldsymbol{G}]$ $i\left[1_{B} \mid B \rightarrow G\right]$

Our main purpose in this section is to prove Theorem 7.1 and Theorem 7.2 below. Let $G=\mathscr{S}_{\sigma}$ be a finite Chevalley group and p the characteristic of the field K over which ${ }^{\circledR}$ is defined. We also use other notations in $\S 1$ and $\S 6$.

Theorem 7.1. Assume that p isgood for © in the sense of Definition 6.2. Let \% be a nontrívial irreducible character of G contained in $i\left[1_{B} \mid B \rightarrow G\right]$. Then X vanishes identically on the set G_{r}^{1} of regular unipotent elements in G.

Theorem 7.2. Assume tht p is good for $\mathbb{E S}$. Let g be an arbitrary element of G , and C an arbitrary regular unipotent class of G. Then the number $\operatorname{Bg} \cap C \mid$ depends neither on g nor C.

REMARK 7.3. (a) The author believes, but can not prove, that theorems 7.1 and 7.2 hold without the assumption " p is good" ${ }^{3}$). Later we shall prove weaker results which hold in all characteristics $p>0$.

[^1](b) Combining Theorem 7.2 with Lemma 6.7 (a) and [1; E-55], we see that the number $|B g \cap C|$ in Theorem 7.2 is
$$
\left|Z(\mathbb{S}) /(1-\sigma) Z(\mathbb{S}) \mathrm{I}^{-1}\left(\prod_{\alpha \in \Pi} q(\alpha)\right)^{-1}\right| B \mid
$$
where $Z(\mathbb{B})$ is the center of $\&$ and $(1-\sigma) Z(\mathscr{S})=\left\{x\left(x^{-1}\right)^{\sigma} \mid x \in Z(\mathbb{B})\right\}$
(c) In $\S 3$, we showed that each element g of G gives rise to a decomposition of G / B into disjoint union:
$$
G / B=\cup_{w \in W} F_{g, w} .
$$

Assume that p is good. Let u be a regular unipotent element in G. Then, combining Lemma 3.6, Lemma 6.4 (b) and Theorem 7.2, we obtain

$$
\begin{equation*}
\left|F_{u, w}=\right| U_{w}^{-} \tag{7.1}
\end{equation*}
$$

Now let ${ }^{\circledR}$ be a connected semisimple linear algebraic group defined over an algebraically closed field of arbitrary characteristic. Let g be an element of ${ }^{\circledR}$, $(\mathfrak{B}, \mathfrak{R})$ an ordinary $B N$-pair in \mathbb{C} and \mathfrak{F} its Weyl group. Then $\mathbb{S} / \mathfrak{B}$ has the decomposition

$$
\mathfrak{S} / \mathfrak{B}=\cup_{w \in \mathfrak{B}} \mathfrak{Y}_{g, w}
$$

(see Remark 3.7). Each set $\mathfrak{F}_{g, w}$ has a natural structure of algebraic variety. In the special case that $w=1, \mathfrak{F}_{g, w}$ has been studied by several authors (see [3] and [21]). The formula (7.1) in the finite case suggests an interesting problem:

Let u be a regular unipotent element in \mathbb{F}. Study the variety $\mathfrak{F}_{u, w}$. I it the $l(w)$-dimensional affine space ?

The proofs of Theorem 7.1 and Theorem 7.2 depend on the following
Lemma 7.4. Let X be a subset of $S . \quad$ Let $\Gamma_{2, l}(l \in L)$ be a character of G defined in Lemma 6.9, and ξ_{X} the Steinberg character of P_{X}. Then

$$
\left(\Gamma_{X, l}, \chi\right)_{G}=\left(i\left[\xi_{X} \backslash P \chi \rightarrow \mathrm{G}\right], \chi\right)_{G}
$$

for any irreducble character χ of G contained in $i\left[1_{B} \backslash B \rightarrow G\right]$.
Proof. From Frobenius reciprocity and Lemma 4.6 (b) we have

$$
\left(i\left[\gamma_{X, l} \mathbf{I} U \rightarrow P_{X}\right], \xi_{X}\right)_{P_{X}}=\left(\gamma_{X, l}, \xi_{X} \mid U\right)_{U}=1
$$

Hence the character $i\left[\gamma_{X, l} \backslash U \rightarrow P_{X}\right]$ of P_{X} contains the Steinberg character $\boldsymbol{\xi}_{X}$. By transitivity of induction,

$$
\left(\Gamma_{X, l}, \chi\right)_{G} \geqq\left(i\left[\xi_{X} \mid P_{X} \rightarrow G\right], \chi\right)_{G}
$$

for any irreducible character $\%$ of G contained in $i\left[1_{B} \mid B \rightarrow G\right]$. Therefore the proof of the lemma will be completed by the following formula.
(7.2) $\quad\left(\Gamma_{X, l}, i\left[1_{B} \mid B \rightarrow G\right]\right)_{G}=\left(i\left[\xi_{X} \mid P_{X} \rightarrow G\right], i\left[1_{B} \mid B \rightarrow G\right]\right)_{G}$.

We shall prove (7.2). By a theorem of Mackey (see e.g. [9; p. 51]) and the Bruhat decomposition of G, the left hand side of (7.2) is equal to

$$
\sum_{w \in W}\left|U_{w}^{+}\right|^{-1}\left\{\sum_{u \in U_{w}^{+}} \gamma_{X l}(u)\right\}=\mid\left\{w \in W \mid \gamma_{X, l} \text { is trivial on } U_{w}^{+}\right\} \mid
$$

By the definition of $\gamma_{X, l}$, it is trivial on $U_{ \pm}$. if and only if $l(w x)<l(w)$ for all $x \in X$. The number of such $w \in W$ is $\backslash W / W_{X} \mid$ by Lemma 1.11 . Hence the left hand side of (7.2) is $|W| W_{X} \mid$. On the other hand, by Proposition 1.6 (c) and the Mackey's theorem used above, the right hand side of (7.2) is

$$
\sum_{Y \subset X}(-1)^{|Y|}\left|W / W_{Y}\right|=|W| W_{X}\left|\sum_{Y \subset X}(-1)^{|Y|}\right| W_{X}\left|W_{Y}\right|
$$

By a result of E . Witt (see e.g. [17; p. 378]), this is equal to $\mid W / W_{\chi}$. This proves (7.2).

Proof of Theorem 7.1.
From Theorem 3.1 (b) and Theorem 3.4 we may assume that © is adjoint. Using Lemma 7.4 we get
(7.3) $\quad\left(\sum_{X \subset S}(-1)^{|X|} \Gamma_{X}, \chi\right)_{G}=\left(\sum_{x \subset S}(-1)^{|X|} i\left[\xi_{X} \mid P_{X} \rightarrow G\right], \chi\right)_{G}$
for any irreducible character $\%$ of G contained in $i\left[1_{B} \mid B \rightarrow G\right]$. By Theorem 6.5 and Lemma 6.10 (b), the left hand side of (7.3) equals $\chi(u)$ with $u \in G_{r}^{1}$. On the other hand, by Lemma 4.8, the right hand side of (7.3) equals $\left(1_{G}, \chi\right)_{G}$. Threfore

$$
\begin{equation*}
\chi(u)=\left(1_{G}, \chi\right)_{G} \quad\left(u \in G_{r}^{1}\right) . \tag{7.4}
\end{equation*}
$$

Hence, if \% is non-trivial, \% vanishes on G_{r}^{1}. This proves Theorem 7.1.

Proof of Theorem 7.2.

The proof depends on the following two results.
(1) Let C and C^{\prime} be two regular unipotent conjugacy classes of G . Then $|B \cap C|=\left|B \cap C^{\prime}\right|$
(2) Let C be a regular unipotent conjugacy class of G . Then $|C|^{-1}$ $|B w B \cap C|=|G|^{-1}|B w B|$ for any $w \in W$.

We will show that Theorem 7.1 is a consequence of (1) and (2). Let C be a regular unipotent conjugacy class of G. By (2) and Lemma 6.4 (b)

$$
\begin{equation*}
|B w B \cap C \| B \cap C|^{-1}=|B w B||B|^{-1} \tag{7.5}
\end{equation*}
$$

It follows from Lemma 1.5 that $\mid B w B \backslash \backslash B \backslash^{-1}=\backslash U_{-. .}^{-} \backslash$ and that

$$
\sum_{u} u(B w \cap C) u^{-1} \quad\left(u \in U_{\bar{w}}^{-}\right)
$$

is a decomposition of $B w B \cap C$ into a disjoint union. Hence, for $w \in W$, we have

$$
\begin{equation*}
|B w \cap C=|B \cap C| \tag{7.6}
\end{equation*}
$$

from (7.5). Let g be an arbitrary element of G. Then, by the Bruhat decomposition of G, we can write $g=b^{\prime} n_{w} b$ with $b, V \in B$ and $w \in W$. Hence

$$
|B g \cap C|=\left|b^{-1}(B w \cap C) b\right|=|B w \cap C|=|B \cap C|
$$

by (7.6). Combining this formula with (1), we obtain Theorem 7.2.
Next we prove (1). Let u and u^{\prime} be regular unipotent elements in B i.e. in U. Let $\psi:(\$) \rightarrow\left(\mathcal{S H}^{\prime}\right.$ be as in Theorem 3.1 (b). By (3.5), Theorem 3.2 and Theorem 6.1 (b), $\psi(u)$ and $\psi\left(u^{\prime}\right)$ are regular unipotent elements in $\mathscr{S}_{\sigma}{ }^{\prime}$, This fact, togethr with Lemma 6.4 (c) and Theorem 6.5, implies that $\psi(u)$ and $\psi\left(u^{\prime}\right)$ are conjugate in $\psi(\mathfrak{B})_{\sigma}$. Hence, by Theorem 3.2 (c), there exists an automorphism of U which maps u to $u^{\prime}{ }^{\prime}$. Therefore, $Z_{U}(u) \cong Z_{U}\left(u^{\prime}\right)$.Combining this fact with Lemma 6.4 (c) we obtain $\left|Z_{G}(u) \backslash=\left|Z_{B}(u)\right|=Z_{B}\left(u^{\prime}\right)\right|=\mid Z_{G}\left(u^{\prime}\right)$. Hence $\left|B \cap C_{G}(u)\right|=\left|B \cap C_{B}(u)\right|=B \cap C_{B}\left(u^{\prime}\right)=\mid B \cap C_{G}\left(u^{\prime}\right)$. This proves (1).

It remains to prove (2). From Theorem 3.1 (b) and Theorem 3.4 we may assume that © is adjoint. Then, it follows from (7.4) and Lemma 2.4 (b) that

$$
f_{e_{w}}(u)=\left(1_{G}, f_{e_{w}}\right)_{G}
$$

for any $w \in W$ and $u \in G_{r}^{1}$. From this formula we obtain $\left.C_{G}(u)\right|^{1} \mid B w B \cap$ $C_{G}(u) \mathrm{I}-\left.\mathrm{I} G\right|^{-1} \mathrm{I} B w B \mid$, as required. The proof of Theorem 7.2 is now comlete.

As mentioned already, the author does not know whether the theorems 7.1 and 7.2 hold in all charactristics $p>0$ or not. Here we content ourselves with the following weaker results.

Theorem 7.5. (a) Let $\%$ be a non-trivial irreducible character of G contained in $i\left[1_{B} \mathrm{I} B \rightarrow G\right]$. Let G_{r}^{1} be the set of regular unipotent elements in G. Then

$$
\sum_{u \in G_{r}^{1}} \chi(u)=0 .
$$

(b) Let g be an arbitrary element of G. Then the number $\backslash B g \Pi G_{\sim}^{1} \mid$ is independent of g.

Proof. (a) From Lemma 7.4 we have

$$
\begin{align*}
& \sum_{l \in L}\left(\sum_{X \subset S}\left(-1^{|z|} \Gamma_{X, l}, \chi\right)_{G}\right. \tag{7.7}\\
= & |L|\left(\sum_{X \subset S}(-1)^{|-2|} i\left[\xi_{X} \mid P_{X} \rightarrow G\right], \chi\right)_{G} .
\end{align*}
$$

Hence

$$
\begin{equation*}
L\left|\left|G_{r}^{1}\right|^{-1} \sum_{u \in G_{r}^{1}} \chi(u)=|L|\left(1_{G}, \chi\right)_{G}\right. \tag{7.8}
\end{equation*}
$$

by Lemma 6.10 (a) and Lemma 4.8. Part (a) follows from this formula.
(b) Let w be any element of $W . \quad$ By (7.8) and Lemma 2.4 (b),

$$
\left|G_{r}^{1}\right|^{-1} \sum_{u \in G_{r}^{1}} f_{e_{w}}(u)=\left(1_{G}, f_{e_{w}}\right)_{G} .
$$

Hence $\quad\left|G_{r}^{1}\right|^{-1} B w B \cap G_{r}^{1}\left|=|G|^{-1}\right| B w B \mid$.
Combining this formula with Lemma 6.4 (b) we obtain

$$
\left|B w B \cap G_{r}^{1}\right|=|B|^{-1}\left|B w B \| B \cap G_{r}^{1}\right|
$$

Therefore, by the same method as in the proof of Theorem 7.2, we get I $B g \Pi G_{r}^{1}|=| B \Pi G_{r}^{1}$ I for any element g of G. This proves (b).

Added in proof. Recently, the author received two preprints (Lehrer [22] and Green and Lehrer [23]), in which some of our results, in particular theorems 6.12 (b), 7.1 and 7.2, are proved independently. In [23], it is remarked that theorems 7.1 and 7.2 do not hold without the assumption " p is good for (53". This can also be seen from [24].

OSAKA UNIVERSITY

References

[1] A. Borel et al.: Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Mathematics 131, Springer, Berlin-Heidelberg-New York, 1970.
[2] A. Borel and J. Tits: Complements a l'article "Groupesréductifs",Inst. Hautes Etudes Sci. Publ. Math. 41 (1972), 253-276.
[3] N. Bourbaki: Groupes et Algèbres de Lie, Chalp. IV, V, VI, Hermann, Paris, 1968.
[4] E. Brieskorn: Singular elements of semi-simple algebraic groups, Actes Congrès Intern. Math. Tome 2 (1970), 279-284.
[5] C. Chevalley: Classification des Groupes de Lie Algébriques (two volumes), Inst. H. Poincaré, Paris, 1958.
[6] C.W. Curtis: The Steinberg character of a finite grooup with a (B, N)-pair, J. Algebra 4 (1966), 433-441.
[7] C.W. Curtis: Reduction theorems for characters of finitie groups of Lie type, to appear in Proceedings of the Group Theory Conference at Sapporo (1974).
[8] C.W. Curtis and T.V. Fossum: On centralizer rings and characters of representations of finite groups, Math. Z. 107 (1968), 402-406.
[9] W. Feit: Characters of Finte Groups, Benjamin, New York, 1967.
[10] I.M. Gel'fand and M.I. Graev: Construction of irreducible representations of simple algebraic groups over a finite field, Soviet Math. Dokl. 3 (1962), 1646-1649. (Doklady, 147 (1962), 529-532).
[11] J.A. Green: The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402-447.
[12] N. Iwahori: On the structure of the Hecke ring of a Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo 10 (part 2), (1964), 215-236.
[13] N. Kawanaka: A theorem on finite Chevalley groups, Osaka J. Math. 10 (1973), 1-13.
[14] R. Kilmoyer: Some irreducible complex representations of a finite group with a $B N$ pair, Ph. D. dissertation, M.I.T., 1969.
[15] D.E. Littlewood: Theory of Group Characters, Oxford, 1940.
[16] H. Matsumoto: Générateurs et relations des groupes de Weylgénéralisés, C.R. Acad. Sci. Paris, 258 (1964), 3419-3422.
[17] L. Solomon: The orders of the finite Chevalley groups, J. Algebra 3 (1966), 376393.
[18] R. Steinberg: Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49-80.
[19] R. Steinberg: Lectures on Chevalley Groups, Yale University, 1967.
[20] R. Steinberg: Endomorphisms of Linear Algebraic Groups, Memoirs of the Amer. Math. Soc. 80, 1968.
[21] R. Steinberg: Conjugacy Classes in Algebraic Groups, Lecture Notes in Mathematics 365, Springer, Berlin-Heidelberg-New York, 1974.
[22] G.I. Lehrer: Adjoint groups, regular unipotent elements and discrete series characters, to appear in Trans. Amer. Math. Soc.
[23] J.A. Green and G.I. Lehrer: On the principal series characters of Chevalley groups and twisted types, to appear in Quart. J. Math.
[24] H. Enomoto: The characters of the finite symplectic group $\boldsymbol{S p}(4, q), q=2$, Osaka J. Math. 9 (1972), 75-94.

[^0]: * This research was supported in part by the Sakkokai Foundation and the Yukawa Foundation.

 1) This definition is slightly different from the one given, for example, in [19]. But such difference is not essential for our purpose.
 2) For a finite set $A,|A|$ denotes the number of its elements.
[^1]: 3) See "added in proof" at the end of the paper.
