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Introduction

Let © be a connected semisimple linear algebraic group defined over an
algebraically closed field K of characteristic jf>>0, and σ a surjectίve endomor-

phism of © such that the group ©σ of elements fixed by σ is finite. The finite
groups ©o- obtained in this manner can be classified as follows (Steinberg

[20]): If © is simple, ©σ is either the group of rational points of a F-form of ©
for an appropriate finite field F or one of the groups defined by M. Suzuki and
R. Ree. If © is not simple, ©σ is essentially a direct product of the groups
mentioned above.

In this paper, a finite group G is called a finite Chevalley group1} if it can

be realized as ®σ for some © and σ. Let (G, B, N, S) be a Tits system (or BN-
pair) associated to a finite Chevalley group G. We denote by Wits Weyl group.
Let G1 be the set of unipotent elements (or ^-elements) of G and U the />-Sylow
subgroup of G contained in B. The main purpose of this paper is to establish
the following two results:

(I) Let w be an arbitrary element of W, and ws the element of W of maximal
length. Then the number of unipotent elements contained in the double coset BwB is
I BwB Π ws Uw^1 \ \ U \ y which can be written explicitly as a polynomial in
qs=\BsB/B\ (s^S)z\ (As a corollary, we obtain \Gl\ = \ U \ , a result of
Steinberg [20].)

(II) Assume that the characteristic p is good (see Definition 6.2) for ©. Let
g be an element of G=©σ, and C a regular unipotent conjugacy class of G. Then
the number \BgΓ\C\ depends neither on g nor C.

As far as the author knows, these results are new even for G=SLn(F) with
F a finite field. In this case an arbitrary prime is good and a unipotent element

* This research was supported in part by the Sakkokai Foundation and the Yukawa Foundation.
1) This definition is slightly different from the one given, for example, in [19]. But such

difference is not essential for our purpose.
2) For a finite set A,\A\ denotes the number of its elements.
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is regular if and only if its Jordan normal form consists of a single block.

The proof of (I) is given in §4. The main tool is the construction of

the Steinberg character of G due to C.W. Curtis. In §5, combining (I)
with an elementary lemma 2.4 we show

(III) Let X be an irreducible complex character of G contained in the

character ί[\B\B-*G] induced from the trivial character \B of B. Then

where X is the "dual character" (see Definition 2.8) of X.

In particulr, if % is trivial, % is the Steinberg character, whose degree is
known to be | U \ . Hence we obtain the equality | G1 1 — | U \ 2 again.

It may be remarked that all the properties of G required for the proofs

of (I) and (III) are formal consequences of the following two facts:
(1) (β, N) is a split BN-pzir (see [2; part B]).

(2) The commutator relations (Proposion 1.3(c)) are satisfied.

In §6 after recalling some known facts on regular unipotent elements, we

prove a key lemma 6.10. As the first application of this, we obtain

(IV) Assume tht @ is adjoint and p is good for ®. Let % be an irreducible
cuspidal character of G=®σ, and u a regular unipotent element of G. Then

%(tt)=±l if X is contained in the character induced from a linear character of

U in "general position" in the sense of GeΓfand and Graev [10], and X(u)=Q

otherwise.

The proof of (II) is given in §7. We first prove the following result.

(V) Assume thatp is good for ®. Let % be a non-trivial irredubcile character
of G— ®σ contained in i\\B\ B-+G], Then % vanishes on the set of regular unipotent

elements of G.

The main tool for the proof of (V) is Lemma 6.10 again. We also use

a result (Theorem 3.4) in §3. It allows us to assume that © is adjoint, in which

case the set of regular unipotent elements of ©σ forms a single conjugacy
class. Combining (V) with Lemma 2.4 we obtain (II).

It is quite likely that the main results (I) (II) reflect interesting relations

between the variety of unipotent elements and the Bruhat decomposition of ©.
Notations. Let A be a set. If σ is a transformation of A, Aσ denotes the

set of fixed points of σ. If /is a mapping from A into another set and B is a subset

of A, f\ B denotes the restriction of / to B. Let G be a group and H a subset

of G. Then CG(H) denotes the conjugacy class of H. Let G be finite. The
inner product for complex valued functions /, g on G is defined by (/, g}G =

I G I -1 Σ*ec /(*)#(*)• Let H be a subgroup of G and % a character of H. The
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character of G induced from % is denoted by i[X\H->G].

1. Finite Che valley groups ©<,.

Let G=®(Γ be as in Introduction. In this section we recall some known

facts about G and establish some notations frequently used in the paper.
References are Steinberg [19], [20] and Bourbaki [3].

Let S3 be a Borel subgroup of @, and ί£ a maximal torus of © contained in
S3. We can choose S3 and £ to be fixed by σ. Then the unipotent radical U
of S3 and the normalizer 5ft of £ in © are also fixed by σ. We shall write

By T, U and TV for the groups S3σ, %,„ \lσ and 3lσ respectively. Let 2δ=9fϊ/2;,
the Weyl group of © with respect to ί£. Then σ acts naturally on 2δ and the
group W=%H>σ of fixed points is called the Weyl group of G (with respect to T).
It is known that H^is canonically isomorphic to N/T.

Let X(Z) be the character module of £, and Σ C X(%>) the root system of
© with respect to ί£. For αEϊΣ there is an isomorphism XΛ of the additive
group (of K) onto a closed subgroup HΛ of © such that

(1.1) txΛ(k)rl = χΛ(a(t)k) (feZ, Λe tf) .

Choose an order on Σ so that 11— ΠΛ>O^Λ Let Σ* and Π be the set of posi-
tive and simple roots respectively. We denote by σ* the dual action of σ | T
on the real vector space V=

Lemma 1.1. ([20; §11]) Let the notations be as above.

(a) There exists a permutation p of Σ and for each αeΣ a power q(ά) of p

such that σ*pa=q(a)a.
(b) σ#Λ(Λ)=*PΛ(^w) for some cΛ<=K* and all k^K.
(c) Σ+ and Π are stable under p.

(d) Let πbea p-orbίt of Π . Then Tί^q(a) > 1 .

For each p-orbit π of Π, let Σί be the set of positive roots which are
linear combinations of the elements of π. Then R'— {w Σί \w^ W, π is a p-
orbit of Π} forms a partition of Σ.

We fix a PF-invariant positive definite inner product on V=X(*£)®ZR.
Then 2B can be identified with the Weyl group W^Σ) of the root system Σ.

Proposition 1.2. ([19; §11)]) Consider the projections a of roots a on the

subsapce Vσ* of V.

(a) Let a± ana a2 be roots. Then ci^ is a positive multiple of a2 if and

only if there exists an element a^R containing a± and α2.

(b) For each a^R'y let a be the shortest vector in {a\a^a} . Then
R={a\ ci^R'} is a reduced root system in Vσ*.
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(c) The Weyl group W of G is canonically ίsomorphίc to the Weyl group
W(R) of the root system R.

By Proposition 1.2 we can identify R with R and W with W(R). For

a^R we write wa for the corresponding reflection. Put R(S)={ΣZ\π is a

p-orbit of Π} . This is a set of fundamental roots (or base) of R. We denote
by R+ the set of positive roots with respect to R(S). Let S= {wa\a<=R(S)} .

Then (W, S) is a Coxeter system. Hence a reduced decomposition s(w)~

(•?!> ?2> "°>sι) (s, eS) and the length l(w) of w^W can be defined (see [3]).
The element of W of maximal length is denoted by ws.

Proposition 1.3. ([19; §11]) For a<=R (=Sf)9 let Uβ=ΠβeβUΛ.

(a) Ma is σ-stable.

(b) £*?£ Uβ=(na)σ and qa= \Ua\. Then #α=ΓLeΞΛ?(α), where q(a)'s are
defined by Lemma 1.1 (a).

(c) If a, b^R and αφ±^ the commutator (Ua, Ub) is contained in
Π Uia+jbj where the product is taken over all roots ia+jb (i,j>0) arranged in
some fixed order.

(d) wUaw~l — Uwafor any w^. W and

For w^W, let R^

UΓιw~lUw and U~=UΓ(W~lU~w, where U~=wsUiv'£.

Lemma 1.4. ([19; §11]) Let w be any element of W.

(a) I7=t/:E7-andί7;nE/;= {!}.
(b) f/ί= TlaUa(a&R%) with the product taken in some fixed order and

there is uniqueness of expression on the right.

The quadruplet (G, B, TV, S) is a Tits system. In particular G has the
Bruhat decomposition:

G = \Jw<=wBwB (disjoint union) .

Lemma 1.5. ([20; 11.1]) If {nw\w^.W} is a system of representatives for
W=NIT, BwB=BnwU~ and each element x^G can be expressed uniquely in the

form χ—bnwu with b^B, w^ W and u^ U~.

A subgroup of G which is conjugate to B is called a Borel subgroup. A

subgroup of G which contains a Borel subgroup is called a parabolic subgroup.

Proposition 1.6. ([3; Ch. 4, §2]) For each subset X of S, Let Wx be the

subgroup of W generated by X. Then

(a) Pχ=BWxB is a parabolic subgroup of G containing B. Conversely,
any parabolic subgroup containing B may be obtained in this manner.
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(b) Two parabolic subgroups Px and PY(X, YdS) are conjugate to each

other if and only if X= Y.
(c) For X, YdS, there is a bίjectίon between WX\W/WY and PX\G/PY

given by Ξ-+BΞB, Ξe WX\WJWY.

Lemma 1.7. Let X be an arbitrary subset of S, and wx the element of Wx

of maximal length. Then the normalizer of U^Σ in G is the parabolic subgroup Px.

Proof. Let 57 be the normalizer of U*χ in G. By Lemma 1.4(b) and Prop-
osition 1.3(c), it sufficies to show that nw (w^ W) is contained in 57 if and only if
to is contained in Wx. By Lemma 1.4 (b), U+χ=ΐ[a Ua (a^R^z). Hence
nw<=3Ί if and only if R*χc:R*, i.e. R~χ^R~. By [3; p. 158, Cor. 2], this is
the case if and only if ZUEΞ Wx. This proves the lemma.

DEFINITION 1.8. Let X be an arbitrary subset of S. Put Vx=U^χ.
We call Vx the unίpotent radical of the parabolic subgroup Px. In general,

the unίpotent radical VP of a parabolic subgroup P—gPχg~^ (g^G) is defined

by VP=gVχg~1. (The well-definedness of VP follows from Lemma 1.7 and
the fact that P is its own normalizer in G.)

Lemma 1.9. ([3; p. 37, Ex. 3]) Let X, YdS. There exists a unique
element of minimal length in each (WXί Wγ)-coset in W. Moreover, the following
conditions for an element w of W are equivalent:

(1) w is the element of minimal length in WxwWY.

(2) l(ιvίw)=l(ιoί)+l(w) and I(ww2)=l(w)+l(w2) for all w^Wx and
w2^ Wγ.

(3) l(xw)>l(w) and l(wy)> l(w) for all x<=X andy<= Y.

DEFINITION 1.10. An element w of ^satisfying the conditions in Lemma
1.9 is called a (X, Y)-reduced element.

Lemma 1.11. Let XdS. There exists a unique element of maximal length
in each Wx-coset in W. Moreover, the following conditions for an element v of W

are equivalent:

(1) v is the element of maximal length in vWx.
(2) v=zuwx for some (φ, X]-reduced element w of W.
(3) l(vw^l(v)-l(w,} for all w^Wx.

(4) l(vx)<l(v)for allx^X.

Proof. Let w be an arbίtary (φ, ^Q-reduced element of W. Any element

vr of wWx can be written in the form v'=wwί with «;/e Wx. By Lemma 1.9
(2), l(vr)=l(w)J\-l(w^). Thus the length of vf is maximal among the elements
in wWx if and only if wλ'=wx. This proves the first assertion in the lemma
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and the equivalence of the conditions (1) and (2). If (2) holds and w^WXi

then l(vw^~l(wwxw^)—l(w}-{-l(wχW^ by Lemma 1.9 (2). On the other hand,
we have l(wxw^—l(wχ)—l(w^ from [3; p. 43, Ex. 22]. Hence

which is (3). It is trivial that (3) implies (4). Assume that (4) holds. Let vl

be the element of maximal length in vWx. Then v=vlwl

/ with w/e Wx. If
w/Φl, there is an element x of X such that /(«;/#)</(«;/). We have /(«;#)=

/(iw'*) = /fa) - /«*) = /fa) - /«)+/(*) = /fa<)+/(*) - /(*)+/(*)> l(v), a
contradiction. Therefore «#/=!. Hence v=v19 which is (1). This completes
the proof of the lemma.

Lemma 1.12. Any parabolic subgroup P of G can be uniquely written in the
form P=uzuPχW~lu~l, where X is a subset of S, w is a (φ, X)-reduced element of
W and u is an element of U~-ι.

Proof. By Proposition 1.6(b), X is uniquely determined by P. Assume
Ui2itulwlPχWι1uΐ1=u2w2PχiU21U2l for two distinct (φ, ^-reduced elements w^ wz

of FFand some elements uί9 u2 of U. Then w^u^u2w^Px because Px is its own
normalizer in G. Thus w2^BwJPx. On the other hand, we have wJVx^w?Wx

from Lemma 1.9. Hence Ewfx[\Bw2PΎ=^φ by Proposition 1.6 (c), a contra-
diction. This proves the uniqueness of w in the lemma. Next, assume that
ulwPχW~luΐl=u2wPχW~1U21 for a (φ, ^-reduced element w of W and elements
uly u2 of t/~-ι. Then w^u^UjW&Px. Thus we have

(1.2) UjW e u2w( U v

By Lemma 1.9, l(wv)=l(w)-\-l(v) for all v^Wx. Hence u2wBvBc:BwvB by
[3; p. 26, Cor. 1]. Therefore (1.2) implies that uλw^ιι2wB. Hence we have
u^=u2 from Lemma 1.5. This completes the proof of the uniqueness part of the
lemma. Let P be an arbitrary parabolic subgroup. By Proposition 1.6 and
Lemma 1.9 there exist a subset X of S and a (φ, ^Q-reduced element w of W
and an element u of U such that P=uwPxw~lu~1. By Lemma 1.4 (a), u=u^u2 for
some u^ U~-ι and u2^ U*-ι. Thus P=u1wPχZϋ~1uϊl. The proof of Lemma
1.12 is now complete.

2. Hecke algebra HC(G, B) and characters in i[VB\B-+G]

Let G be an arbitrary finite group, and B a subgroup of G. We denote by
C[G] the group algebra of G over a complex number field C. Then
el=\B\~1^ίxGBx is an idempotent in C[G] and the left C[G]-module
affords the character i[\B\B-^G] induced from the trivial character 1̂  of
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DEFINITION 2.1. The Heche algebra HC(G, B) is defined to be the sub-
algebra e1C[G]e1 of the group algebra C[G].

Lemma 2.2. (Curtis-Possum [8]) Let % be an irreducible complex character
of G contained in i[\B |B->G]. We also denote by X the corresponding irreduicble
character of C[G].

(a) The restriction X\HC(G, B) ofX to HC(G, B) is an irreducible character
of HC(G, B). Conversely, each irreducible character of HC(G, B) is the restriction

to HC(G, B) of a unique irreducible character of C[G].
(b) Let #χ be a primitive ίdempotent in HC(G, B) corresponding to % | HC(G, B).

Then «x is also a primitive ίdempotent in C[G] and the left C[G\-module C[G]a^

affords %.

Lemma 2.3. (Littlewood [15; §4.4]) Let Σ*eG ^*x be a primitive
ίdempotent in C[G] corresponding to an irreducible character %. Then

%ω = I G 1 1 cc(r ') I -1 { Σ* λ,} (*e Ce(r ι» .
Let A be a set of representatives for the (B, £)-double cosets decomposition

of G. For a^A, let

(2.1) ea = \BΓ^x^BaBx.

Then {ea\a^A} forms a C-basis for HC(G, B). For an arbitrary element

h= ^la<=Ahaea (ha<^C) of HC(G, J5), define the following complex valued class
functions on G:

(2.2) fh(g) = Σ<,*A h J B I -' I G I I Cc(r ') I -1 1 BaB Π CG(g-1) \ .

Later, we shall often require the following lemma.

Lemma 2.4. (a) Let % be an irreducible character of G contained in
i[lB\B-*G], and a^ a primitive idempotent in Hc(Gy B) corresponding to % in the
sense of Lemma 2.2. Then

where faχ is the class function on G defined by (2.2).
(b) Each function fh (h^Hc(G, B)) can be written as a linear combination of

irreducible characters contained in ί [1B\ B-+G].

Proof, (a) This is a consequence of Lemma 2.3, (2.1) and (2.2).

(b) Let X(G, B) be the set of all irreducible characters of G contained in

i[ls\B-*>G]. It suffices to show that eachfβa(a^A) can be written as a linear
combination of elements of X(G> B). Since H^G, B) is a semisimple algebra,
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it is isomorphic to a direct sum of full matrix algebras M(niy C) (/=!, 2, •••, m).
It is easy to see that each algebra M(ni9 C) has a basis which consists of primi-
tive idempotents. Hence Hc(Gy B) also has such a basis {vj\l^j^N\

(N= \ A \ ) . Let 0y=Σ,eAθ.A (c;. ^c> l^J^N) Then> from Part (a) we

have

(2.3) Σ.cMW . = *y (l^ΛΓ)

for some %ye.Y(G, 5). Solving (2.3) in/e<z(αe^4), we get the required result.
We shall also need the following

Lemma 2.5. fhk=f/ghfor a^ elements h, k of HC(G, B).

Proof. Let x and y be any elements of G. Then xy and yx belong to the
same conjugacy class of G. The assertion follows from this fact and (2.2).

Assume henceforth that G is a finite Chevalley group and £ is a Borel
subgroup of G. We shall also use other notations given in §1. By the
Bruhat decomposition of G, {ew\w^ W] (see (2.1)) forms a basis for Hc(Gy B).
Hence for any element h of HC(G, B) there exist unique complex numbers

[h : ew] (we W) such that A=Σ«*ewr [A : ew]ew.

Theorem 2.6. (Iwahori [2], Matsumoto [16]) Let ίnd ew=\BwB/B\ for

, and qs=ίnd es for s<=S. Then

(a) qs = qa= ΐl«<=a q(ά) if s = wa with a<=R(S) .

(b) [ewewf : ew"~\ = BwBΓ\nw"U~'nw'-ι\ for all elements w , w' ', w" of

W.

(c) For s<=S

esew = esw if l(s

and esew = qsesw+(qs-l)ew if

(d) If s(w) = (s19 s2y •••, s^fa^S) is a reduced decomposition of w^. W,

then

p — P P f>
^W C51CJ2 Si '

(e) Let the notations be as in (d). Then

indew= \U~\ =q3ίqS2—qSl.

Proof, (a) This is a consequence of Lemma 1.5 and Proposition 1.3 (b).

(b) By [12; (3)], the left hand side is equal to \(BιoBnrf'Uιo'-lB)IB\,
which is equal to \BwBΓ(nw»U~'nw'-ι\ by Lemma 1.5.
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(c) and (d) are proved in [12] and [16].
(e) is a consequence of (d) and [12; Lemma 1.2].

By Theorem 2.6 (c) we have

(2.4) (*,Γ = ?71

By (2.4) and Theorem 2.6 (d), ^ is invertible for an arbitrary
The following theorem was obtained by O. Goldman (see [12]) for untwisted

Chevalley groups G and by R. W. Kilmoyer [14] for general G.

Theorem 2.7. The Hecke algebra HC(G, B) has an ίnvolutory automorphism
defined by

Let % be an irreducible character of G contained in ί[lB\B->G], and a% a

primitive idempotent in HC(G, B) corresponding to % (see Lemma 2.2). Then

#χ is also a primitive idempotent in HC(G, B). It is easy to see that the irre-

ducible character of G corresponding to #χ is independent of the choice of αχ.
Λ

DEFINITION 2.8. Let the notations be as above. The dual % of % is

defined as the irreducible character of G corresponding to #χ.

REMARK 2.9. In [14], R. Kilmoyer defined % by (X\HC(G, B))(h)=

(% I HC(G, B))(h). It is easy to see that these two definitions are in fact identical.

Notation 2.10. Let w, wf and w" be any elements of W, and s(zυ)=

(*/> sι-ι> " |ίι) a reduced decomposition of w. We denote by £(s(w), w1 ', «;")

the set of all integer sequences /=(/*> Λ-ι» "'Jo) satisfying the following condi-

tions (cf. [2; (3.19)]):

(a) /(w)

(b) Sj^jk-i"8]^'—™") where we put ^=^=1 for convention.
(c) (spStf^-s^^stfj^ Sjfi/) foτjh<p<jh+1 if O^h^k-l and

For eachye/(j(w), < w"} we put /1=

Notation 2.11. Let Sf(i^I) be the equivalence classes for the relation 4<ί

is conjugate to r in W" between elements s, r of S. Let t=(ti)£<=1 be a family

of indeterminates indexed by /, and for each s<=S define ts to be tf if s^Sf.

DEFINITION 2.12. Let w, w' and w" be any elements of W. Using the
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above notations we define the following polynomial in ί=(ί, ), e/:

F(w, w', w")(t) = F(w, w',

V Πw/(ί.y-l)} C/e^φo), «/, w"))

where «(«;)= (ί/, $,_!, •••, s^ is a reduced decomposition of w.

REMARK 2.13. The polynomial F(w, w', w")(t) does not depend on the
choice of a reduced decomposition s(w) of w. This fact follows from Lemma

2.14 (b) given below.

Lemma 2.14. (a) Let s, r be elements of S. Then qs=qr if s and r belong
to the same equivalence class S{ defined in Notation 2.11.

(b) Put ?,.=& if s^Si. Then \ewew>\ ew"\=F(w, w', w")((?ίW) for att

elements w, w' and w" of W.

(c) \ewew'\ ew'] = [ewew'ws: ew'ws] for all elements w and w1 of W.

Proof, (a) This is a consequence of Theorem 2.6 (a) and Proposition
1.3 (d).

(b) We will prove this by the induction on the length l(w) of w. It is easy
to see that (b) is true if w=l. Let s(zu)= (sly s^^ •••, ^) be a reduced decom-
position of wΦ 1. Then l(slw)<l(w). By the induction assumption,

Multiplying esι from the left, we have

by Theorem 2.6 (c).
Comparing this formula with (b) and using Theorem 2.6 (c), we see that it
suffices to prove the following:

(1) F(u>, wf, w//)(t)=F(slwί w', slw'f}(t)+(ts-\}F(slw, w' , w")(t) if l(stw")<

(2) F(wy rf, w")(t)=tsF(Slw, w', stv/')(t) if

We first prove (1). Let J'=(jm', •• 9j0') be an element of ^(s(ί/«;), w' ', stv/'\

where s(slw)= (s;^ ί/_ 2, •••, s,). Then J=(l,jm', —,]<!) is an element of

g(8(w), w', w"). Next, let/^OV7, -ijVO be an element of /(βfow), ,̂ w/7)-
ΎhenJ=J" is an element of £(s(w), w', w"). In fact the condition in Nota-
tion 2.10 (c) is satisfied by the assumption that /(ί/zϋ") </(&>") . Moreover,
every element J^J(s(w), w', w") can be obtained from/'e^s^/w), s', s^") or

Jff^^(s(slw), w' , w") in this manner. Hence, from the definition of
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F(w9 w'y w")(t), we obtain (1). To prove (2), we note that for any element

/=(;*> Λ-ι» ~'>jo) o{ cl(*(w)>wf>w")>jk must be / and J'=(jk-i>jk-2>~',jo)
is an element of £(s(slw)9 w' ', stw"). This follows from the assumption that
l(sιw")>l(w"). The rest of the proof is similar to that of (1). The proof of (b)
is over.

(c) By Theorem 2.6 (c) and (2.4), it is easy to see that for s e S and w^ W,

esewws = —qseswws if l(

and esewws = - ̂ ^4- (?,— 1 ) ̂  if l(sw

By the almost same argument as in (a), we get

[ewtw'ws *u,"wS] = E(™> < «>")((?/)«•€=/) >

where E(w, w' ', «/')(£) is a polynomial in f=(ίl ), e/ defined as follows:

where s(w)=(ί/, .̂̂  •••, ^) is a reduced decomposition of w.

Therefore, for the proof of (c) it sufficies to show

(2.5)

fordl/e/(β(a;), < w")(w,w'tΞW). Let/=C/*,Λ-ι, -,yo). Then ^/y,.,-
Sjlw

f=w//. Hence (2.5) is a special case of Lemma 2.15 (b) below.

Lemma 2.15. (a) Let w be an element of W, and s(w)= (s19 s2, •••, $,) a
reduced decomposition of W. Then the monomial tw=tsJS2 tSι is independent
of the choice of reduced decomposition s(w).

(b) Let (s19 s2, , sm) be a sequence of elements of S. Put w=sls2 -sm. Then

where a{=l or —1 according as I(s1s2- sί_l)<l(s1s2 -sί) or I(sls2 si_1)>l(sls2 si)

respectively.

Proof, (a) This follows from [3: p. 16, Proposition 5.].
(b) We prove this by induction on m. If m=l the assertion is trivially

true. Put w/=sls2 sm.l. Then by the induction assumption we have

V=<X2-<::ί If l(w)=l(w'sm)>l(w')9tw=tw^tSm by part (a). If /(«;)=
/(«/*«) </(«0, tw'=twt,m by part (a). In any case we have tw=ta

s^- t°^ as
required.
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3. Central isogenies and characters in i[\B\ J5->β]

The main purpose in this section is to prove Theorem 3.4. This result,
which is of independent interest, will be used in §7.

First we recall some facts on central isogenies. References are [5] and
[2; §2]. Let © and ©' be connected semisimple linear algebraic groups defined
over an algebraically closed field K, 33 a Borel subgroup of ©, and ί£ a maximal
torus of © contained in 33. We also use other notations in §1. Assume that
there exists a central isogeny ψ :©->©'. Then the following statements are
valid :

(3.1) 33'=ψ(33) is a Borel subgroup of ©'.

(3.2) X'=ψ(X) is a maximal torus of ©' contained in 33'.

(3.3) Let X(Z) and X(^) be character modules of X and 37 respectively.

Let ψ*: X(%f)®zQ-*X(%>)®zQ be tne Q-linear extention of the transpose of
ψ |2;. Thenψ * is injective and ψ*(X(Z'))c:X(%) and ψ *(Σ')=Σ, where Σ'
is the root system of ©' with respect to 3/.

(3.4) IΓ = ψ (U) is the unipotent radical of 33' and ψ|U: 11->U' is an
isomorpism.

(3.5) For αeΣ, tt£/= ^(U^) is the root subgroup of ©' with respect to a!
corresponding to a'=ψ*~l(ά).

(3.6) 5Jί'= \|r( ϊί) is the normalizer of 37 and ψ induces an isomorphism -vjr

from the Weyl group 38= K/S of © onto the one SB'—S^/S/ of ©'. If w«(a<= Σ)
is a reflection in W7, then ^(WΛ)=WΛ', where α/= ψ *~1(α).

In the following, let ©, 33, σ, G, 5, etc. be as in §1.

Theorem 3.1. (a) Let © be the simply connected group of the same type

as ©., and let Λ/Γ: ©— >® be a central isogeny. Then there exists a unique surjectίve

endomorphίsm σ of® such that (1) ^oσ=^σ^'^r and (2) ©3: <co.
(b) Let ©' be the adjoint group of the sme type as ©, and let Λ/Γ: ©->©' be a

central isogeny. Then there exists a unique surjectίve endomorphίsm σf of ©' such

that (1) ψoσ =σ-ΌΛ/r and (2) \ ©V I < <*> .

Proof, (a) First we remark that σ : ©->© is an isogeny because of the

fact that ker σ is trivial ([20; 7.1]). The unique existence of an isogeny

<t: ©-̂ © satisfying (1) follows from [20; 9.16]. Next, we prove that (1) implies

(2). Let x<=®z. By (1), ψ>(x)<=®χ. Because ker i/r and ©σ are finite, ©^ is

finite also.

(b) The uniqueness of σ follows from (1) and the surjectivity of -ψ\ We



FINITE CHEVALLTY GROUPS 535

prove the existence of an isogeny σf satisfying (1). Since ©' is adjoint,

is the ^-module generated by Σ'. By (3.3) ψ*(X(T')) is the Z-module Σz

generated by Σ. Since σ* preserves Σz by Lemma 1.1, we can define an
automorphism γ of Jf(2/) by rγ=(ψ>*)~1o(r*oψ>*. From Lemma 1.1 we have

r(αO=?(P"1°'Ψ*(«/))(Ψl*)"loP"lo<Ψl*(«/) for a11 α'^Σ'. Thus the existence of
an isogeny σ' satisfying (1) follows from [5; 18-07, Proposition 5]. Next, we

prove that (1) implies (2). Assume that ©£/ is infinite. From the surjectivity

of Λ/Λ and the finiteness of ker ψ, we see that the set A— {# eG \σf°ty(x)=ty(oc)}
is infinite. Since A== {x^G |*rV(#)eker ψ} by (1) and ker ψ is finite, this

fact implies that Ac={x^G\x~1σ(x)=c\ is infinite for some ceker ψ. If y

and z are elements of Ac we have y~lσ(y)=z~lσ(z), i.e. j^"1^©^. Hence ©σ

must be infinite, a contradiction. This proves (b).
Let ψ: (S^©' be a central isogeny and σf is a surjective endomorphism of

©' such that Λ/roσ ^σ'oΛ/Λ. By the proof of Theorem 3.1 (b), such σ is unique

and G'=® 'σ' is finite. In the following, the endomorphism σ' is denoted

simply by σ.

Theorem 3.2. Let the notations be as above.

(a) S3'=ψ ($B) and %'=ψ(%) is fixed by σ. (In the following, we write B'

and T' for S3/ and £/ respectively.)

(b) Λ/Γ* induces an isomorphism, which is also denoted by ψ**, from the root

system R' associated to (G', Tr) (see Proposition 1.2) onto the one R associated to
(G, T}.

(c) Λ/Γ induces an isomorphism between U and U/^U/

cr.

(d) IfaeR, then rK£/β)=C7ί'=(Π(,sβ/Uς)<r, where a'=^*-\ά).
(e) ψ4 induces an isomorphism, which is also denoted by ty, from the Weyl

group W^mσ/Zσ of G onto the one W'=W,JI%,V' of G' '. If a^R, then $(wa)=wa',
where af=λjr*~1(a).

Proof. These are easy consequences of the properties (3.1)^(3.6) of Λ/Λ,
the assumption i<^oCr=a-o^i and the definitions (of R, W, U, •••).

Corollary 3.3. Let the notations be as in Theorem 3.2. The Hecke algebras

HC(G, B) and Hc(Gr , B') are isomophίc by the natural mapping: ew-^e^w^(w^ W).

Proof. This follows from Theorem 3.2 and Theorem 2.6.

From Theorem 3.2 and Corollary 3.3, we may identify R, W, U, Ua (a^R)

and HC(G, B) with R, W, U', U'a> (a/=^*-1(a)) and Hc(Gf, B') respectively.
Put H=HC(G, B)=HC(G\ B'). Let X(G, B) (resp. .X(G'y B'}} be the set of irre-
ducible characters of G (resp. G') contained in ί[lB \ B-+G] (resp. i[\B' \ B'-*G']).

Let % be an element of X(G, 5), and h a primitive idempotent in H such that
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the left C[G]-module C[G]h affords X' (see Lemma 2.2). Let X' be an element
ofX(G', B'} afforded by the left C[G']-module C[G']h. The correspondence:
X-*X' from X(G, B) into X(G', B') is clearly well defined and bijective.

Now, we can state the main result in this section:

Theorem 3.4. Let the notations be as above. For h^H, let fh be the class
function on G defined by (2.2) and fh

f the class function on G' defined in the same
manner.

(a) For any h^H, fh equals /// identically on U (= U').
(b) // X^X(G, B) and X'(^X(G'y B'} corresponds to each other in the sense

mentioned above, % equals X' identically on U (=U/).

For the proof, we require some preliminary results.

Lemma 3.5. Let J$ be the set of all Borel subgroups of G, and for w^W,
let Ow be the set of all couples (Bly B2)<=1$ X 3$ which are G-conjugate to the pair
(B, wBw~l). Then

l£xj$= U «,<= w Ow (disjoint union) .

Proof. Let (B19 B2) be an arbitrary element of ^X^By and let g19 g2 be
elements of G such that B^giBgγ1 (/=!, 2). Then, the couple (Bίy B2) is
conjugate to (B, g~lg2Bg~lg^). By the Bruhat decomposition of G, there exist
b^b'^B and w^W such that g~1g2=bwb^. Hence (B19 B2) is conjugate to

(B, wBw~1}, i.e. contained in Ow. Thus we have <Bx<B=\JweWOw. Next,
we prove the disjointness of this decomposition. Let w and w' be distinct
elements of W. Assume that Ow Π Ow'*φ. Then (β, wBw~l) and (B, w'Bw'^}
are conjugate to each other. Hence there exist an element x of G such that
xBx~l—B and xwBw~lx~l=w'Bw'~l. Because B is its own normalizer in G, we
have x^B and zυ'~1xw£iB. Hence BwB^w', a contradiction. Therefore, the
decomposition is disjoint.

Lemma. 3.6. Let the notations be as in Lemma 3.5. For
define the subset Fg w of <B by

Fg>w =

Then

(a) 3= \Jw<=wFgw (disjoint union) .

(b) \FgtW\= G \B\-ι\BwBnCG(g-^\ CcQf-1) ~l=few(g]

Proof. Part (a) follows from Lemma 3.5. We shall prove (b). Let g be a

fixed element of G, and for w<=W, let Aw be the set of all (B', g')<=<BxCG(g)

such that B'^Fg'tW. Then we have
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where ̂ (SJ^^ Π ( {SJ X CG(g)). Let B1=x1Bx~1 with ̂  e G. Assume that

), i.e. (g'xβxϊlg'-\ ar^Γ1)^*- This is the case if and only
;-1. Hence AW(B^)\ is equal to \x,(BwB)χ-l^CG(g'^\ =

\BwBnCG(g~1)\. Therefore

(3.7) \A

On the other hand, we have

Aw = UgιeCβCg)(-fw,fflX {gι})

Clearly | FJg,) \ = \ Fw(g) \ for gl e CG(g) . Hence

(3.8) 1 4. 1 = I ί1,,., I I CG(g) I = I P-..O I I CG(^-!) | .

From (3.7) and (3.8), we have

\FWtβ\ =

as required.

REMARK 3.7. Let G be a (finite or infinite) group with a BTV-pair (B, N),
and W its Weyl group. Then, by the same arguments as above, we get a
decomposition of .S— CG(B) :

Proof of Theorem 3.4.

(a) It sufHcies to prove the assertion for h=ew (w^W). Let B1 be a
Borel subgroup. By Lemma 1.12, B1 can be written uniquely in the form
B1=ulw1Bw~lu~l with w^W and u^U~^. Let u be an element of U and

assume that B1 is contained in FUtW> i.e. (uu^wJSw^u^u'^^ ulwlBw~lu
This is the case if and only if zu~lu~lu~lulwl^BwB. Hence

By Theorem 3.2, the right hand side of this formula remains invariant when

G, B, W etc. are replaced with Gx, Br , W, etc. Since /,„(«)= I ̂  I by Lemma
3.6, the proof of part (a) is over.

(b) Let h^H (=HC(G, B)=HC(G', B')) be a primitive idempotent cor-
responding to % and %7. Then X=fh and %7=/Λ

7 by Lemma 2.4. This fact,
together with part (a), implies (b).
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4. Unipotent elements in (B, l?)-double cosets

Let P be a parabolic subgroup of a finite Chevalley group G. By Lemma
1.12, P can be written uniquely in the form P=uw'Pxw'~ltΓ\ where X is a

subset of 5, w' is a (φ, Jf)-reduced element of W and ι* is an element of U~'-ι.
Let G1 be the set of all unipotent elements of G. The main purpose of this
section is to prove the following

Theorem 4.1. Let P=uw'Pxw'~lu~l as above. For an arbitrary element

w of W, the following formula holds.

Gι n BwB n P I = i BwB n wrwxυ^wχw^w'^ 1 1 E/ Ί .

Before proving the theorem we state some corollaries \vhich can be deduced

easily from it.

Corollary 4.2. | G1 n BwB \ = \ws Uwς1 Π BwB \\U

Proof. Put P=G in the above theorem. In this case, X=S and «/=!.
Hence we have the desired formula.

Corollary 4.3. Let P be as in Theorem 4.1, and let F(w^ w2y w3)(t)(Wf^ W,
i = 1,2,3) be polynomials defined in § 2. Then \ G1 (Ί BwB Π P = F(w, wfwx, w'wx)

((?ί)/e/) ILe*+c«Λ ?β. In particular, \ G1 Π S^ΰ | =F(w, ws, ws)((?ί)/e/) Πfl>o ?«•

Proof. This follows from Theorem 4.1, Theorem 2.6(b), Lemma 2.14(b)

and Lemma 1.4(b).

Corollary 4.4. I G M - l t / l 2 .

Proof. From the Bruhat decomposition of G we have | G1 1 =^lw<=w\Gl

Π BwB I . Applying Corollary 4.2 we get G1 1 =Σ«κ= ̂  I ̂ s ̂ ŝ ' Π ΰ^5 | U \ ,
which equals | U\2. This proves the corollary.

REMARK 4.5. The Collorary 4.4 was originally proved by R. Steinberg [20].

We shall give another, more direct, proof of Corollary 4.4 in Remark 4.9.

The proof of Theorem 4.1 requires several lemmas.

Lemma 4.6. Let X be a subset of S, and ξx the character of the parabolic

subgroup Px of G defined by

ξx = Σrc* (-l)irii[lpr|Py-*^l ,

where \Pγ is the trivial character of Pγ. Then the following statements are valid:
(a) ξ x is an irreducible character of the group Px.
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if "sv"
0 if x^U-Vx.

Proof, (a) Let Nx be the subgroup of Px generated by T and {nw \ w <Ξ Wx} .

Then (B, A^) is a £7V-pair in Px. Hence (a) follows from [6; Theorem 2].

(b) Applying [6; (3.5)] to Px we obtain ξx(x)=i[lτ.Vz\ T Vx-+B](x) for

x^B. Since Fx= E/*^ is normal in B (see Lemma 1.7), ξx(χ)—0 if # e C7— Vx

and f^)=|B| I Γ F^I-^ l t/ l It/^l-^l t7;x for *eFx, where we used

Lemma 1.4(a). This proves part (b).

DEFINITION 4.7. The irreducible character ξ x of the group Px is called

the Steinberg character of Px.

Lemma 4.8. Let XdS. Then

IP, = Σrc* (-iyYli[ξγ\Pγ-*Pχ] -

Proof. By Lemma 4.6 and transitivity of induction, the right hand side

of the above formula equals

The coefficients of / [\Pz\Pz-*Pχ\ in this expression is

which is equal to 0 if Z^pX and 1 if Z—X. This proves the lemma.

REMARK 4.9. Here we show that Corollary 4.4 follows easily from Lemma

4.6 and Lemma 4.8. As already remarked in [6], Lemma 4.6 with X= S implies

(4.1) |t7| =ΣrcS(-l) ' y | |G| |Pyi-α .

Let θ be the class function on G which is defined to be 1 on G1 and 0 outside

of it. Then using Lemma 4.8 with X— S and Frobenius reciprocity we obtain

Hence, by Lemma 4.6 (b),

(4.2) |G|- ' |G' | =

Combining (4.1) and (4.2) we obtain | G1 1 = | U\ 2, as required.

Lemma 4.10. Let X and Y be subsets of S such that YdX. For x<=G,
let



540 N. KAWANAKA

Then

O

if

if

Proof. It is clear that \&x.γ(x)\=Q if x<=G— G'ΓiPx Let x be an
element of G1 (Ί Px. Let JlXtγ(x) be the set of all couples (Pf, x')<=CPχ(Pγ) X
CPχ(x) such that !/>=>*'. Then

JlXιY(x) = U Pl Jk, X*. Λ) (

where Jlx,γ(x, P,}=Jίx,γ(x} Π ( {P,} X C *̂)).

Clearly | Jlx,γ(x, P,) I = I <Λχ.r(*> pr) I = I Fr Π CPz(*) | . Thus we have

(4.3) \JLXtΎ(x)\= Px\\PY\-l\Vγr\CPχ(x)\.

On the other hand, we have

(*) I = I &x,r(x) I I Cpz(«) I .

Hence

(4.4) I

By (4.3) and (4.4),

1 2>x.γ(x) \ = \PX \PY\-1\VYΓ\ CPχ(x) I I CPχ(x) I -1 .

Hence, using Lemma 4.6 (b) we obtain

as required.

Proof of Theorem 4.1.
Since G1 Π BwB is invariant under conjugations by elements of B, we may

assume that u=l. Then from Lemma 4.8 and Lemma 4.10 the left hand side
of the equality stated in the theorem is

(4.5) Wy \

where the second sum is taken over the set CPχ(Pγ) for each Y. By Lemma
1.12 each element P' of CPχ(Pγ) can be written uniquely in the form P'=
ufw"Pγw"~λu'~^, where &/', is a (φ, Y)-reduced element of Wx and uf is an element
of U~"-ι. Thus the expression (4.5) is equal to

(4.6) Σrcx(-l) ιrι Σ«/' \w'w"VYw"^w'-^BwB\ U-"^\\U~y\ ,

where the second sum is over the set of all (φ, Y)-reduced elements of Wx for
each F. The summand corresponding to Y and w" is

(4.7) \w'w"(UΓ\wγUwγ1)w"-1w'-1Γ\BwB\ \ U "- L u-
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Using Lemma 1 .4 and the fact that w'uo" is (φ, Y)-reduced the first factor in
(4.7) can be written as

We have also \w'w"wγUwγlw"- W1 Π U\ \ Z7;//-ι \ \ U~y \ = \ E/£'| from
Lemma 1.5 and Theorem 2.6 (e). Hence (4.6) is equal to

(4.8) Σ^c* (~l) |y | Σ»" \w'w''U->w>>w"-W-^BwB\ \ U+'\ .

For each w" ', let Z(*</Ή {*e*| /(«/'*)>/(«/')}• Then the coefficient of
w"U-'w»w"-lw'-1 Π £α>£ I I [/+' 1 in (4.8) is

which is 0 if X(w")*φ and 1 if X(w")=φ, i.e. ^//=^ΛΓ. Hence (4.8) is
equal to

^Λ^xV-1 Π BwB I I t7J/ 1 .

This proves Theorem 4.1.

5. Unipotent elements and characters in ί[l5 1 B-*G]

The purpose of this section is to prove the following

Theorem 5.1. Let % be an irreducible character of a finite Chevalley
group G contained in the induced character i[\B\B ̂ G]. Let X be a subset of

S, and ξx the Steinberg character of Px. Then

Σ^G1 X(u)i[lPχ I PX - G](u) - Σ^c1 X(u)i[ξx I PX - G](u) ,

where G1 is the set of all unipotent elements in G and X is the dual (see Definition

2.8) o f X .

Consider the special case where P=G. Then using Lemma 4.6 we obtain

Corollary 5.2. Let the notations be as in Theorem 5.1. Then

Σ«ec
ικM= \u\x(i).

REMARK 5.3. Let t be a semisimple element of G. Denote by Z\f) the

set of unipotent elements of G which commute with t. It is likely that the

following formula holds for any irreducible chatacters Xj and %2 of G which are
contained in i[lB\ B— >G] :

(5.1) Σ eΛw ^(tu)X2(tu) = Σ«ez'(» ̂ (
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We shall state some evidences for (5.1). (1) Theorem 5.1 follows from

the formula (5.1) with t=l. (2) Let t be an element of T such that its cen-
tralizer coincides with Γ. From a result of C.W. Curtis [7] we have X(t)=ξ^(l)

for any % in i[lB\B-*G], where f χ is the character of W corresponding to % by
a fixed isomorphism between C[W] and HC(G, B) (see [19; Theorem 48]).
Since ζϊ(w)=(-l)κw)ζ*(w) for we W, (5.1) holds in this case. (3) When G is

of type An and G— ©σ is untwisted, (5.1) can be proved for an arbitrary semi-

simple element t using a result of J.A. Green [11] (see also [13]).

Now we turn to the proof of Theorem 5.1. First we prepare some lemmas.

Lemma 5.4. (a) Let X be a subset of S. Then X* = {x* = wsxws \

is also a subset of S.

(b) Let X and X* be as above. An element w of W is (φ, X)-reduced if and

only ifwwxws is (φ, X*)-ι -educed.

Proof, (a) This appears in [3; p. 43, Ex. 22].

(b) Since (X*)*=X and wxwswx*ws=l, it suffices to prove the if-part.

Assume that wwxws is (φ, .Y*)-reduced. Then, l(wwxws wx*x*)=l(wwxzυs)-}-

l(wx*x*} for all x^X. Hence, for all x&X, l(wxws)=l(tozυxws)-\-l(wx*) — l =
l(wwxwsw*)—l—l(wws)—l. Therefore l(wx)= 7(a;)+l for all oc^X. Thus w

is (φ, -5Γ)-reduced.

Lemma 5.5. Let X and X* be as in Lemma 5.4. Let w' be a (φ, X)-

reduced element ofW. Put P=w'Pxw
f~~l andP*=w'wxwsPx*wl/wx^w'~l. Then,

for an arbitrary element w of W, the following formula holds.

\U->\ =Σ9*wewιe

Proof. By Theorem 4.1, the left hand side of the above formula is equal

to

I BwB Π rfwx U->Wχwx

lw'-1 1 I U .

By Theorem 2.6 (b) and Lemma 2.14(c), this is equal to

\^w^wrwχ' ^w'wχ\ I ^ I ^^ iβw^w u)χws ' ^wfu)χws\ I ^ I

== ijvew \βw' ^v\\^v^wfwxws' &wfu)χws\ I U I

- Σ*e w [4 : ev] I BvB Π w'wxws Uw^w^w^1 nU~\\

On the other hand

Vp* = w'wxwsVx*wi$lw~χWf~l

l n u) ,
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where we used Lemma 1.4. Hence we have

I BvB |Ί Vp* = BvB Π w'wxws Uw^Wx1™''1 Π U~ \U~'\ .

Therefore

\GlnBwBΓlP I U~'\ - Σ,ew [««,: *„] |5^Π FP*| | C7| | t/ /r 1 .

Since | C7 1 | U~' \ ~1 = | t/*' \ by Lemma 1.4 (a), the proof of Lemma 5.5 is over.

Lemma 5.6. (a) For w^Wy let w*—ιυswwl5

1. Then \BwB{~}C\ =
I Bw*B Π C I for any conjugacy class C of G.

(b) Let X and X* be as in Lemma 5. 4 (a). Then ί[ξx \PX-*G] =
ί[ξχ*\Pχ*-G}.

Proof, (a) By Theorem 2.6 (c), ewsew(ews)-l=ew^etvsw-ιew(etvsw-ιew)~1=etv*.
Hence, by Lemma 2.5 we get/^— 7 ,̂ from which (a) follows.

(b) By Lemma 4.6 and the definition of Y* for FcS,

ifolP* - G] = Σrc* (-l) |SΓ|ί[lpΓ|Py- G]

and ί

Hence, for the proof of (b) it suffices to prove

(5.2) i[lPγ\Pγ->σ\ = ί[lPr*|Py* -> G]

for Fc5. By the Bruhat decomposition of Pγ and Pγ*y we have

I PY n CC(Λ) I = Σ^wy \ BwB Π CG(x) I

and I Py* Π CG(x) \ - Σ»e wγ I ̂ ^*^ Π CG(Λ) |

for any Λ eG. Hence \PγΓ(CG(x)\=\Pγ*nCG(x)\ by part (a). This fact,
together with the definition of induced characters, implies (5.2). The proof of
(b) is over.

Lemma 5.7. Let X be a subset of S, w an element of W, and x an element
of G. Then

(a) few(x)i[ξχ\Pχ^G](x)\CG(x)\

= I G I I B I -1 Σp'SCβcPX> I BwB n VP' Π CG(x) \\U~Z\

(b) Λ»i[lpx I PX - G](x) I CG(x) I

- I G I I B I -1 ΣP'WX) I BwB Π P7 Π Cc(*) I .

Proof, (a) Consider the set M=M(x, w, X) of all triplets (*', Br ,
CG(x)x$χ CG(Pχ) such that (tfB'tf-1, B')<=OW and Λ 'e FP/, where Ά and 0W

W) are as in Lemma 3.5. From Lemma 3.6 (b) and Lemma 4.10, we have
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(5.3) Si =f.w(x)i[ξx\Px - G](x) I CG(x) \ \ U~χ \ -> .

On the other hand, M can be decomposded into a disjoint union U
where M(B^Mft (CG(x) x {B,} x CG(PX)). Clearly | M(B,} \ = \ M(B] \ =

Sp'ec^) I BwB Π VP' Π Cc(*) I . Hence

(5.4) I ̂  I = I G I I £ I -1 Σp'ec*cPX) I BwB Π FP' Π CG(x) \ .

The formula (a) follows from (5.3) and (5.4).
(b) Consider the set Q(x, X) of all P'e CG(PX) such that xtΞP'. Then,

by a similar argument as in the proof of Lemma 4.10, we get

(5.5) I Q(x, X) I = i[lPχ I Px - G](x) .

Next, consider the set £=£(x, w, X) of all triplets (x', Bf, P}^CG(x)χ^χ
CG(Pχ) such that (x'Bfxf~\ B')ζΞθw and x'<EΞP'. Using (5.5) instead of Lemma
4.10, we get

= I G I I B I -1 Σp'6cβcPX> I BwB n Pf Π CG(Λ) I

by a similar argument as in (a). This proves (b).

Proof of Theorem 5.1.

Let αx be a primitive idempotent of HC(G, B) corresponding to % (see

Lemma 2.2). Then 'X>=faχ = l>lwew [β*: ew]few by Lemma 2.4 (a). Since

tfχ=ΣLepr[βκ: ew]έw=Σwew[a*: ew](Σv^w[eW' ev]ev), %=fax=^wt=w[ax> *w]
w [$w: ev]fev) Hence, for the proof of Theorem 5.1 it suffices to show

(5.6)

for each we W and ^ΓcS. By Lemma 5.7 (b) and Lemma 1.12, the left side

of (5.6) is

where the sum is over the set of all (φ, ^¥)-reduced elements ιa' of W, By
Lemma 5.5, this is equal to

I B I -1 Σ«/Σ^ [em : e,] \ BvB

By Lemma 5.7 (a) and Lemma 1.12, this is

which is the right hand side of (5.6) by Lemma 5.6 (b). This completes the
proof of Theorem 5.1.
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6. Regular unipotent elements and induction from the subgroup U

The main results in this section are Lemma 6.10 and Theorem 6.12.
We begin by recalling some known facts on regular unipotent elements.

An element x of a connected semisimple linear algebraic group © is called
regular if the dimension of its centralizer Z®(x) is equal to the rank of ©. R.
Steinberg [18] proved the following

Theorem 6.1. Let ® be a connected semisimple linear algebraic group, 33 a
Borel subgroup, and Z a maximal torus contained in S3. Let U, Σ, Σ+ and
UΛ (αe Σ) be as in § 1 .

(a) A unipotent element is regular if and only if it is contained in a unique
Borel subgroup.

(b) An element x— 11^2+ xa(xΛ^Ua) of © contained in 11 is regular if and
only if #ΛΦ 1 for every simple root a.

DEFINITION 6.2. Let Σ = ΣX U Σ 2 U ••• UΣ* be the decmposition of the
root system Σ of a connected semisimple group © into its irreducible com-
ponents. Let α?, be the highest root of Σ/ in some order. Express αz as an
integral linear combination of the simple roots of Σ/. If p is a prime number
which does not devide any coefficient in such expressions for each /, p is called
good for ©.

REMARK 6.3. For each simple type, good primes^) can be directly defined
as follows:

An: p arbitrary; Bn, Cnj Dn: ^Φ2; E9, E7y F4y G2: p*2, 3; E8: £Φ2, 3, 5.

In the following, the notations in §1 will be used. We denote by Gl

r the
set of regular unipotent elements in a finite Chevalley group G= ©σ.

Lemma 6.4. (a) Each element of G* is contained in a unique Borel subgroup.
(b) Let C be a regular unipotent conjugacy class of G. Then \ C \ =

(c) ZG(u)=ZB(u)=Z(G)Zu(u)for u<=BnGl

r) where Z(G) is the center of
G} and ZG(u), ZB(u) and ZΌ(u) are centralίzers of u in G, B and U respectively.

Proof. Part (a) follows from Theorem 6.1 (a) and part (b) follows from part
(a) and the fact that B is its own normalizer in G. Part (c) follows from [1

E-54, 1.14 (a)].

Theorem 6.5. (Springer and Steinberg [1; E-55]) Let G=®σ, and p the
characteristic of the field K over which ® is defined. Assume that © is adjoint and
p is good for ©. Then the set Gl

r of regular unipotent elements of G forms a single

conjugacy class.
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Lemma 6.6. (Steinberg [19; p. 197 (2)]) For a£ΞR(S), let Ua=(ΐί^a Hβ)σ

as in §1 and Ό\ the set of all elements ua= ΓLe* x<» (x^^) of Ua such that XΛ= 1

for every #e a (Ί Π.
(a) The quotient group Ua/ Ul is isomorphic to the additive group of the Galois

field Fqy ^here q= ILeβnn #(<*)•
(b) Ua is the derived group of Ua.

Proof, (a) Let Ul

a= Π« UΛ (a<Ξa—a Π Π). This is σ-stable by Lemma
1.1. The quotient group UΛ/U* is cannonically isomorphic to the direct prod-
uct ®Λ of the groups UΛ for α^# (ΊΠ, and σ acts on the factors according to

the formula in Lemma 1.1 (b). Let af}Π= {a^ a2, •••, αj, where the suffixes

are so chosen that

and σχΛn(k) - xΛl(cJ*™)

for some c^K* and all k^K, where we wrote q(i) for q((Xi). Let

(ki^K) be an element of (®Λ)σ. Then c&^=k2, c2hl™=kz, -,i w =* 1 .
From this fact and Lemma 1.1 (d), it follows that (®fl)σ, hence (Uα/U])σ, is iso-
morphic to Fq. To complete the proof of (a) it suffices to notice that U a\U}^
(Uβ/Hi)σ, which follows from [20; 10.11].

(b) This can be checked directly using [19; Lemma 63].

Lemma 6.7. (a) | J B Π G J | =

(b) |

Proof. Part (b) follows from part (a) and Lemma 6.4 (b). We shall prove
part (a). Let U1 be the subgroup of U generated by the group 11̂  for αe Σ+— Π.

Since U1 is normalized by % and fixed by σ, |UJ| =ΠΛe2 + -π ?(α) by [20; 11.8].
It follows from [20; 10.11] that a coset uΰi1 (well) contains a σ-fixed elements
if and only if z/U1 e (U/U1)^. In that case, the number of σ-fixed elements in
uU1 is clearly |UJ | . On the other hand, it follows from Theorem 6.1 (b) that
the set Ur of regular unipotent elements is a union of IP-cosets. The quotient

set tΓ/tt1 is canonically isomorphic to the direct product of the sets UΛ— {1}
for αeΠ. Hence, by the proof of Lemma 6.6 (a) we get

Therefore, the number of regular unipotent elements in B is

Since |B| = Πβ6Λcs>{(ΠΛ6βnπ (?(«))-!} IL«+ ί(α) ([20; 11.9, 10.10]), the
proof of Lemma 6.7 is over.

For a^R(S), let La be the set of non-trivial linear character of Ua and L
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the direct product of the sets La for

DEFINITION 6.8. For XdSand /=(/Λ)Λe/?(S)eL, the linear character

of U is defined by ΎXt,(u)=l if φ=X and by 7x,i(u)=TiJa(ua)

if JΓφφ, where u= Tla>0ua (uaϊΞ Ua) and R(S)X= {a

Lemma 6.9. Let G=®σ, where © ίs adjoint. For XdS and l^L, let

Then the character ΓXJ is independent ofl^L.

Proof. Let U1 and IT be as in the proof of Lemma 6.7 (a). By (1 .1) £ acts

naturally on the set IΓ/tt1. Hence T acts on (Ur/U1)σ. Let t be an arbitrary

element of X— {!}. Since ©is adjoint, α(*)Φl for some αeΠ. Hence the

action of each t^T on (U7U1)σ is non-trivial. On the other hand,

|Γ | = |(Ur/Π1)<P|=Πβ«c«{(Π^nπί(α))-l} by [20; 11.2] and the proof of
Lemma 6.7 (a). Hence the action of T on (EΓ/tt1)^ is simply transitive. This

fact, together with Lemma 6.6, implies that the action of T on L defined by

H(u.) = UtoJ-1) (f e Γ, αeΛ(S), /ΛeLα, ua(Ξ Ua)

is simply transitive. Hence, for u^U, we have

*[7xj\U-»B\ (u) = Σi

which is independent of / e L. The lemma follows from this fact and transitivity

of induction.
In the following, if © is adjoint, we write Tx for the character TXJ

We can now prove a key lemma:

Lemma 6.10. For XdS andl^L, let Af=51xcs(—
(a) Σ/ezΛ/O*) is equal to \L\\G\ \Gl

r \ ~* if x<=G$ and 0 i

(b) Assume that © M adjoint. Then A.(x) = Σxcs(—

Proof. The proof depends on the following two results.

(1) For any /e=L, Λ^-O if Λ?eG-GJ.

(2) For any /eL, (A / f lc)σ=l.

Let us deduce the lemma from (1) and (2).

(a) By Lemma 6.6 the function Σ/ei/y*,/ on U takes the constant value

(—1)1*1 on the set of regular unipotent elements of U. Hence, by (1), we

see that Σ/ezΛ, vainshes on G—Gl and takes a constant value Q on G£.
Therefore (Σ/eiΛ/, 1G)= I G | ~l \ Gl

r \ O. On the other hand, we have
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(Σ/6ιΛ/,lG)G=|£| from (2). Hence we obtain Q= \L\ \G \ | G J | "\ as
required.

(b) This follows from part (a) and Lemma 6.9.
Next, we consider (1). Let u= ΐ[a>Qua(ua e Ua) be an element of U. Then

By Lemma 6.6, this is 0 if u is not regular unipotent. Hence Λ/ vaishes on

G-G}. This proves (1).
It remains to prove (2). By Frobenius reciprocity,

which is 0 if X^φ and 1 if X=φ. The assertion (2) follows from this. The

proof of Lemma 6.10 is now complete.
To state the first application of Lemma 6.10 we require the following

notion due to Harish-Chandra.

DEFINITION 6.11. A complex valued function / on G is called a cusp form if

for all elements x of G and all parabolic subgroup P Φ G. A character of G
which is a cusp form is called a cuspidal character.

The importance of this notion is explained e.g. in [1; part C]. Some
examples are given in [1; part D].

Theorem 6.12. Let G=®σy and let % be an irreducible cuspidal character
ofG.

(a) \Gl

rΓΣu*GΛ(u)=(-iys\\L\-ί\ {/€=L|ΓS,, contains X } \ .

(b) Assume that © is adjoint and the characteristic p of K is good for ®.
Then for any regular unipotent element u^G, %(u) equals (— I)'5' ifTs contains X
and 0 if Γs does not contain %.

For the proof of Theorem 6.12 we require the following

Lemma 6.13. Let % be a class function on G which is a cusp form. Then

(%, IVΛc - 0

for any X^S and

Proof. Put Tχtl = i[fγXtl\U-^Pχ'\. Since the unipotent radical Vx of
P x is normal in P x and <Ίχ,ι is trivial on V x, ΓXtι is constant on each V ' x-
coset in Px. Hence, using transitivity of induction and Frobenius reciprocity
we have
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where the first sum is taken over a set of representatives for Fx-cosets in Px.
Therefore, from the definition of cusp forms, we obtain the lemma.

Proof of Theorem 6.12.

Part (b) follows from part (a), Theorem 6.5 and Lemma 6.9. We shall prove
part (a). By Lemma 6.10 (a),

Hence, by Lemma 6.13,

I Gϊ I -'Σ,̂ * («) = (- i)'sι I L I -'Σ/eiΛκ, rs,,)G .

Therefore, the proof of Theorem 6.12 is completed by the following theorem,
which is proved by I.M. Gelfand and M.I. Graev [10] for SLnj and by R.
Steinberg [19; Theorem 49] for general G.

Theorem 6.14. Let I be an element of L, and % an irreducible character of
G. Then

(X, ΓSi/)c = 1 or 0 .

7. Regular unipotent elements in B-cosets and characters in

i[iB]B^σ\
Our main purpose in this section is to prove Theorem 7.1 and Theorem

7.2 below. Let G—®σ be a finite Chevalley group and p the characteristic of

the field K over which ® is defined. We also use other notations in §1 and §6.

Theorem 7.1. Assume that p is good for © in the sense of Definition 6.2.
Let % be a nontrίvίal irreducible character of G contained in i[lB\B-+G]. Then
X vanishes identically on the set G} of regular unipotent elements in G.

Theorem 7.2. Assume tht p is good for ©. Let g be an arbitrary element
of G, and C an arbitrary regular unipotent class of G. Then the number Bg Π C

depends neither on g nor C.

REMARK 7.3. (a) The author believes, but can not prove, that theorems

7.1 and 7.2 hold without the assumption "p is good"3). Later we shall prove

weaker results which hold in all characteristics p>0.

3) See "added in proof" at the end of the paper.
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(b) Combining Theorem 7.2 with Lemma 6.7 (a) and [1; E-55], we see

that the number \BgΓ\C\ in Theorem 7.2 is

|Z(®)/(l-σ)Z(®) I -1 (EUπ q(a)Γl \B \ ,

where Z(®) is the center of & and (1— σ)Z(®)= {x(χ-1)σ\x^Z(®)} .
(c) In §3, we showed that each element £ of G gives rise to a decomposition

of G/B into disjoint union:

Assume that p is good. Let u be a regular unipotent element in G. Then,

combining Lemma 3.6, Lemma 6.4 (b) and Theorem 7.2, we obtain

(7.1) \Fa,w = \U7,

Now let ® be a connected semisimple linear algebraic group defined over an
algebraically closed field of arbitrary characteristic. Let g be an element of ®,
(33, 91) an ordinary JBΛΓ-pair in © and 2S its Weyl group. Then ®/33 has the

decomposition

(see Remark 3.7). Each set S^>M; has a natural structure of algebraic variety. In
the special case that «;=!, ^gιtυ has been studied by several authors (see [3] and
[21]). The formula (7.1) in the finite case suggests an interesting problem:

Let u be a regular unipotent element in ©. Study the variety γ$u,w Is it
the /(w)-dimensional affine space ?

The proofs of Theorem 7.1 and Theorem 7.2 depend on the following

Lemma 7.4. Let Xbea subset of S. Let Tx j (/eL) be a character of G

defined in Lemma 6.9, and ξx the Steinberg character of Px. Then

(Γχ.i, X)σ = (ί[ξχ \Pχ - G], %)G

/or Λwy irreducble character % of G contained in ί[lB \ B-+G].

Proof. From Frobenius reciprocity and Lemma 4.6 (b) we have

(i[Ύx,ι I U - Px], ξx}Pχ = (<γXtl9 ξx\U)u=l.

Hence the character i[7Xιι \ U-*PX] of Px contains the Steinberg character ξx.
By transitivity of induction,

for any irreducible character % of G contained in z[lβ|β->G]. Therefore the
proof of the lemma will be completed by the following formula.
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(7.2) (Γ*.,, i[\B\B^ G])G = (i[ξx\Px -» G], i[lB\B - G})G .

We shall prove (7.2). By a theorem of Mackey (see e.g. [9; p. 51]) and the
Bruhat decomposition of G, the left hand side of (7.2) is equal to

Σίωew \U+\-1 JΣ**ui Ύx ι(u)} - \{ιo<ΞW\ <yx>l is trivial on Uϊ} \ .

By the definition of rγx>ίί it is trivial on E7+ if and only if l(wx)<l(w) for all
x^X. The number of such zu^Wis \ W\W x\ by Lemma 1.11. Hence the
left hand side of (7.2) is \W\WX\. On the other hand, by Proposition 1.6
(c) and the Mackey's theorem used above, the right hand side of (7.2) is

By a result of E. Witt (see e.g. [17; p. 378]), this is equal to | W\WX \ . This
proves (7.2).

Proof of Theorem 7.1.

From Theorem 3.1 (b) and Theorem 3.4 we may assume that © is adjoint.
Using Lemma 7.4 we get

(7.3) (ΣxcsC-l)1-*'!^, %)G = (Σ*cs(-l)m*Ί&f IP* -» G], X)G

for any irreducible character % of G contained in i\\B\B-^>G}. By Theorem 6.5
and Lemma 6.10 (b), the left hand side of (7.3) equals %(w) with weGJ. On
the other hand, by Lemma 4.8, the right hand side of (7.3) equals (1G, X)G.

Threfore

(7.4) X(fO = (lc,X)G

Hence, if % is non-trivial, % vanishes on G^. This proves Theorem 7.1.

Proof of Theorem 7.2.
The proof depends on the following two results.

(1) Let C and C^be two regular unipotent conjugacy classes of G. Then

(2) Let C be a regular unipotent conjugacy class of G. Then
\BvoB nC\ = \

We will show that Theorem 7.1 is a consequence of (1) and (2). Let C
be a regular unipotent conjugacy class of G. By (2) and Lemma 6.4 (b)

(7.5) \BwBΠC\ l ^ n C I ' 1 = \BwB\\B\~1.

It follows from Lemma 1.5 that |BwB \ \ B \ ~l= \ U~ \ and that
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is a decomposition of BwB Π C into a disjoint union. Hence, for w<= W, we have

(7.6) \Bw^C - | B Π C |

from (7.5). Let g be an arbitrary element of G. Then, by the Bruhat decom-

position of G, we can write g=b'nwb with ό, V EίB and w^W. Hence

by (7.6). Combining this formula with (1), we obtain Theorem 7.2.

Next we prove (1). Let u and υ! be regular unipotent elements in B i.e.
in U. Let Λ/Γ: ©-*©' be as in Theorem 3.1 (b). By (3.5), Theorem 3.2 and

Theorem 6.1 (b), ψ(u) and -ψ^ί/') are regular unipotent elements in ©σ', This

fact, togethr with Lemma 6.4 (c) and Theorem 6.5, implies that ψ(u) and ψ(u')
are conjugate in (̂23)̂ . Hence, by Theorem 3.2 (c), there exists an automor-

phism of U which maps u to u' '. Therefore, Zυ(u)^Zυ(uf}. Combining this

fact with Lemma 6.4 (c) we obtain | ZG(u) \ = \ ZB(u) | == ZB(u') | = \ ZG(uf) \ .

Hence |BΠ CG(u)\ = \BΠ CB(u)\ = Bϊ\CB(u'} = \Bf\CG(u') . This proves

(1).
It remains to prove (2). From Theorem 3.1 (b) and Theorem 3.4 we

may assume that © is adjoint. Then, it follows from (7.4) and Lemma 2.4

(b) that

for any w^W and u^.G\. From this formula we obtain CG(u) | l\BwBΓ\

CG(u) I — I G I ~l I BwB I , as required. The proof of Theorem 7.2 is now comlete.

As mentioned already, the author does not know whether the theorems 7.1

and 7.2 hold in all charactristics ^>>0 or not. Here we content ourselves with
the following weaker results.

Theorem 7.5. (a) Let % be a non-trivial irreducible character of G con-

tained in i[lB I B—>G]. Let G\ be the set of regular unipotent elements in G. Then

yu*ι XM = o.,

(b) Let g be an arbitrary element of G. Then the number \ Bg Π G* | is

independent of g.

Proof, (a) From Lemma 7.4 we have

(7.7) Σ/6L

= \L\ (

Hence
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(7.8) L| |Gi |- 1 2- 6 ciXM= \L\(1G, We

by Lemma 6.10 (a) and Lemma 4.8. Part (a) follows from this formula.
(b) Let w be any element of W. By (7.8) and Lemma 2.4 (b),

Hence IG^Γ 1 BwBKGl

r\ = \G\-l\BtoB\ .

Combining this formula with Lemma 6.4 (b) we obtain

= \B\-l\BwB\

Therefore, by the same method as in the proof of Theorem 7.2, we get
I Bg Π GI \ = I B Π GI I for any element g of G. This proves (b).

Added in proof. Recently, the author received two preprints (Lehrer [22]
and Green and Lehrer [23]), in which some of our results, in particular
theorems 6.12 (b), 7.1 and 7.2, are proved independently. In [23], it is
remarked that theorems 7.1 and 7.2 do not hold without the assumption "/> is
good for ©". This can also be seen from [24].
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