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Introduction

Let © be a connected semisimple linear algebraic group defined over an
algebraically closed field K of characteristic p>0, and o a surjective endomor-
phism of © such that the group ®&, of elements fixed by o is finite. The finite
groups &, obtained in this manner can be classified as follows (Steinberg
[20]): If © is simple, &, is either the group of rational points of a F-formof ©
for an appropriate finite field F or one of the groups defined by M. Suzuki and
R. Ree. If© is not simple, &, is essentially a direct product of the groups
mentioned above.

In this paper, a finite group G is called a finite Chevalley group® if it can
be realized as ®, for some © and 0. Let (G, B, N, S) be a Tits system (or BN-
pair) associated to a finite Chevalley group G. We denote by W itsWeyl group.
Let G* be the set of unipotent elements (or p-elements) of G and Uthe p-Sylow
subgroup of G contained in B. The main purpose of this paper is to establish
the following two results:

(1) Let w be an arbitraryelement of W, and ws the element of W of maximal
length.  Then the number of unipotentelements contained in the double coset BwB is
I BwB N wg Uws'| |U|, which can be written explicitly as a polynomial in
¢,=|BsB|B| (s&€S)”. (As a corollary, we obtain |G'|=|U|, a result of
Steinberg [20].)

(Il)  Assume that the characteristic p is good (see Definition 6.2) for ©. Let
g be an element of G=,, and C a regular unipotent conjugacy class of G.  Then
the number | Bg N C| depends neither on g nor C.

As far as the author knows, these results are new even for G=SL,(F)with
F a finite field. In this case an arbitrary prime is good and a unipotent element
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2) For a finite set 4,] 4| denotes the number of its elements.
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is regular if and only if its Jordan normal form consists of a single block.
The proof of (I) is given in §4. The main tool is the construction of
the Steinberg character of G due to C.W. Curtis. In §5, combining (I)
with an elementary lemma 2.4 we show
(III) Let X be an irreducible complex character of G contained in the
character i[1g| B—Glinducedfrom the trivial character 15 of B.  Then

2uect X(u) = | U X(1),
where X is the "dual character” (see Definition 2.8) of X.

In particulr, if % is trivial, % is the Steinberg character, whose degree is
known to be | U|. Hence we obtain the equality | G*| — | U]|? again.

It may be remarked that all the properties of G required for the proofs
of (I) and (IIT) are formal consequences of the following two facts:
(1) (B, N) is a split BN-pair (see [2; part B]).
(2) The commutator relations (Proposion 1.3(c)) are satisfied.

In §6 after recalling some known facts on regular unipotent elements, we
prove a key lemma 6.10. As the first application of this, we obtain

(IV)  Assume tht & is adjoint and p is goodfor ®. Let % be an irreducible
cuspidal character of G=GO,, and u a regular unipotent element of G. Then
X(u)=-1 ¢f X is contained in the character induced from a linear character of
U in 'general position” in the sense of Gel'fand and Graev [10], and X(u)=0
otherwise.

The proof of (II) is given in §7. We first prove the following result.

(V)  Assume thatp isgood for &. Let X be a non-trivial irredubcile character
of G= &, contained in i[1 5| B—>G). Then % vanishes on the set of regular unipotent
elements of G.

The main tool for the proof of (V) is Lemma 6.10 again. We also use
a result (Theorem 3.4) in §3. It allows us to assume that © is adjoint, in which
case the set of regular unipotent elements of &, forms a single conjugacy
class. Combining (V) with Lemma 2.4 we obtain (II).

It is quite likely that the main results (I) (II) reflect interesting relations
between the variety of unipotent elements and the Bruhat decomposition of &.

Notations. Let A4 be a set. If ¢ is a transformation of A, A, denotes the
set of fixed points of 0. Iffis a mapping from 4 into another set and B is a subset
of A4, f| B denotes the restriction of /to B. Let G be a group and H a subset
of G. Then Cg(H)denotes the conjugacy class of H. Let G be finite. The
inner product for complex valued functions /, g on G is defined by (/, g)¢ =

1G] Execf(x)ﬁ)- Let Hbe a subgroupf G and % a character of #. The
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character of G induced from % is denoted by i[X| H—G].

1. Finite Che valley groups ®,

Let G=@, be as in Introduction. In this section we recall some known
facts about G and establish some notations frequently used in the paper.
References are Steinberg [19], [20] and Bourbaki [3].

Let S3 be a Borel subgroup of @, and € a maximal torus of © contained in
S3.  We can choose S3 and £ to be fixed by 0. Then the unipotent radical 11
of S3 and the normalizer N of £ in © are also fixed by 0. We shall write
B, T, Uand N for the groups B,, ¥,, l,and N, respectively. Let W=N/T,
the Weyl group of © with respect to €. Then o acts naturally on 28 and the
group W=2L8, of fixed points is called the Weyl group of G (with respect to 7).
It is known that W is canonically isomorphic to N/T.

Let X(%)be the character module of &, and X CX(Z) the root system of
© with respect to &. For a¢&ZX there is an isomorphism x, of the additive
group (of K)onto a closed subgroup U, of © such that

(1.1)  tag(b)t = x,(a(t)k) (tEX, ke tf) .

Choose an order on X so that U=T],s,1, Let =* and I be the set of posi-
tive and simple roots respectively. We denote by o* the dual action of o| T
on the real vector space V=X(¥)RQ,R.

Lemma 1.1. ([20; §11]) Let the notations be as above.

(a) There exists a permutation p of X andfor each a <3 a power q(ct) of p
such that o*pa=q(a)a.

(b)  ox,(R)="2%p,(cR¥ ) for some c,e K* and all ke K.

(¢) Z=* and 11 are stable under p.

(d) Let = be ap-orbit of T1. Then Ilaecq(a)> 1.

For each p-orbit & of Il, let 3} be the set of positive roots which are
linear combinations of the elements of z. Then R'= {w 3} |lweW, 7 is a p-
orbit of IT} forms a partition of X.

We fix a W-invariant positive definite inner product on V=X(T)Q.R.
Then W can be identified with the Weyl group W(=) of the root system X.

Proposition 1.2. ([19; §11)]) Consider the projections a of roots a on the
subsapce V. of V.

(a) Let o, and a, be roots. Then @, is a positive multiple of o, if and
only if there exists an element a= R’ containing o, and o,.

(b) For each a=R’, let a be the shortest vector in {a@|asa}. Then
R={a|as R’} is a reduced root system in V ;.
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(c) The Weylgroup W of G is canonically (somorphic to the Weylgroup
W(R) of the root system R.

By Proposition 1.2 we can identify R with R and W with W(R). For
a=R we write w, for the corresponding reflection. Put R(S)={Z]|zis a
p-orbit of I} .  This is a set of fundamental roots (or base) of R. We denote
by R* the set of positive roots with respect to R(S). Let S= {w,|as R(S)}.
Then (W, §) is a Coxeter system. Hence a reduced decomposition s(w)=
(815 52 ==+, 8,)(5:€S) and the length lw) of w=W can be defined (see [3]).
The element of W of maximal length is denoted by wg.

Proposition 1.3. ([19; §11]) For ac R (=R')Jet U,=T]zes-

(a) W, is o-stable.

(b) Let U,=WU,)eand q,= |U,|. Then q,=Tlacqq(ct), where q(c)’sare
defined by Lemma 1.1 (a).

(¢) If a, bR and a=+-+b, the commutator (U,, U,) is contained in
IT U, jp,where the product is taken over all roots ia—+jb (i, j>0) arranged in
some fixed order.

@ wUw*— U,, founy we Wand a=R.

For weW, let Ri}={asR'|wa>0}, R;={asR"|wa<0}, U=
UNw'Uwand U,=UNw'U w,where U =wsUw3.
Lemma 14. ([19; §11]) Let w be any element of W.

(a) U=U};Uzand U; NU, = {1} .
(b) Uji= I1.U.(a=R;}) with the product taken in some fixed order and
there is uniqueness of expression on the right.

The quadruplet (G, B, N, S) is a Tits system. In particular G has the
Bruhat decomposition:
G = Uyew BuwB (disjoint union) .

Lemma 1.5. ([20; 11.1]) If {n,|ws W} is a system ofrepresentatives for
W=N|T,BwB=Bn,U, and each element x= G can be expressed uniquely in the
Jorm x=bn,u with be B, we W and ucs U-.

A subgroup of G which is conjugate to B is called a Borel subgroup. A
subgroup of G which contains a Borel subgroup is called a parabolic subgroup.

Proposition 1.6. ([3; Ch. 4, §2]) For each subset X of S, Let W x be the
subgroup of W generated by X. Then

(a) Px=BWxBis a parabolic subgroup of G containing B. Conversely,
any parabolic subgroup containing B may be obtained in this manner.
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(b)  Two parabolic subgroups Px and Py(X, Y CS)are conjugate to each
other if and only if X= Y.

(c) For X, YCS,there is a bijection between W \W|Wyand Px\G|Py
given by E—~BEB, Ec Wx\W/W,.

Lemma 1.7. Let X be an arbitrary subset of S, and wx the element of Wx
of maximal length.  Then the normalizer of U;, in G is the parabolic subgroup Px.

Proof.  Let 57 be the normalizer of Uj,_in G. By Lemma 1.4(b)and Prop-
osition 1.3(c), it sufficiesto show that n,, (w= W) is contained in 57 if and only if
w is contained in Wx. By Lemma 1.4 (b), U; =II.U,(a€R;,). Hence
n,& Jlif and only if R, CR;, i.e. R; DR;. By [3; p. 158, Cor. 2], thisis
the case if and only if we Wx. This proves the lemma.

DEFINITION 1.8. Let X be an arbitrary subset of S. Put Vy=Uj, .
We call V yxthe unipotent radical of the parabolic subgroup Px. In general,
the unipotent radical Vp of a parabolic subgroup P=gPxg '(g=G)is defined
by Ve=gVxg '. (The well-definedness of Vjpfollows from Lemma 1.7 and
the fact that P is its own normalizer in G.)

Lemma 1.9. ([3; p. 37, Ex. 3]) Let X, YCS. There exists a unique
element of minimal length in each (W x,Wy)-cosetin W.  Moreover, thefollowing
conditions for an element w of W are equivalent:

(1) w is the element of minimal length in W xwW .

2)  lww)=Uw,)+lw) and (ww,)=U(w)+Iw,) for all w,csWyx and
w, & Wy.

(3)  Uxw)>lw)and (wy)>lw)for all x€ X and y< Y.

DEFINITION 1.10. An element w of ¥ satisfying the conditions in Lemma
1.9 is called a (X, Y)-reduced element.

Lemma 1.11. Let XCS. There exists a unique element of maximal length
in each W x-cosetin W. Moreover, the following conditions for an element v of W
are equivalent:

(1) v is the element of maximal length in vWy.

2) v=wwxjor some (¢, X)-reduced element w of W.
) (vw,))=l(v)—lw,Yor all w,c W .

@) lvx)<l(v) fonall x= X.

Proof. Let w be an arbitary (¢, X)-reduced element of W. Any element
2’ of wW y can be written in the form v'=ww,’ with w,/e Wy. By Lemma 1.9
(2), I(v)=lw)+(w,). Thus the length of ¢’ is maximal among the elements
in wWxif and only if w/=wy. This proves the first assertion in the lemma
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and the equivalence of the conditions (1) and (2). If(2) holds and w,& W,
then [(ow,)=/wwxw,)=0{(w)+(wxw,)by Lemma 1.9 (2). On the other hand,
we have lwxw,)=/wx)—I(w,from [3; p. 43, Ex. 22]. Hence

o) = Iw)+(x)—Iw,) = [0)—(®),

which is (3). It is trivial that (3) implies (4). Assume that (4) holds. Let v,
be the element of maximal length in 9Wy. Then v=9o,w,/with w/& Wy. If
w1, there is an element x of X such that /(w,/x)<l(w,’). We have [(vx)=
l(v,w,/x) = l(v,) - (w,'x) = l(v,) - {w,")+1(x) = (v,2,)+x) = (0)+1x)>I(v), a
contradiction. Therefore w,/=1. Hence v=wv,, which is (1). This completes
the proof of the lemma.

Lemma 1.12. Any parabolic subgroup P of G can be uniquely written in the
Jorm P=uwPxyow 'u™*, where X is a subset of S, w is a (p, X)-reducedelement of
W and u is an element of UZ-1.

Proof. By Proposition 1.6 (b), X is uniquely determined by P. Assume
that u,w Pywi'ur ' =u,w,Pxwy 'ufor two distinct (¢, X)-reduced elements w,, w,
of W and some elements u,, u, of U. Then wi'us'u,w,= Pxbecause Py is its own
normalizerin G. Thusw,& Bw,Pyx. Onthe other hand, we have w, Wy 4w, W«
from Lemma 1.9. Hence Bw,PxN Bw,Py=dby Proposition 1.6 (c), a contra-
diction. This proves the uniqueness of w in the lemma. Next, assume that
wwPxw 'ur'=u,wPyw 'uzfor a (¢, X)-reduced element w of Wand elements

uy, u, of UZ-1.  Then w™'uz'u,we=Px. Thus we have
(1.2) w2z w,w( U yew, BvB).

By Lemma 1.9, (wv)=[w)+I(v)for all v& Wx. Hence u,wBvBC BwvB by
[3; p. 26, Cor. 1]. Therefore (1.2) implies that v,w=u,wB. Hence we have
w,=u, from Lemma 1.5. This completes the proof of the uniqueness part of the
lemma. Let P be an arbitrary parabolic subgroup. By Proposition 1.6 and
Lemma 1.9 there exist a subset X of § and a (¢, X)-reduced element w of W
and an element u of U such that P=uwPxw~'u~*. By Lemma 14 (a), u=u,u, for
some u,€ Uz-1and w,€ UX-1. Thus P=wuwPxw 'ur’. The proof of Lemma
1.12 is now complete.

2. Hecke algebra H((G, B) and characters in i[l;| B—G]

Let G be an arbitrary finite group, and B a subgroup of G. We denote by
C[G] the group algebra of G over a complex number field C. Then
e=|B|™' X),cpxis an idempotent in C[G] and the left C[G]-module C[G]e,
affords the character [15| B—G]induced from the trivial character 1, of B.
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DEFINITION 2.1. The Heche algebra H¢(G, B) is defined to be the sub-
algebra e,C[G]e, of the group algebra C[G].

Lemma 2.2. (Curtis-Fossum [8]) Let % be an irreducible complex character
of G contained in i[1;| B—G]. We also denote by X the corresponding irreduicble
character of C[G].

(a)  The restriction X|H(G, B) of Xto H(G, B) is an irreducible character
of H((G, B). Conversely, each irreducible character of H{(G, B) is the restriction
to H(G, B) of a unique irreducible character of C[G].

(b)  Let ay be aprimitive idempotentin H (G, B) corresponding to % | Ho(G, B).
Then ay is also a primitive idempotent in C[G] and the left C[G]-module C[Glay
affords  X.

Lemma 2.3. (Littlewood [15; §4.4]) Let > ,cc M.X be a primitive
idempotent in C[G] corresponding to an irreducible character X. Then

X(@)=1G11Cale™) [ {n}  (x€Ce(g™)) .

Let 4 be a set of representatives for the (B, B)-double cosets decomposition
of G. For a4, let

.1 e, = |B| ™7 2 iepan X -

Then {e,|las A} forms a C-basis for H¢(G, B). For an arbitrary element
h= 3cab.e, (h,=C)of H(G, B), define the following complex valued class
functions on G:

22 fu8)= Xacaha|Bl-' |Gl 1Cs(g™") 1" |BaBN Cs(g™)\ .
Later, we shall often require the following lemma.

Lemma 2.4. (a) Let % be an irreducible character of G contained in
i[15| B—G],and ay a primitive idempotent in H (G, B) corresponding to % in the
sense of Lemma 2.2. Then

X(g):fax(g) (gEG) ’

where f,_is the class function on G defined by (2.2).
(b)  Each function f, (he H{(G,B)) can be written as a linear combination of
irreducible characters contained in [ [15| B—G].

Proof. (a) This is a consequence of Lemma 2.3, (2.1) and (2.2).

(b) Let X(G, B) be the set of all irreducible characters of G contained in
{[13|B—G]. It suffices to show that each f, (e Axan be written as a linear
combination of elements of X(G, B). Since H{G, B) is a semisimple algebra,
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it is isomorphic to a direct sum of full matrix algebras M(n;,C) (i=1, 2, ---,m).
It is easy to see that each algebra M(n;, C) has a basis which consists of primi-
tive idempotents. Hence H(G,B) also has such a basis {v;|1=j<N}
N=\4\). Let ¥;=2acaC;qa(c;, €C,1=j=N) Then, from part (a) we
have

(2.3) 2eeataf,=%; (1=j=N)
for some X ;= X(G, B). Solving (2.3) in f, (ac A), we get the required result.
We shall also need the following

Lemma 2.5. fur=Ff foallelements h, k of H¢(G, B).

Proof. Let x and y be any elements of G. Then xy and yx belong to the
same conjugacy class of G. The assertion follows from this fact and (2.2).

Assume henceforth that G is a finite Chevalley group and B is a Borel
subgroup of G. We shall also use other notations given in §1. By the
Bruhat decomposition of G, {e,|wsW} (see (2.1)) forms a basis for H¢(G, B).
Hence for any element 4 of H(G, B) there exist unique complex numbers
[h : e,) (we W) such that 2=3cw [A : €] €,-

Theorem 2.6. (Iwahori [2], Matsumoto [16]) Let ind e,= | BwB/B| for
we W, and q.=inde for s€S. Then

(@) ¢ = ¢ = acag(@) if s=1w, withacR(S).

(b) [ewew : €] = BwBNn,Uymn,-1| for all elements w , w' ', w” of

(¢) ForseS and weW,
e, = e, = ¢e,,
e, = ey if I(sw)>l(w)
and ey = qewt@ Ve, if lsw)<lw).
(d) If s(w) = (5,8, ***, 5,)s;€8) is a reduced decomposition of we W,
then
Ry~ Rsis, Ps,-
(e) Let the notations be as in (d). Then
mde, = |Us| = 4595, -

Proof. (a) This is a consequence of Lemma 1.5 and Proposition 1.3 (b).
(b) By [12; (3)], the left hand side is equal to |(BwBNw"”Uw'~'B)/B]|,
which is equal to |BwBNn,”U,mn,’-1|by Lemma 1.5.
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(c) and (d) are proved in [12] and [16].
(e) is a consequence of (d) and [12; Lemma 1.2].

By Theorem 2.6 (c) we have

4 (&)= g HeA(1—g)e}  (s€9).

By (2.4) and Theorem 2.6 (d), e, is invertible for an arbitrary we W.
The following theorem was obtained by O. Goldman (see [12]) for untwisted
Chevalley groups G and by R. W. Kilmoyer [14] for general G.

Theorem 2.7. The Hecke algebra H (G, B) has an involutoryautomorphism
defined by

é, = (—1)Y" Uz |(ep-1)".

Let % be an irreducible character of G contained in #[15|B—G],and ay a
primitive idempotent in H¢(G, B) corresponding to % (see Lemma 2.2). Then
ay is also a primitive idempotent in H¢(G, B). It is easy to see that the irre-
ducible character of G corresponding to a, is independent of the choice of ay.

A
DEFINITION 2.8. Let the notations be as above. The dual % of % is
defined as the irreducible character of G corresponding to a,.

REMARK 2.9. In [14], R. Kilmoyer defined A% by /(\X[HC(G,B))(h):
(X 1H(G, B))(k). Itis easy to see that these two definitions are in fact identical.

Notation 2.10. Let w, @’ and @” be any elements of W, and s(w)=
(S5 S7-1, =+ »$,) areduced decomposition of w.We denote by S(s(w), w' ', w’’)
the set of all integer sequences J=(Js Jr-1, ***»Jo)satisfying the following condi-
tions (cf. [2; (3.19)]):

@) lw)=1zji>ip1> " >ji>1,=0

(b)  s;,8;, ;0 =w"yhere we put §;,=5=1 for convention.

(c) (568 1,8 50,7085 0") <U(s;,85, 8 ;0w for j,<p<jpy, if 0=h=<k—1 and
Je<p=lif h=k.

For each J€ 4(s(w), &', w”)we put Ji={jsEJ |Us;,8;,_,5;0)<Us;,_,
s;2)} and J,={ju,EJ |js+0, jac J:}.

Notation 2.11. Let S;(¢l)be the equivalence classes for the relation s
is conjugate to r in W between elements s, r of S. Let ¢=(¢;);c; be a family
of indeterminates indexed by /, and for each s&.S define #, to be ¢;if s&.S;.

DEFINITION 2.12. Let w, ' and @” be any elements of W. Using the
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above notations we define the following polynomial in ¢=(¢;);e;:

F(w, o', w”’)(t)= F(w, @', w")((t:)ier)
=237 {Il;e5, V I, (¢,— 1)} (JEJ(s(w), v, w))

where s(w)=(s;, §;-1, ***,$,) is a reduced decomposition of w.

REMARK 2.13. The polynomial F(w,#’, w”)(t)does not depend on the
choice of a reduced decomposition s(w) of w. This fact follows from Lemma
2.14 (b) given below.

Lemma 2.14. (a) Lets, r be elements of S. Then q,=q, if s and r belong
to the same equivalence class S; defined in Notation 2.11.

(b) Put q;=q, if S€S;. Then [een': e, ]=F(w, w', w")(¢:)icr) for all
elements w, w’ and w" of W.

(©)  [ewtuw: e/ 1=[bueu ns: ew'wslfor all elements w and w' of W.

Proof. (a) This is a consequence of Theorem 2.6 (a) and Proposition
1.3 (d).

(b) We will prove this by the induction on the length /(w)ofw. It is easy
to see that (b) is true if w=1. Let s(w)= (s,,5,-,, ***, ;) be a reduced decom-
position of w== 1. Then /(s,w)<I(w). By the induction assumption,

es/wew, = EvEWF(slw) w/’ v)((qi)fel)ev .

Multiplying e;, from the left, we have

v’ = 2pew F(sw, o', 0)((9:)icr)es 60

by Theorem 2.6 (c).
Comparing this formula with (b) and using Theorem 2.6 (c), we see that it
suffices to prove the following:

() F(w, @', w")(t)=F(swa’, s,w")()+(t,—1)F(s,wp’, w”)(t) if Usn”)<
i) .
Q) F(w, if, ') (&)=t F(swa’, sw”)(t) if l(s,w”)>Uw").

We first prove (1). Let J'=(j,/, - ,j,/)be an element of 4(s(s,w), w' ', s,w”),
where  s(s,w)=(S;-1,S1-5, ***»8). Then J=(,j,,:*,j’) is an element of
Hs(w), @', w”). Next, let J”=(j,", -+, j,”) be an element of J(s(s,w), w’, w”).
Then J=]"is an element of Z(s(w),w’, w"). In fact the condition in Nota-
tion 2.10 (c¢) is satisfied by the assumption that [(s;%”) <[(w’’). Moreover,
every element J & J(s(w),w’, w") can be obtained from J'& J(s(s,w), ', s,w’") or
J'e4(s(s,w)p’y w") in this manner. Hence, from the definition of
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F(w,w’, w”)(t), we obtain (1). To prove (2), we note that for any element
j:(jle’ Jie-1> “**5 Jo) of é‘(s(w), v, w”)»].kmuSt be / and J' =k J-2> =5 J0)
is an element of J(s(s,w),w ', s,w”). This follows from the assumption that
I(s;w"")>l(w").The rest of the proof is similar to that of (1). The proof of (b)
is over.

(c) By Theorem 2.6 (c) and (2.4), it is easy to see that for s& Sand we W,

€Cwuws — —Iswws if l(Sﬂ))>l(iU)
and €.£,,,= — Cumwst (§s—1) €uups if I(s2)<lw).

By the almost same argument as in (a), we get
[éwew,ws ew”w,g]= E(w’ 'ZU/, ‘w//)((qi)iEI) ’

where E(w, w' ', w”)(¢) is a polynomial in ¢=(¢,); ;defined as follows:

E(w, ', w”)(¢)
=2 {0 e (—t) e, -1 (JEH(s(w), w', w"))

where s(w)=(s,, §,_,, **,$,) is a reduced decomposition of w.

Therefore, for the proof of (c) it sufficies to show

2.5) Hje]l ts,' = HjE]z tsj

forall J J(s(w), o', w”)(w,w'eW). Let J=(jg, je-1, **»Jo)- Then $;5,, "
s;w'=w". Hence (2.5) is a special case of Lemma 2.15 (b) below.

Lemma 2.15. (a) Let w be an element of W, and s(w)= (s,, 85, ***,$§;) @
reduced decomposition of W. Then the monomial t,=tt,, t, is independent
of the choice of reduced decomposition s(w).

(b) Let (5,5, , Sm) e a sequence of elements of S.  Put w=s,s, +*s,,. Then

R
where a;=1 or —1 according as l(s,5,+ s;-,) <l(s;S, s )or U(s;s, s;_)>U(s:8, ;)
respectively.

Proof. (a) This follows from [3: p. 16, Proposition 5.].

(b) We prove this by induction on m. If m=[ the assertion is trivially
true. Put «w'=ss, s,.,. Then by the induction assumption we have
ty=totztenl I w)=Uw's,)>Uw'), t,=t,t.by part (a). If [w)=
l(w's,,) <lw'), t,/=1t,t, by part (a). In any case we have &,=ti't;2-- ", as
required.
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3. Central isogenies and characters in i[l1z|B—G]

The main purpose in this section is to prove Theorem 3.4. This result,
which is of independent interest, will be used in §7.

First we recall some facts on central isogenies. References are [5] and
[2; §2]. Let © and ©' be connected semisimple linear algebraic groups defined
over an algebraically closed field K, 33 a Borel subgroup of ©, and & a maximal
torus of © contained in 33. We also use other notations in §1. Assume that
there exists a central isogeny +: &—®&’. Then the following statements are
valid:

3.1 B/ =+(B) is a Borel subgroup of ©'.
(3.2) T'=+(T)is a maximal torus of ©' contained in B'.

(3.3) Let X(Z)and X(¥') be character modules of X and &’ respectively.

Let v*: X(¥)®R,Q—X(%) Qzbe the Q-linearextention of the transpose of
Y |€. Then «* is injective and Y*(X(T))cX(L)and ¢ *(Z')=Z, where 3/
is the root system of ©' with respect to ¥’,

(3.4) W=y W) is the unipotent radical of B’ and |U: U-W is an
isomorpism.

(3.5) For a€ %, ttf /= +r(1,) is the root subgroup of ©' with respect to a/
correspondingto o’ =+r*"(ax).

(3.6) J=1r(N) is the normalizer of 37 and ) induces an isomorphism
from the Weyl group W=N/T of © onto the one W=W|T of &. If w,(xsZ)
is a reflection in W, then Jo(w,)=w,/, where o’=* ().

In the following, let ©, 33, o, G, B, etc. be as in §1.

Theorem 3.1. (a) Let © be the simply connected group of the same type
as &, and let r: ©— > be a central isogeny. Then there exists a unique surjective
endomorphism o of Ssuch that (1) Jrog=gcorand (2) S <oo.

(b) Let ©' be the adjointgroup of the sme type as ©, and let p: &—&' be a
central isogeny. Then there exists a unique surjective endomorphism o’ of ©' such
that (1) AJroo =a"or and (2) \ & ,/| < oo.

Proof. (a) First we remark that o: @—® is an isogeny because of the
fact that ker ¢ is trivial ([20; 7.1]). The unique existence of an isogeny
&: ®—® satisfying (1) follows from [20; 9.16]. Next, we prove that (1) implies
). Let x@; By (1), 1}f(x)e(§5;. Because ker +» and &, are finite, ®; is

finite also.

(b) The uniqueness of ¢ follows from (1) and the surjectivity of 4». We
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prove the existence of an isogeny o’ satisfying (1). Since & is adjoint, X(¥’)
is the Z-module generated by =’. By (3.3) *(X(T"))is the Z-module =,
generated by X. Since o* preserves Xz by Lemma 1.1, we can define an
automorphism y of X(%’) by y=(y-*) 'og*oqp*. From Lemma 1.1 we have
V(@ )=q(p~ ¥ (&))(r*)op~roh* (o) for all @’ €X', Thus the existence of
an isogeny o' satisfying (1) follows from [5; 18-07, Proposition 5]. Next, we
prove that (1) implies (2). Assume that &/ is infinite. From the surjectivity
of 4 and the finiteness of ker r, we see that the set A— {x EG | o’ or(x)=1yr(x)}
is infinite. Since A= {¥=G|x 'o(x¥)=ker+r} by (1) and ker ¢ is finite, this
fact implies that 4 ,={x=G|x 'a(x)=c}is infinite for some c&ker \r. Ify
and z are elements of 4, we have ¥~ 'a(y)=2"'0(2)ji.e. y3'€®,. Hence &,
must be infinite, a contradiction. This proves (b).

Let 4r: @—® be a central isogeny and ¢’is a surjective endomorphism of
&’ such that yroo =o’0yr. By the proof of Theorem 3.1 (b), such ¢ is unique
and G'=® ’sis finite. In the following, the endomorphism ¢’ is denoted
simply by o.

Theorem 3.2. Let the notations be as above.

(@) B'=vy(B) and T'=r(T)is fixed by 0. (In the following, we write B’
and T for B,’ and T, respectively.)

(b) * induces an isomorphism, which is also denoted by ~r*, from the root
system R’ associated to (G’, T")(see Proposition 1.2) onto the one R associated to
(G, T).

(c) ) induces an isomorphism between U and U’=1..

(d) If acRithen y(U,)=Uy=(Il uea’ Ws)s, Where a’=+*""(a).

(e) r induces an isomorphism, which is also denoted by ty, from the Weyl
group W=R,|Tpf G onto the one W'=N|T/of G . If ac R, then Jr(w,)=w,’,
where a'=+r*"(a).

Proof. These are easy consequences of the properties (3.1)~(3.6) of +r,
the assumption ‘““roa=aoq)’’ and the definitions (of R, W, U, ***).

Corollary 3.3.  Let the notations be as in Theorem 3.2. The Hecke algebras
H(G, B) and H(G", B’) are isomophicby the natural mapping: e,,—eg.,(we W).

Proof. This follows from Theorem 3.2 and Theorem 2.6.

From Theorem 3.2 and Corollary 3.3, we may identify R, W, U, U, (a€R)
and H(G, B) with R/, W, U’, Uy (a’=+*""(a)) and H(G’,B’) respectively.
Put H=H(G,B)=HG',B’). Let X(G, B) (resp.. X(G’,B’))be the set of irre-
ducible characters of G (resp. G”) contained in #[15\ B—>G] (resp. i{[1,\ B'—G"]).
Let % be an element of X(G, 5), and A a primitive idempotent in H such that
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the left C[G]-module C/GJh affordsX’ (see Lemma 2.2). Let X’ be an element
of X(G',B’) afforded by the left C[G’]-module C/G'/h. The correspondence:
X—X’ from X(G, B) into X(G’, B’) is clearly well defined and bijective.

Now, we can state the main result in this section:

Theorem 3.4. Let the notations be as above. For he H, let f,, be the class
Sunction on G defined by (2.2) and f, the classfunction on G' definedin the same
manner.

(a) For any he H,f, equals f,/ identically on U (= U").
(b) //x=X(G, B) and X' = X(G’',B’) corresponds to each other in the sense
mentioned above, % equals X' identically on U (=U").

For the proof, we require some preliminary results.

Lemma 3.5. Let B be the set of all Borel subgroups of G, and for we W,
let O, be the set of all couples (B,, B,)& BX B which are G-conjugate to the pair
(B, wBw™"). Then

BXB=U pew O (disjointunion) .

Proof. Let (B,, B,) be an arbitrary element of B x B, and let g,, g, be
elements of G such that B;=g;Bg;'(i=1, 2). Then, the couple (B,B,) is
conjugate to (B, g7'g,Bg;'g,)). By the Bruhat decomposition of G, there exist
b,b’=B and we W such that g{'g,=bwb’. Hence (B,, B,) is conjugate to
(B, wBw™), i.e. contained in ©@,. Thus we have BX B= U pew O,. Next,
we prove the disjointness of this decomposition. Let w and @’ be distinct
elements of W. Assume that O, 1 O,/¢. Then (B, wBw™')and (B, w'Bw’™")
are conjugate to each other. Hence there exist an element x of G such that
xBx™*=B and xwBw ™ 'x " *=w’Bw’~*. Because B is its own normalizer in G, we
have x= B and @' 'xwe=B. Hence BwB>=w’, a contradiction. Therefore, the
decomposition is disjoint.

Lemma. 3.6. Let the notations be as in Lemma 3.5. For we W and g=G,
define the subset F,, of B by

Fow=1{B.€3B|(gB,g™", B)EO.} .
Then

@ B=UpewF,.  (disjointunion) .
(b) [Fewl= G |B[7[BwBNCs(g™)| Calg™) ~'=fc,(8) for allgEG.

Proof. Part (a) follows from Lemma 3.5. We shall prove (b). Letgbe a
fixed element of G, and for we W, let 4, be the set of all (B,g")e Bx Cs(g)
such that B’ F,/,. Then we have
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Aw = U B1eB Aw(Bl) ’

where 4,(B,)=A4, N ({B} X C¢(g)). Let B,=x,Bx{'with x, € G. Assume that

A, (B)=(B, ¢, i.e. (&%Bx"'¢g 'x,Bx7)e0,. This is the case if and only
if ¢ 'ex,(BwB)x*. Hence A,(B))| is equal to |x,(BwB)x{'NCs(g )=
| BwBN Cg(g™*)|. Therefore

3.7) |4, = |G|IB|7"|BwBNCs(g™")I .
On the other hand, we have
Ay = Ugeco(Fu,g X {8:})
Clearly |F,(g,)\ = \F,(g)\ forg,e Cq(g). Hence
(3.8)  |Aul=1F,,11C(g) = |Fugl|Colg™) | .
From (3.7) and (3.8), we have
|Fyel = 1G||B|'[BwBN Ce(g™")| |Calg™) 7",

as required.

REMARK 3.7. Let G be a (finite or infinite) group with a BN-pair (B, N),
and W its Weyl group. Then, by the same arguments as above, we get a
decomposition of B= Cg(B):

QZ UwEWFg,w'

Proof of Theorem 3.4.

(a) It sufficies to prove the assertion for k=e, (wsW). Let B, be a
Borel subgroup. By Lemma 1.12, B, can be written uniquely in the form
B,=u,w,Bw'u" with w,€Wand v,€U__,. Let u be an element of U and
assume that B, is contained in F,,, i.e. EuulwIBwl‘lul“u‘l,ulwlef‘uf‘)E@w.
This is the case if and only if w 'u; v 'u,w,& BwB. Hence

[ Fuwl = Zwew! €U |0l ulu vw, € BuB} | .

By Theorem 3.2, the right hand side of this formula remains invariant when
G, B, Wetc. are replaced with G’, B’, W’,etc. Since f, (u)=1 F,, 1 by Lemma
3.6, the proof of part (a) is over.

(b) Let ke H(=H(G, By=HG’,B’)) be a primitive idempotent cor-
responding to % and X’. Then X=f,and X’=f,’ by Lemma 2.4. This fact,
together with part (a), implies (b).
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4. Unipotent elements in (B, B)-double cosets

Let P be a parabolic subgroup of a finite Chevalley group G. By Lemma
1.12, P can be written uniquely in the form P=uw’Pyw’'u™', where X is a
subset of 5, =’ is a (¢, X)-reduced element of Wand u is an element of UZ/-1.
Lect G* be the set of all unipotent elements of G. The main purpose of this
section is to prove the following

Theorem 4.1. Let P=uw'Pyw' 'u™' as above. For an arbitrary element
w of W, the following formula holds.

|G'NBwBN Pl = |BuBNwwy Uz, wi'w' =4 |U /| .

wwy

Before proving the theorem we state some corollaries which can be deduced
easily from it.

Corollary 4.2. |G'n BwB \ = |w;Uws'N BwB | | U]|.

Proof. Put P=G in the above theorem. In this case, X=§ and a'=1.
Hence we have the desired formula.

Corollary 4.3.  Let P be as in Theorem 4.1, and let F(w,,w,, w,)(t)(w; €W,
i= 1,2, 3) be polynomials definedin § 2. Then \G*' N BwBIl P =F(w, w'wx, w'wy)
((Qi)iel) HaeR*(w') q,- 1nparticular, \G1 I1 BwB| :F(w’ Ws, ws)((qi)iel) Ha>0 9a

Proof. This follows from Theorem 4.1, Theorem 2.6(b), Lemma 2.14(b)
and Lemma 1.4(b).

Corollary 44. |G'|=|U|"

Proof. From the Bruhat decomposition of G we have |G'| =>",cw|G*
IT1 BwB|. Applying Corollary 4.2 we get G*|=>"yew lwsUws' I BwB | U,
which equals | U|?. This proves the corollary.

REMARK 4.5.  The Collorary 4.4 was originally proved by R. Steinberg [20].
We shall give another, more direct, proof of Corollary 4.4 in Remark 4.9.

The proof of Theorem 4.1 requires several lemmas.

Lemma 4.6. Let X be a subset of S, and &x the character of the parabolic
subgroup Px of G defined by

Ex = Dyex (=DM z.[11:Y|PY‘“'>PX],

where 1p_ is the trivial character of Py.  Then the following statements are valid:
(a) &x is an irreducible character of the group Px.
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[Usel  of xEVy,

®) & =1, if xeU—Vy.

Proof. (a) Let Nxbe the subgroup of Pxgenerated by 7T'and {n,\we W}
Then (B, Nx) is a BN-pair in Pyx. Hence (a) follows from [6; Theorem 2].

(b) Applying [6; (3.5)] to Px we obtain &x(x)=i[lr.y, T Vx—B](x)for
x€B. Since Vy= U, is normal in B (see Lemma 1.7), éx(x)=0Ufx= U— Vx
and éx(x)=|B||T Vx| '=|U||U, | '=|U;, for x&Vy, where we used
Lemma 1.4(a). This proves part (b).

DEFINITION 4.7. The irreducible character & xof the group Pxis called
the Steinberg character of Py.

Lemma 4.8. Let XCS. Then

lpx = 2lyex ('—1)|Y1i[EYlPY'_>PX]

Proof. By Lemma 4.6 and transitivity of induction, the right hand side
of the above formula equals

Eycx (—l)m {EZCY (—l)lz'i[lpzlpz‘*l)x]} .
The coefficients of Z [1p,| Pz—>Px] in this expression is
{Pzevex (1)} (—1)21,
which is equal to 0 if Z#Xand 1 if Z=X. This proves the lemma.

REMARK 4.9. Here we show that Corollary 4.4 follows easily from Lemma
4.6 and Lemma 4.8. As already remarked in [6], Lemma 4.6 with X=.§ implies

.1 Ul =Zyrcs ()G | Py| .

Let O be the class function on G which is defined to be 1 on G* and 0 outside
of it. Then using Lemma 4.8 with X— § and Frobenius reciprocity we obtain

(9, 1G)G = Zxcs (_1)IY|(5|PY’ EY)PY .
Hence, by Lemma 4.6 (b),
42 |GG = Zyes (D) Py| U .
Combining (4.1) and (4.2) we obtain | G| = | U|? as required.

Lemma 4.10. Let X and Y be subsets of S such that Yc X. For x=G,
let

Py y(x) = {P'ECp,(Py)| Vproa} .
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Then )
|Ug, | Mi[ey|Py—=Px](x) if x=G'NPx

0 if x€G—G'NPyx.

Proof. It is clear that |%Px y(x)|=0if x&G—G'NPx Let x be an
element of G*N Px. Let Ax y(x)be the set of all couples (P,x")& Cp,(PyX
Cp (x)such that Vp'2x’. Then

Ax,y(*)= U p, Ax, v(%, P,) (P,eCp (Py)),
where uqx,y(x, P1)=JX,Y(xh ( {P} X CPX(x))'

| Pnl)] = {

Clearly | Ax,v(%,P) 1=1Ax v(*, Py)] =1 VA1 Cpg(*)]. Thus we have
“4.3) | Ax,v(%)| = Px| [ Py| | VyN Cpy(x)].
On the other hand, we have
Ax y(®) = U, (Px,y(®)X {x}) (%0, € Cp (%)) .
Hence
“@.4) [dAxy)] =1Px yx)] |CPx(x)|-
By (4.3) and (4.4),
| Px v(x)\ = |Px |Py| | Vy NCp (X)) 1 Cp (%) 7" .
Hence, using Lemma 4.6 (b) we obtain

| Px,v(x)| = |Ug, | "i[éy | Py—Px](x),
as required.

Proof of Theorem 4.1.

Since G* I1 BwB is invariant under conjugations by elements of B, we may
assume that u=/. Then from Lemma 4.8 and Lemma 4.10 the left hand side
of the equality stated in the theorem is

45 Zvex (=) Zp @'V TN BwB| | Uy, !,

where the second sum is taken over the set Cp (Py)for each Y. By Lemma
1.12 each element P’ of Cp (Py)can be written uniquely in the form P/=
ww" Pyw” '~ ,where w”, is a(¢, Y)-reduced element of Wyand «/is an element
of UzZr-1, Thus the expression (4.5) is equal to

(4.6)  Dyex (D)2 w0 Vyw" 0 N BwB| Ugr-a| | Uy, |,

where the second sum is over the set of all (¢, Y)-reduced elements of Wy for
each Y. The summand corresponding to Y and «” is

“.7) |w'w” (U NwyUwy)w” 0’ "N BwB)| Uy 74| | Ug,| .
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Using Lemma 1.4 and the fact that @'w” is (¢, Y)-reduced the first factor in
(4.7) can be written as

I (w/w// U;,w,,w//—lw/—l)(w/w//wy Uw ;1w//—1w/-1 N U) N BwB ‘
= |w'w" Uyt~ 1 BuB| |w'w"wy Ung'e” "o/ N U| .

We have also |waw"wy,Uwy'w N U|\Uz 1|\ Ug,\ = \Uy| from
Lemma 1.5 and Theorem 2.6 (¢). Hence (4.6) is equal to

4.8) Dycx (D) (w'w Uyt '’ N BwB|\ U] .

For each "', let X(w")= {s€X| [(w"”s)>I(w")}. Then the coefficient of
lw'w” Uy’ e’ T1 BwB 11U/ in (4.8) is

2lvexaw (—1)Y1,

which is 0 if X(w"”)£¢and 1 if X(w”)=¢, i.e. w’=wy. Hence (4.8) is
equal to

|w/wy Uyt wiz'e’ 11 BwB1 1U] .

This proves Theorem 4.1.

5. Unipotent elements and characters in i[l1;| B—G]

The purpose of this section is to prove the following

Theorem 5.1. Let % be an irreducible character of a finite Chevalley
group G contained in the induced character i[lz|B —G]. Let X be a subset of
S, and &y the Steinberg character of Px. Then

2uect X(W)i[1p | Px = G](u) = Slect X(@)i[ed Px = Gl(w),

where G* is the set of all unipotent elements in G and )2 is the dual (see Definition
2.8) of X.

Consider the special case where P=G. Then using Lemma 4.6 we obtain

Corollary 5.2. Let the notations be as in Theorem 5.1. Then
A
Suect X(u) = |U|X(1).

REMARK 5.3. Let ¢ be a semisimple element of G. Denote by Z'(¢)the
set of unipotent elements of G which commute with 7 It is likely that the
following formula holds for any irreducible chatacters X, and X, of G which are
contained in Z[15|B—>G] :

A A
G.D 2 ezt Xa(tu) Xy(tu)= Duezirr Xa(tu) Xy(tu) .
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We shall state some evidences for (5.1). (1) Theorem 5.1 follows from
the formula (5.1) with = (2) Let ¢ be an element of 7 such that its cen-
tralizer coincides with I'. From a result of C.W. Curtis [7] we have X(¢)=¢&x(1)
for any % in 7[15|B—G],where {y is the character of W corresponding to % by
a fixed isomorphism between C[W]and H¢(G, B) (see [19; Theorem 48]).
Since &3(w)=(—1)"*’¢y(wlor we W, (5.1) holds in this case. (3) When G is
of type 4, and G=@, is untwisted, (5.1) can be proved for an arbitrary semi-
simple element ¢ using a result of J.A. Green [11] (see also [13]).

Now we turn to the proof of Theorem 5.1.  First we prepare some lemmas.

Lemma 5.4. (a) Let X be a subset of S. Then X* = {x*=wsxws \we X}
is also a subset of S.

(b) Let X and X* be as above. An element w of Wis (¢, X)-reducedif and
only if wwxwgs (¢, X*)-1 educed.

Proof. (a) This appears in [3; p. 43, Ex. 22].

(b) Since (X*)*=Xand wxwswxsws=1, it suffices to prove the if-part.
Assume that wwyws is (@, X*)-reduced. Then, (wwxws wxx*)=1/wwyws)+
Jwyx®) for all x€X. Hence, for all x€X, (wrws)=Nwwyws)+Awx)- [ =
Nww ywsws)—1=[wws)—1. Therefore Jwx)=/(w)+1 for all x&X. Thus w
is (¢, X)-reduced.

Lemma 5.5. Let X and X* be as in Lemma 54. Let v’ be a (¢, X)-
reduced element of W. Put P=w'Pyw'~'and P*=w'wywsPyx-.w3'wxz'ew' ™. Then,
Jor an arbitrary element w of W, the following formula holds.

|IG*NBwBNP| |Uy| = Xewlén: e]| BoBN Vps| | Ugr| .
Proof. By Theorem 4.1, the left hand side of the above formula is equal
to
I1BwBTI rfw, Uyt wx'w' 1 U .
By Theorem 2.6 (b) and Lemma 2.14(c), this is equal to
—Lewewlwx : ew/wxj‘ll Dﬂl = .l—_éwew wxws' ew'wsti (Y YII
= Dlewllu: ev][evew'wst:ew/wstﬁ ‘OTI'
=SV e w[é,: ¢,] 1 BvBTMw'wywUws'wx'w'  NU | |U| .
On the other hand

Vpr = wwywsV pws'wy'aw ™
= w'wyws(U Nwswxws Uws'wx'ws ) ws'wy'w'
= ww ywsUnws'wx'w' ' Naw'w Uwg'ew' ™

= (wwxywsUws'wx'e' ' N U Y w'wsUws'w'"'n U),
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where we used Lemma 1.4. Hence we have
IBvBN Vpx = BovBNwwywsUws'wx'w’ N U™ Uyl .
Therefore
|IG*NBwBNPI Uy | = Shewlés:e,) |BbBN V| |U||U 7| 7"
Since |U|| U=\~ = |UZ \ by Lemma 1.4 (a), the proof of Lemma 5.5 is over.

Lemma 5.6. (a) For weW, let w¥*=wwws'. Then |BwBNC|=
I Bw*B N C| for any conjugacy class C of G.

(b) Let X and X* be as in Lemma 5.4 (a). Then i[éx]Px—>Gl=
ilex+ | Px—G).

Proof. (a) By Theorem 2.6 (c), €, ¢€,(€uws) =€ € i~ 1€0(Crosi0-1€0) =%
Hence, by Lemma 2.5 we get f, = f,,,, from which (a) follows.
(b) By Lemma 4.6 and the definition of Y* for Y .S,

i[¢x|Px = G/ = 2yex (_l)lyli[1P7|PY—>G]
and i[SX*|PX* —> G] = EYCX (—1)]Y*‘i[lpy*lpy* - G] .

Hence, for the proof of (b) it suffices to prove
(5.2) i[lp,|Py — Gl=1i[lp+|Py+— GJ
for YcS. By the Bruhat decomposition of Py and Py+, we have

[Pyn C(x) 1 = ZWEWY \BwB I Ce(x)1
and 1Py« T1 CG(x)\ = ZWEWY [ Bw*BT1 CG(x) |
for any xG. Hence |PyNCg(x)|=|Py+NCg(x)py part (a). This fact,

together with the definition of induced characters, implies (5.2). The proof of
(b) is over.

Lemma 5.7. Let X be a subset of S, w an element of W, and x an element
of G. Then

(a) Je (®)i[Ex | Px — G](x)| Ce(x) |
= |G| |B| ™" 2plecepp [BwB n VIl Co(x)| | Uy, |
() e ®)i[lpg|Px — GI() Co(x)1
= |G||B| ™" Xp’ecep > 1 BWBTIP TCq(x) 1 .
Proof. (a) Consider the set H=I(x, w, X) of all triplets (x', B/, P')&

Ce(x) X BXCe(Px)such that (x¥’B'x’'B)e0, and a’€ Vp’, where B and O,
(we W) are as in Lemma 3.5. From Lemma 3.6 (b) and Lemma 4.10, we have
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(5.3) Si =fe,(®)i[¢x|Px> Gl(x) Co(x) \ Uz ™.
On the other hand, 4 can be decomposded into a disjoint union U g 5 H(B,),
where  H(B,)=H(Co(x)x {B,}x Cs(Px)). Clearly | H(B,)\ = \HB)\ =
2 p’ecqpyy | BWBN Vpl Cg(x)|. Hence
(5.4) THT=IGIIB1" Dprecyry> | BWBTIV,p T Co(w).

The formula (a) follows from (5.3) and (5.4).

(b) Consider the set Q(x, X) of all P’ Cs(Px)such that xeP’. Then,
by a similar argument as in the proof of Lemma 4.10, we get
(5.5 10xX)1 =i[lp 1Py — G)(x)
Next, consider the set .L=_L(x,w, X) of all triplets (x', B/, P')& C¢(x) X B X
Cs(Px)such that (¥ B'x""*,B')eO,and ¥’ €P’. Using (5.5) instead of Lemma
4.10, we get

| L] = fe (®)i[lpg | Px — G](x)| Cg(x)|
=|G||B| ™ 2p’ecery 1 BWBNP' TICs(%) 1

by a similar argument as in (a). This proves (b).

Proof of Theorem 5.1.

Let a, be a primitive idempotent of H¢(G, B) corresponding to % (see
Lemma 2.2). Then X=fu7=2 vew [ax: €u]f., by Lemma 2.4 (a). Since
thZZLepr[D%: ew] éwzz:wEW [aX: ew] (ZvEW [éw: ev] ev)7 *:fa'x= ZwEW[aX:ew]
Cew [é,: e)f.,) Hence, for the proof of Theorem 5.1 it suffices to show
(5.6) 2ucct fo (Willpy | Px — G](u)

= 2hvew [8u: €] (Zucc fo,(W)i[€x | Px — G](u))
for eachwe Wand X S. By Lemma 5.7 (b) and Lemma 1.12, the left side
of (5.6) is
IGIIB|7' 2} |G NBwBNw'Pyw' ™| | Ugr-1]| ,
where the sum is over the set of all (¢, X)-reduced elements =’ of W, By
Lemma 5.5, this is equal to

|G| 1B 7" 2w 2ew [€w: ¢] \BoBNwwxwsV xsws'wx'w' ™ | [Ug| .
By Lemma 5.7 (a) and Lemma 1.12, this is
2hew [Cw: €] (Zuec' fo,(W)i[€x+| Px+ — Gl(w))

which is the right hand side of (5.6) by Lemma 5.6 (b). This completes the
proof of Theorem 5.1.
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6. Regular unipotent elements and induction from the subgroup U

The main results in this section are Lemma 6.10 and Theorem 6.12.
We begin by recalling some known facts on regular unipotent elements.

An element x of a connected semisimple linear algebraic group © is called
regular if the dimension of its centralizer Ze(x) is equal to the rank of ©. R.
Steinberg [18] proved the following

Theorem 6.1. Let & be a connected semisimple linear algebraicgroup, B a
Borel subgroup, and T a maximal torus contained in B, Let U, =, =t and
U, (asX) beasin§1.

(a) A unmipotent element is regular ifand only if it is contained in a unique
Borel subgroup.

(b) An element x= Il,es+ x,(x,EW0,) of & contained in 11 is regular if and
only if x,== 1 for every simple root a.

DEFINITION 6.2. Let X=X, UZ,U **+ UZ, be the decmposition of the
root system X of a connected semisimple group © into its irreducible com-
ponents. Let &; be the highest root of X; in some order. Express o; as an
integral linear combination of the simple roots of =;. If p is a prime number

which does not devide any coefficient in such expressions for each z, p is called
good for ©.

REMARK 6.3. For each simple type, good primes p can be directly defined
as follows:

A, p arbitrary; B,, C,,D,: p+2; E, E,, F,,G,:p=*2, 3; E;: p=%£2, 3, 5.

In the following, the notations in §1 will be used. We denote by G} the
set of regular unipotent elements in a finite Chevalley group G=@,.

Lemma 6.4. (a) Each element of G% is containedin a unique Borel subgroup.

(b) Let C be a regular unipotent conjugacy class of G. Then \C\=
|GIIBI7'[BNC].

(c) Zg(w)y=Zyu)=Z(G)Zy(u) fuc BN G}, where Z(G) is the center of
G, and Zy(u), Z g(u) and Z(u) are centralizers of u tn G, B and U respectively.

Proof. Part (a) follows from Theorem 6.1 (a) and part (b) follows from part
(a) and the fact that B is its own normalizer in G. Part (c¢) follows from [1
E-54, 1.14 (a)].

Theorem 6.5. (Springer and Steinberg [1; E-55]) Let G=@,, andp the
characteristic of the field K over which ® is defined. Assume that © is adjoint and
p isgoodfor ©.  Then the set GLof regular unipotentelements of G forms a single
conjugacy class.
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Lemma 6.6. (Steinberg [19; p. 197 (2)]) For ac R(S),let U,=(IlacMa)s
asin §1 and U} the set of all elements u,= [l ye, ¥s (% EWo)of U, such that ¥4=1
for every a=a N II.
(@)  The quotient group U ,[ULis isomorphicto the additivegroup of the Galots
field Fy, where =l seanu 9(@)-
(b) Ulis the derivedgroup of U,.

Proof. (a) Let UWi=II, U, (e¢=a—aNII). This is o-stable by Lemma
1.1. The quotient group 1/} is cannonically isomorphic to the direct prod-
uct D, of the groups U, for a=aNIl, and o acts on the factors according to
the formula in Lemma 1.1 (b). Let aNII={at;,cr,, ***, an}, where the suffixes
are so chosen that

ax“i(k) = xai+1(cikq(£)) (1 <i<n— 1)

and 0%y (R)= %4,(c4R*™)

for some ¢;=K* and all kK, where we wrote ¢(z) for g(ea;). Let (x,,,‘,(k,-))lgig,,
(k;=K)be an element of (D,),. Then c,kR{PV=k,, c,k§P=k,, -+, c kI =E,.
From this fact and Lemma 1.1 (d), it follows that (D,),, hence (1,/U}),, is iso-
morphic to F,. To complete the proof of (a) it suffices to notice that U ,/Ui==
(U,/10z),, which follows from [20; 10.11].

(b) This can be checked directly using [19; Lemma 63].

Lemma 6.7. (a) |BNG;|= [B| (Ilseng(a))™.
) 1G] = |G| (Iaen g(@))™" .

Proof. Part (b) follows from part (a) and Lemma 6.4 (b). We shall prove
part (a). Let ' be the subgroup of 1 generated by the group U, for a3 —1I1.
Since ' is normalized by £ and fixed by o, |U}|=TI,ex+ -7 ¢(x) by [20; 11.8].
It follows from [20; 10.11] that a coset «1I' (k) contains a o-fixed elements
if and only if 2lI'e (/N*),. In that case, the number of o-fixed elements in
ull'is clearly |Ul|. On the other hand, it follows from Theorem 6.1 (b) that
the set 7 of regular unipotent elements is a union of M'-cosets. The quotient
set W' is canonically isomorphic to the direct product of the sets U,— {1}
for ¢ =II. Hence, by the proof of Lemma 6.6 (a) we get

l(ur/ul)al = Ilscres {(HwEaﬂH Q(Of))—l} .
Therefore, the number of regular unipotent elements in B is
Macres> {(HMacanm g(@))—1} aes+-n 9(a) -

Since |Bl= Ilsers {(Iacann (9(@))— 1} Taes+ g(e) ([20; 11.9, 10.10]), the
proof of Lemma 6.7 is over.

For a= R(S),let L, be the set of non-trivial linear character of U, and L
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the direct product of the sets L, for ac R(S).

DEFINITION 6.8. For X< S and!=(1,),crs,EL, the linear character ¥x,;
of U is defined by vx (u)=1if ¢=X and by vx (u)=ILl(4.)a=R(S)x)
if X=*¢, where u= Il 5o, (#,€U,) and R(S)x={acs R(S)|w,=X}.

Lemma 69. Let G=8,, where © is adjoint. For X C Sand l€ L, let
Tx,,=1ivx,|U~G].
Then the character I'x ,is independent of < L.

Proof. Let ! and U be as in the proof of Lemma 6.7 (a). By (1.1) ¥ acts
naturally on the set W//'. Hence 7T acts on (U7/'),. Let 7 be an arbitrary
element of £— {1}. Since G is adjoint, a(f)=+1 for some a&Il. Hence the
action of each t=T on (W/W), is non-trivial. On the other hand,
T = (WM, | =TI sercs) {(Macanng(a)) — 1} by [20; 11.2] and the proof of
Lemma 6.7 (a). Hence the action of 7' on (W/), is simply transitive. This
fact, together with Lemma 6.6, implies that the action of 7 on L defined by

li(uy) = L(tut™")te T, acR(S), l,L,, u,€U,)
is simply transitive. Hence, for u= U, we have

t[vx, | U—>BYu) = 2/er¥x,/(¥) ,

which is independent of /& L. The lemma follows from this fact and transitivity
of induction.

In the following, if © is adjoint, we write I'y for the character TI'x
(XS, lel) of G=6B,.

We can now prove a key lemma:

Lemma 6.10. ForX cSand l€L, let A= xcs(—1)F Tx ;.

@) SerA(x)is equalto |L||G||GY "t ifx€G}and 0 if x€ G—G3.

(b) Assume that © 1s adjoint.  Then A(x)= Xxcs(—1)*'Tx(x) is equal to
|GG if x&G} and 0 if x& G—G'}.

Proof. The proof depends on the following two results.

(1) Forany leL, A(x)=0 ifx& G—G}.

(2) ForanylelL, (A, lg)e=1.

Let us deduce the lemma from (1) and (2).

(a) By Lemma 6.6 the function »Y,e;7x.; on U takes the constant value
(—=1)#t on the set of regular unipotent elements of U. Hence, by (1), we
see that 3',c; A, vainshes on G—G!} and takes a constant value O on G;.
Therefore (3),er M) 1g)=1G|*\G}\ O. On the other hand, we have
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(e 1g)e=1|L| from (2). Hence we obtain O=\L\ \G\ |G| 7 as
required.

(b) This follows from part (a) and Lemma 6.9.

Next, we consider (1). Let u= T[] s, (v U,)be an element of U. Then

ixes(— 1) vx (u) = (1—L(us)) (@€ R(S)).
By Lemma 6.6, this is 0 if « is not regular unipotent. Hence A, vaishes on

G—G}. This proves (1).
It remains to prove (2). By Frobenius reciprocity,

(Tx. 1g)e = 1 U |2 uev¥ x.1(1) ,

which is 0 if X &=¢ and 1 if X=¢. The assertion (2) follows from this. The
proof of Lemma 6.10 is now complete.

To state the first application of Lemma 6.10 we require the following
notion due to Harish-Chandra.

DEFINITION 6.11. A complex valued function/on G is called a cusp form if
Z“EVP Sflou) =10,

for all elements x of G and all parabolic subgroup P=+G. A character of G
which is a cusp form is called a cuspidal character.

The importance of this notion is explained e.g. in [1; part C]. Some
examples are given in [1; part DJ.

Theorem 6.12. Let G=O,, and let % be an irreducible cuspidal character
of G.

@) |G} SeaX(@)=(—1)S|L| *{I€L|Ts contains X} |.

(b)  Assume that © is adjointand the characteristic p of K is good for &.
Then for any regular unipotent element uc G, X(u) equals (— 1)!S' if Tscontains X
and 0 if T's does not contain X.

For the proof of Theorem 6.12 we require the following

Lemma 6.13. Let % be a class function on G which is a cusp form. Then
% Tx,)e=0
Jorany X&Sand le L.

Proof. Put T'% =i[vx,,|U—Px]. Since the unipotent radical V x of
P x is normal in P yand vy istrivial on V x, T%is constant on each V' x-
coset in Pyx. Hence, using transitivity of induction and Frobenius reciprocity
we have
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(X» FX,I)G = (X, i[réf,llpx“’G])G
== IPXI -IZxP&,I(x)(EuEV‘YX("m» ’

where the first sum is taken over a set of representatives for V' x-cosets in Py.
Therefore, from the definition of cusp forms, we obtain the lemma.

Proof of Theorem 6.12.
Part (b) follows from part (a), Theorem 6.5 and Lemma 6.9. We shall prove
part (a). By Lemma 6.10 (a),

|G " ueaX(u) = | L™ (X, Zier))e -
Hence, by Lemma 6.13,
[GH 2uearX () = (=)L e r(X, Tsi)e -

Therefore, the proof of Theorem 6.12 is completed by the following theorem,
which is proved by I.M. Gelfand and M.I. Graev [10] for SL,, and by R.
Steinberg [19; Theorem 49] for general G.

Theorem 6.14. Let [ be an element of L, and % an irreducible character of
G.  Then

X, Ts:)e=10r0.

7. Regular unipotent elements in B-cosets and characters in
i[1z| B~G]

Our main purpose in this section is to prove Theorem 7.1 and Theorem
7.2 below. Let G=@, be a finite Chevalley group and p the characteristic of
the field K over which ® is defined. We also use other notations in §1 and §6.

Theorem 7.1. Assume that p isgood for © in the sense of Definition 6.2.
Let % be a nontrivial irreducible character of G contained in i[lz|B—G]. Then
X vanishes identically on the set G} of regular unipotent elements in G.

Theorem 7.2. Assume tht p is good for &. Letg be an arbitrary element
of G, and C an arbitrary regular unipotent class of G.  Then the number Bg C|
depends neither on g nor C.

REMARK 7.3. (a) The author believes, but can not prove, that theorems
7.1 and 7.2 hold without the assumption “p is good”®. Later we shall prove
weaker results which hold in all characteristics p>0.

3) See ‘““added in proof’” at the end of the paper.
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(b) Combining Theorem 7.2 with Lemma 6.7 (a) and [1; E-55], we see
that the number |BgNC] in Theorem 7.2 is

12(®)/(1—0)Z(S) 1 7" (Iuex 9()) 1 BI,
where Z(®) is the center of & and (1—a)Z(®)= {x(x™*)"|x= Z(S)}

(¢) In §3, we showed that each element g of G gives rise to a decomposition
of G/Binto disjoint union:
G/B: UwEW g.w "
Assume that p is good. Let u be a regular unipotent element in G. Then,
combining Lemma 3.6, Lemma 6.4 (b) and Theorem 7.2, we obtain

Now let ® be a connected semisimple linear algebraic group defined over an
algebraically closed field of arbitrary characteristic. Letg be an element of ®,
(B, M) an ordinary BN-pair in © and L& its Weyl group. Then &/B has the
decomposition

@/SB = Uwe%%g,w

(see Remark 3.7). Each set %g,w has a natural structure of algebraic variety. In
the special case that w=1, %}g,w has been studied by several authors (see [3] and
[21]). The formula (7.1) in the finite case suggests an interesting problem:
Let u be a regular unipotent element in @. Study the variety %u,w. Iit
the /(w)-dimensional affine space ?
The proofs of Theorem 7.1 and Theorem 7.2 depend on the following

Lemma 7.4. Let X bea subset of S. Let T'y; (I€L) be a character of G
defined in Lemma 6.9, and &y the Steinberg character of Px. Then

(Tx,5,X)ec = ([x\Py = G], X
for any irreducble character X of G contained in i[lg\ B—>G].
Proof. From Frobenius reciprocity and Lemma 4.6 (b) we have
Clyxd U— Pxl, éx)p,= (Yx éx| Uy =1.

Hence the character i[vx ,\ U—Px]of Px contains the Steinberg character &x.
By transitivity of induction,

(Px,u X)e = (i[EX|PX g G]’ X)G

for any irreducible character % of G contained in i{[13|B—G]. Therefore the
proof of the lemma will be completed by the following formula.
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(7.2) (FX,I: (15| B “’G])G= (t[¢x |1 Px— Gl, i[lBlB g G])G-

We shall prove (7.2). By a theorem of Mackey (see e.g. [9; p. 51]) and the
Bruhat decomposition of G, the left hand side of (7.2) is equal to

Dwew | Usl {2 uevs Yxi(w)} = [{weWlyx, is trivial on U} .

By the definition of o x ;,it is trivial on U if and only if (wx)<<[(w)for all
x=X. The number of such weWis \ W/W x| by Lemma 1.11. Hence the
left hand side of (7.2) is |W/Wx|. On the other hand, by Proposition 1.6
(c) and the Mackey’s theorem used above, the right hand side of (7.2) is

Zyex(=D)YNWIWy| = |WIWx | Zyex(—1) T Wx[Wy| .

By a result of E. Witt (see e.g. [17; p. 378]), this is equal to | W/W4. This
proves (7.2).

Proof of Theorem 7.1.

From Theorem 3.1 (b) and Theorem 3.4 we may assume that © is adjoint.
Using Lemma 7.4 we get

(7.3) (Xxes (—1)* Ty, X)o = X xes (—1)*Vi[ex| Px — G, X)e

for any irreducible character % of G contained in ¢[13|B—G]. By Theorem 6.5
and Lemma 6.10 (b), the left hand side of (7.3) equals X(x) with uG;. On
the other hand, by Lemma 4.8, the right hand side of (7.3) equals (1l¢, X)e.
Threfore

74  Xw)=(le X)e (EG).
Hence, if % is non-trivial, % vanishes on G}. This proves Theorem 7.1.

Proof of Theorem 7.2.

The proof depends on the following two results.

(I) Let Cand C’be two regular unipotent conjugacy classes of G. Then
|IBNC|=|BNnC’|

(2) Let C be aregular unipotent conjugacy class of G. Then |C]|™*
|BwBNC|=\G|'|BwB]| for any we W.

We will show that Theorem 7.1 is a consequence of (1) and (2). Let C
be a regular unipotent conjugacy class of G. By (2) and Lemma 6.4 (b)

7.5 |BwBNC||BNC|™* = |BwB||B|™".
It follows from Lemma 1.5 that |BwB\ \ B\ ~'=\ U=\ and that
SLu(BwNC)u™? (v Uyp)
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is a decomposition of BwB N Cinto a disjoint union. Hence, for we W, we have
(7.6) |BwNC = |BNC|

from (7.5). Letg be an arbitrary element of G. Then, by the Bruhat decom-
position of G, we can write g=b'n,b with b, VeBand we W. Hence

|BgnC| = [b(BwNC)b| = |BwnC| = |BNC|

by (7.6). Combining this formula with (1), we obtain Theorem 7.2.

Next we prove (1). Let u and «’ be regular unipotent elements in B i.e.
in U. Let+r: &—-® be as in Theorem 3.1 (b). By (3.5), Theorem 3.2 and
Theorem 6.1 (b), Jr(x) and r(«') are regular unipotent elements in &,’, This
fact, togethr with Lemma 6.4 (c) and Theorem 6.5, implies that «J,(#) and Jr(t)
are conjugate in J(B),. Hence, by Theorem 3.2 (c), there exists an automor-
phism of U which maps u to #' . Therefore, Zy(u)==Zy(«').Combining this
fact with Lemma 6.4 (c) we obtain |Zg(u)\ = \Zg(u)| = Zg(w') = \Zg(1/').
Hence |BNCg(u)|=|BNCy(u)|= BNCy(u') = |BNCqxu'). This proves

1).
o It remains to prove (2). From Theorem 3.1 (b) and Theorem 3.4 we
may assume that © is adjoint. Then, it follows from (7.4) and Lemma 2.4

(b) that
few(u) = (1Gy fe,,,)G

for any we Wand u=G;. From this formula we obtain Cg(u)| *|BwBN
Ce(u)1 — 1G |1 BwB]|, as required. The proof of Theorem 7.2 is now comlete.

As mentioned already, the author does not know whether the theorems 7.1
and 7.2 hold in all charactristics p>>0 or not. Here we content ourselves with
the following weaker results.

Theorem 7.5. (a) Let % be a non-trivial irreducible character of G con-
tained in i[151 B—>G]. Let G} be the set of regular unipotent elements in G.  Then

S X(u) = 0.

(b) Let g be an arbitrary element of G. Then the number \ BgIl G!| is
independent of g.

Proof. (a) From Lemma 7.4 we have

(7.7) 2her (Zxcs (— 1 Tx 4, X)o
= |L| Cxcs (—1)*'i[¢x|Px — G], X)c .

Hence
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(7.8) LI|G}| 7" 2uecy X(u) = |L|(1g, X)e

by Lemma 6.10 (a) and Lemma 4.8. Part (a) follows from this formula.
(b) Let @ be any element of W. By (7.8) and Lemma 2.4 (b),

|G ™ 2ucer fe () = (Las fe)e -
Hence |Gy BwBNG}| = |G| *|BwB].
Combining this formula with Lemma 6.4 (b) we obtain

|BwBNGL| = |B|™'|BwB||BNG;| .

Therefore, by the same method as in the proof of Theorem 7.2, we get
1BgT1G}\=|BIIG}I for any elementg of G. This proves (b).

Added in proof. Recently, the author received two preprints (Lehrer [22]
and Green and Lehrer [23]), in which some of our results, in particular
theorems 6.12 (b), 7.1 and 7.2, are proved independently. In [23], it is
remarked that theorems 7.1 and 7.2 do not hold without the assumption “p is
good for @”. This can also be seen from [24].
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