SMOOTH ACTIONS OF SPECIAL UNITARY GROUPS ON COHOMOLOGY COMPLEX PROJECTIVE SPACES

FUICHI UCHIDA

(Received July 24, 1974)

0. Introduction

The purpose of this paper is to study smooth $S U(n)$-actionson a compact orientable $2 m$-manifold whose rational cohomology ring is isomorphic to $H^{*}\left(\boldsymbol{P}_{m}(\boldsymbol{C}) ; \boldsymbol{Q}\right)$. First we show the following result.

Theorem 2.1. Let $n \geqslant 7$ and $0 \leqslant k<n-4$. Let M be a compact orientable smooth $2(n+k)$-manifoldwith

$$
H^{*}(M ; \boldsymbol{Q})=H^{*}\left(P_{\boldsymbol{n}+k}(\boldsymbol{C}) ; \boldsymbol{Q}\right) .
$$

Then for any non-trivial smooth $S U(n)$-action on M, the stationary point set $F=F(S U(n), M)$ is an orientable $2 k$-manifoldwith

$$
H^{*}(F ; \boldsymbol{Q})=H^{*}\left(P_{k}(\boldsymbol{C}) ; \boldsymbol{Q}\right)
$$

and there is an equivariant diffeomorphism

$$
M=\partial\left(D^{2 n} \times X\right) / S^{1}
$$

Here X is a compact connected orientable ($2 k+2$)-manifolawhich is acyclic over rationals, X admits a smooth S^{1}-action which is free on $d X$, the $S U(n)$-action is standard on $D^{2 n}$ and trivial on X, and

$$
\pi_{1}(X)=\pi_{1}(M)
$$

Furthermore, if

$$
H^{*}(M ; \boldsymbol{Z})=H^{*}\left(P_{n+k}(\boldsymbol{C}) ; \boldsymbol{Z}\right)
$$

then X is acyclic over integers, the S^{1}-action on X is semi-free, and

$$
H^{*}(\boldsymbol{F} ; \boldsymbol{Z})=H^{*}\left(P_{k}(\boldsymbol{C}) ; \boldsymbol{Z}\right)
$$

Corollary 2.2. Let $n \geqslant 7$ and $0 \leqslant k<n-4$. Let M be a compact connected smooth $2(n+k)$-manifoldwhich is homotopy equivalent to $P_{n+k}(\boldsymbol{C})$. If M admits a non-trivial smooth $\operatorname{SU}(n)$-action, then M is diffeomorphido $P_{n+k}(\boldsymbol{C})$.

Examples of $S U(n)$-actions on cohomology complex projective spaces are constructed in section 3. And we have the following results.

Theorem 3.1. Let $n \geqslant 2, k \geqslant 1$ and $p \geqslant 1$. Then there is a compact orientable $2(n+k)$-manifoldM such that

$$
\pi_{1}(M)=\boldsymbol{Z} / p \boldsymbol{Z} \text { and } H^{*}(M ; \boldsymbol{Q})=H^{*}\left(P_{n+k}(\boldsymbol{C}) ; \boldsymbol{Q}\right)
$$

and M admits a smooth $S U(n)$-action with

$$
F(S U(n), M)=P_{k}(\boldsymbol{C})
$$

Theorem 3.2. Let $n \geqslant 2$ and $k \geqslant 3$. Let G be a finitely presentable group with $H_{1}(G ; \boldsymbol{Z})=H_{2}(G ; \boldsymbol{Z})=0$. Then
(a) there is a compact orientable $2(n+k)$-manifoldM such that

$$
\pi_{1}(M)=G \quad \text { and } \quad H^{*}(M ; Z)=H^{*}\left(P_{n+k}(\boldsymbol{C}) Z\right)
$$

and M admits a smooth $S U(n)$-action with

$$
F(S U(n), M)=P_{k}(\boldsymbol{C})
$$

(b) there is a smooth $S U(n)$-actionon $P_{n+k}(\boldsymbol{C})$ such that

$$
\pi_{1}(F)=G \text { and } H^{*}(F ; Z)=H^{*}\left(P_{k}(\boldsymbol{C}) ; \boldsymbol{Z}\right)
$$

where $F=F\left(S U(n), P_{n+k}(C)\right)$.
Next, in section 4, we study a signature of closed orientable manifold which admits a smooth G-action with isotropy groups of uniform dimension, and we have a result which is a generalization of the fact that $\operatorname{Sign}(M)=0$ if M admits a smooth circle action without stationary points.

Next we study smooth $S U(3)$-actions on orientable 8 -manifolds in section 5 , and as an application we show a similar result as Theorem 2.1 for non-trivial smooth $S U(3)$-action on a cohomology complex projective 4 -space. We construct examples of stationary point free $S U(3)$-actions on orientable 8 -manifolds with non-zero signature in section 6.

As a concluding remark, classification of smooth $S U(n)$-actionson orientable $2 n$-manifolds is done in the final section.

1. $\boldsymbol{S U}(\boldsymbol{n})$-actions with certain isotropy types

Let E be a manifold with smooth $S U(n)$-action ($n \geqslant 3$). Assume that the identity component of each isotropy group is conjugate to $S U(n-1)$ or $N S U(n-1)$, the normalizer of $S U(n-1)$ in $S U(n)$. Then $S^{1}=N S U(n-1)$) $S U(n-1)$ acts naturally on

$$
X=F(S U(n-1), E)
$$

the stationary point set of $S U(n-1)$. It is easily seen that

$$
\begin{equation*}
S U(n) / S U(n-1) \times X \rightarrow E, \quad[g S U(n-1), x] \rightarrow g x \tag{1.1}
\end{equation*}
$$

is an equivariant diffeomorphism as $S U(n)$-manifolds, since $g \in S U(n)$ and $g^{-1} S U(n-1) g \subset N S U(n-1)$ imply $g \in N S U(n-1)$.

Lemma 1.2. Let V be a real vector space with linear $S U(n)$-action $(n \geqslant 3)$. Assume that the identity component of each isotropy group on the invariant unit sphere $S(V)$ is conjugate to $S U(n-1)$ or $N S U(n-l)$. Then $S(V)=S U(n) / S U(n-1)$ as $S U(n)$-spaces.

Proof. By (1.1), there is an equivariant diffeomorphism

$$
S(V)=S U(n) / S U(n-1) \times F(S U(n-1) S(V))
$$

where $F(S U(n-1), S(V))$ is a sphere. Then it is easily seen that

$$
F(S U(n-1), S(V))=S^{1}
$$

by the homotopy exact sequence of the fibre bundle

$$
F(S U(n-1), S(V)) \rightarrow S(V) \rightarrow P_{n-1}(C)
$$

Considering S^{1}-actions on S^{1}, we have

$$
S(V)=S U(n) / S U(n-1)
$$

as $S U(n)$-spaces.
Lemma 1.3. Let V be a real vector space with linear $S U(n)$-action such that $S(V)=S U(n) / S U(n-1 \phi s \quad S U(n)$-spaces $(n \geqslant 3)$. Then the $S U(n)$-action on $V=\boldsymbol{R}^{2 n}$ is equivalent to the standard action.

Proof. This is a known result (see [8], Theorem I), but we give an elementary proof for the completeness. It is well-known that a real irreducible $S U(n)$ vector space $\boldsymbol{R}^{2 n}$ with an invariant complex structure is equivalent to $\boldsymbol{R}^{2 n}$ with the standard $S U(n)$-action. So we prove the existence of an invariant complex structure on V. Denote by \boldsymbol{Z}_{n}, the center of $S U(n)$. Then \boldsymbol{Z}_{n} is a cyclic group of order n, and the \boldsymbol{Z}_{n}-action on $S(V)$ is free, since

$$
Z_{n} \cap S U(n-1)=\{1\}
$$

Consider a direct sum decomposition

$$
V=V_{1} \oplus \cdots \oplus V_{k}
$$

as \boldsymbol{Z}_{n}-vector space, where $V_{i}(i=1, \cdots, k)$ are irreducible. Leaving a non-zero vector $v_{1} \in V_{1}$ fixed, we have an element $g_{i} \in S U(n)$ such that

$$
v_{i}=g_{i} v_{1} \in V_{i} \quad(i=1, \cdots, k)
$$

by the transitivity of the $S U(n$-action on $S(V)$. Then

$$
V_{i}=g_{i} V_{1} \quad(i=1, \cdots, k) .
$$

Since the \boldsymbol{Z}_{n}-action on $S\left(V_{1}\right)$ is free, there is a complex structure \boldsymbol{J}_{1} on V_{1} such that

$$
\sigma J_{1}=J_{1} \sigma, \quad \sigma v_{1}=a v_{1}+b J_{1} v_{1}
$$

for some $a, b \in \boldsymbol{R}, b \neq 0$, where σ is a generator of \boldsymbol{Z}_{n}, moreover the real vector space V_{1} is spanned by $\left\{v_{1}, J_{1} v_{1}\right\}$. Therefore there is a complex structure J on V such that

$$
\boldsymbol{J} v_{1}-\boldsymbol{J}_{1} v_{1}, \quad J g_{i} v_{1}-g_{i} \boldsymbol{J}_{1} v_{1} \text { and } \quad \sigma v=a v+b \boldsymbol{J} v
$$

for each $v \in V$. Then

$$
\begin{aligned}
& g \sigma v=a g v+b g J v, \\
& \sigma g v=a g v+b J g v
\end{aligned}
$$

for any $g \in S U(n)$. Therefore the complex structure J is $S U(n)$-invariant, since $g \sigma=\sigma g$ and $b \neq 0$.
q.e.d.

Let M be a closed connected manifold with smooth $S U(n)$-action $(n \geqslant 3)$. Assume that the identity component of each isotropy group is conjugate to one of the following

$$
S U(n), S U(n-1) \text { and } \quad N S U(n-1)
$$

Assume that the stationary point set $F=F(S U(n), M)$ is non-empty. Let U be an invariant closed tubular neighborhood of F in M. Then there is an equivariant decomposition

$$
M=U \cup\left(S U(n) / S U\left(n-{\underset{S}{ }}_{1}\right) \times X\right) \neq U \cup\left(S^{2 n-1} \times X\right),
$$

where $X=F(S U(n-1), M$-int $U)$ with the natural S^{1}-action. Since

$$
d U=S U(n) / S U(n-1) \times \partial X=S_{S^{1}}^{2 n-1} \times \partial X
$$

as $S U(n)$-maifolds, the S^{1}-action on ∂X is free, $F=\partial X / S^{1}$, and the disk bundle $U \rightarrow F$ with $S U(n)$-action is equivariantly isomorphic to the disk bundle

$$
D_{S^{1}}^{2 n} \partial X \rightarrow \partial X / S^{1},
$$

where the $S U(n)$-action on $D^{2 n}$ is standard by Lemma 1.2 and Lemma 1.3.

Therefore the codimension of F in M is $2 n, X$ is connected, and there is an equivariant diffeomorphism

$$
\begin{equation*}
M=\partial\left(D^{2 n} \times X\right) / S^{1}=D_{S^{1}}^{2 n} \times \partial X \cup S_{S^{1}}^{2 n-1} \times X \tag{1.4}
\end{equation*}
$$

as $\quad S U(n)$-manifolds.
Lemma 1.5. Let G be a closed connected proper subgroup of $S U(n),(n \geqslant 7)$. If

$$
\operatorname{dim} G>n^{2}-4 n+7=\operatorname{dim} N(S U(n-2), S U(n)),
$$

then G is conjugate to $S U(n-1)$ or $N S U(n-1)$ in $S U(n)$.
Proof. The inclusion $\rho: G \subset S U(n)$ gives an n-dimensional complex representation of G. First we show that the representation p is reducible. Suppose that p is irreducible. Then G is semi-simple from the Shur's lemma. If G is not simple, then there are integers $p \geqslant q \geqslant 2$ with $n=p q$, such that G is conjugate to a subgroup of the tensor product

$$
S U(p) \otimes S U(q)
$$

in $S U(p q)$, by considering the induced representation of the universal covering group of G. Therefore

$$
\operatorname{dim} G \leqslant p^{2}+q^{2}-2 \leqslant\left(\frac{n}{2}\right)^{2}+2 \leqslant \frac{n(n+1)}{2}
$$

If G is simple but not one of the type

$$
A_{k}, D_{2 k+1} \text { and } E_{6}
$$

then G is conjugate to a subgroup of $S O(n)$ or $S p(n / 2)$, (see [6], p. 336, Theorem 0.20). But

$$
\operatorname{dim} S O(n)=\frac{n(n-1)}{2}, \quad \operatorname{dim} S p\left(\frac{n}{2}\right)=\frac{n(n+1)}{2}
$$

and hence

$$
\operatorname{dim} G \leqslant \frac{n(n+1)}{2}
$$

If G is of type $D_{2 k+1}(k \geqslant 2)$, then the lowest dimensional non-trivial irreducible complex representation is $(4 k+2)$-dimensional (see [6], p. 378, Table 30). Therefore $4 k+2 \leqslant n$ and hence

$$
\operatorname{dim} G=\operatorname{dim} S O(4 k+2)=(2 k+1)(4 k+1) \leqslant \frac{n(n-1)}{2}
$$

If G is of type E_{6}, then $n \geqslant 27$ (see [6], p. 378, Table 30). Therefore

$$
\operatorname{dim} G=78 \leqslant 3 n \leqslant \frac{n(n+1)}{2} .
$$

Finally, if G is of type $A_{k-1}(k<n)$, then

$$
\frac{k(k-1)}{2} \leqslant n
$$

by the Weyl's formula (see [14], Theorem 7.5). Therefore

$$
\operatorname{dim} \mathrm{G}=\operatorname{dim} S U(k)=k^{2}-1 \leqslant 3 n-2 \leqslant \frac{n(n+1)}{2} .
$$

Consequently

$$
\operatorname{dim} G \leqslant \frac{n(n+1)}{2},
$$

if p: $G \subset S U(n)$ is irreducible $(n \geqslant 4)$. Therefore p is reducible, if

$$
\operatorname{dim} G>n^{2}-4 n+7 \text { and } n \geqslant 7 .
$$

Since p is reducible, G is conjugate to a subgroup of

$$
N(S U(n-p), \quad S U(n)),\left(1 \leqslant p \leqslant \frac{n}{2}\right)
$$

the normalizer of $S U(n-p)$ in $S U(n)$. But

$$
\operatorname{dim} N(S U(n-p), S U(n)) \leqslant n^{2}-4 n+7
$$

for $2 \leqslant p \leqslant \frac{\eta}{2}$. Therefore G is conjugate to a subgroup G^{\prime} of $N S U(n-1)$. If $G^{\prime} \neq N S U(n-1)$, then

$$
\operatorname{dim} G^{\prime} \leqslant \operatorname{dim} G^{\prime \prime}+1
$$

where $G^{\prime \prime}=G^{\prime} \Pi S U(n-1)$, by the isomorphism

$$
N S U(n-1) / S U(n-1)=S^{1}
$$

If $G^{\prime \prime}=S U(n-1)$ then $G^{\prime}=G^{\prime \prime}=S U(n-1)$. If $G^{\prime \prime} \neq S U(n-1)$, then

$$
\operatorname{dim} G^{\prime \prime} \leqslant(n-2)^{2}=\operatorname{dim} N(S U(n-2), S U(n-1))
$$

by making use of the first part of the proof of this lemma for $S U(n-1)$ instead of $S U(n)$, and hence

$$
\operatorname{dim} G^{\prime} \leqslant(n-2)^{2}+1<n^{2}-4 n+7
$$

Consequently we see that G is conjugate to $S U(n-1)$ or $N S U(n-1)$ in $S U(n)$. q.e.d.

Lemma 1.6. Let M be a manifold with smooth $S U(n)$-action. $I f \operatorname{dim} M<$ $4 n-8$, then

$$
\operatorname{dim} S U(n)_{x}>n^{2}-4 n+7
$$

for each $x \in M$.
Proof. Since $S U(n) / S U(n)_{x}$ is equivariantly embedded in M,

$$
\operatorname{dim} S U(n)-\operatorname{dim} S U(n)_{x} \leqslant \operatorname{dim} M<4 n-8 .
$$

Hence $\operatorname{dim} S U(n)_{x}>\operatorname{dim} S U(n)-(4 n-8)=n^{2}-4 n+7$. q.e.d.

2. $\boldsymbol{S U}(\boldsymbol{n})$-actions on cohomology complex projective spaces

In this section we prove the following results.
Theorem 2.1. Let $n \geqslant 7$ and $0 \leqslant k<n-4$. Let M be a compact connected orientable smooth $2(n+k)$-manifoldwith

$$
H^{*}(M ; \boldsymbol{Q})=H^{*}\left(P_{n+k}(\boldsymbol{C}) ; \boldsymbol{Q}\right)
$$

Then for any non-trivial smooth $S U(n)$-action on M, the stationary point set $F=F(S U(n), M)$ is an orientable $2 k$-manifoldwith

$$
H^{*}(F ; \boldsymbol{Q})=H^{*}\left(P_{k}(\boldsymbol{C}) ; \boldsymbol{Q}\right)
$$

and there is an equivariant diffeomorphism

$$
M=\partial\left(D^{2 n} \times X\right) / S^{1}
$$

Here X is a compact connected orientable $(2 k+2)$-manifoldwhich is acyclic over rationals, X admits a smooth S^{1}-action which is free on ∂X, the $S U(n)$-action is standard on $D^{2 n}$ and trivial on X, and

$$
\pi_{1}(X)=\pi_{1}(M)
$$

Furthermore, if

$$
H^{*}(M ; \boldsymbol{Z})=H^{*}\left(P_{n+k}(\boldsymbol{C}) ; \boldsymbol{Z}\right)
$$

then X is acyclic over integers, the S^{1}-action on X is semi-free, and

$$
H^{*}(F ; \boldsymbol{Z})=H^{*}\left(P_{k}(\boldsymbol{C}) ; \boldsymbol{Z}\right)
$$

Corollary 2.2, Let $n \geqslant 7$ and $0 \leqslant k<n-4$. Let M be a compact connected smooth $2(n+k)$-manifoldwhich is homotopy equivalent to $P_{n+k}(\boldsymbol{C})$. If M admits a non-trivial smooth $S U(n)$-action, then M is diffeomorphito $P_{n+k}(\boldsymbol{C})$.

Proof of Theorem 2.1. By Lemma 1.5, Lemma 1.6 and the assumption $n \geqslant 7$ and $0 \leqslant k<n-4$, the identity component of each isotropy group of the
given $S U(n)$-action on M is conjugate to one of the following

$$
S U(n), S U(n-l) \quad \text { and } \quad N S U(n-1)
$$

(i) First we show that the stationary point set $F=F(S U(n), M)$ is nonempty. Assume $F=\emptyset$, then by (1.1) there is a smooth fibre bundle

$$
F(S U(n-1), M) \rightarrow M \rightarrow P_{n-1}(\boldsymbol{C}) .
$$

Thus

$$
\chi(M)=\chi\left(P_{n-1}(\boldsymbol{C})\right) \cdot \chi(F(S U(n-1) M))
$$

and hence

$$
k+1 \equiv 0(\bmod n) .
$$

This is impossible by the assumption $0 \leqslant k<n-4$. Thus $F \neq \emptyset$. Then by (1.4) there is an equivariant diffeomorphism

$$
M=\partial\left(D_{s^{1}}^{2 n} \times X\right) / S^{1}=\underset{s^{1}}{D^{2 n}} \times \partial \cup \cup S_{S^{1}}^{2 n-1} \times
$$

as $S U(n)$-manifolds. Here X is a compact connected orientable $(2 k+2)$ manifold with smooth S^{1}-action which is free on ∂X.
(ii) Next we show that X is acyclic over rationals. Since

$$
D_{S^{1}}^{2 n} \times \partial X \rightarrow \partial X / S^{1}=F
$$

is a $2 n$-disk bundle, there is an isomorphism

$$
H^{i}\left(M, S_{s^{1}}^{2 n-1} \times X ; \boldsymbol{Q}\right)=H^{i^{-2 n}}(F ; \boldsymbol{Q})
$$

Thus

$$
\begin{equation*}
H^{i}(M ; Q)=H^{i}\left(S_{S^{i}}^{2 n-1} \times Q\right) \quad \text { for } i \leqslant 2 n-2 \tag{2.3}
\end{equation*}
$$

Now we show that the euler class $e(p)$ of the principal S^{1}-bundle

$$
p: \quad \partial\left(D^{2 n} \times X\right) \rightarrow M
$$

is non-zero in $H^{2}(M ; Q)$. Assume $e(p)=0$, then the euler class of the principal S^{1}-bundle

$$
S^{2 n-1} \times X \rightarrow S_{s^{1}}^{2 n-1} \times
$$

is zero in $H^{2}\left(S_{S^{1}}^{2 n-1} X ; \mathrm{Q}\right)$, and hence there is an isomorphism

$$
H^{*}\left(S^{2 n-1} ; \boldsymbol{Q}\right) \otimes H^{*}(X ; Q)=H^{*}\left(S^{1} ; \boldsymbol{Q}\right) \otimes H^{*}\left(S_{S^{1-}}^{2 n-1} \times X \boldsymbol{Q}\right)
$$

Therefore

$$
H^{i}(X ; \boldsymbol{Q})=\boldsymbol{Q} \quad \text { for } 0 \leqslant i \leqslant 2 n-2
$$

by (2.3) and the assumption

$$
H^{*}(M ; \boldsymbol{Q})=H^{*}\left(P_{n+k}(\boldsymbol{C}) ; \boldsymbol{Q}\right)
$$

But

$$
\operatorname{dim} X=2 k+2 \leqslant 2 n-2
$$

Thus $H^{2 k+2}(X ; \boldsymbol{Q})=\boldsymbol{Q}$ and this is a contradiction, since the connected manifold X has a non-empty boundary. Therefore $e(p) \neq 0$ and hence

$$
\begin{equation*}
H^{*}\left(\partial\left(D^{2 n} \times X\right) \boldsymbol{Q}\right)=H^{*}\left(S^{2 n+2 k+1} ; \boldsymbol{Q}\right) . \tag{2.4}
\end{equation*}
$$

There is an isomorphism

$$
H^{i}\left(D^{2 n} \times X ; \boldsymbol{Q}\right)=H_{2 n+2 k+2-i}\left(D^{2 n} \times X, \partial\left(D^{2 n} \times X\right) ; Q\right)
$$

by the Poincaré-Lefschetz duality, and the homomorphism

$$
H_{2 n+2 k+2-i}\left(D^{2 n} \times X ; Q\right) \rightarrow H_{2 n+2 k+2-i}\left(D^{2 n} \times X, \partial\left(D^{2 n} \times X\right) ; Q\right)
$$

is onto for $0<i<2 n+2 k+2$ by (2.4). Since X is a connected ($2 k+2$)-manifold with a non-empty boundary,

$$
H_{2 n+2 k+2-i}\left(D^{2 n} \times X ; \boldsymbol{Q}\right)=0 \quad \text { for } i \leqslant 2 n,
$$

and hence

$$
H^{i}(X ; \boldsymbol{Q})=0 \quad \text { for } 0<i \leqslant 2 n
$$

Therefore X is acyclic over rationals. Then

$$
H^{*}(\partial X ; \boldsymbol{Q})=H^{*}\left(S^{2 k+1} ; \boldsymbol{Q}\right),
$$

by the Poincaré-Lefschetz duality, and hence

$$
H^{*}(F ; Q)=H^{*}\left(P_{k}(\boldsymbol{C}) ; Q\right)
$$

Furthermore $F\left(S^{1}, X\right)$ consists just one point by the P.A. Smith theory (see [2], chapter IV) from the fact that X is acyclic over rationals and the S^{1}-action is free on ∂X.
(iii) Next we show $\pi_{1}(X)=\pi_{1}(M)$. Since $F\left(S^{1}, X\right)=\left\{x_{0}\right\}$, there is an S^{1}-map

$$
s: \sim^{\sim n}{ }^{1} \rightarrow \partial\left(D^{2 n} \times X\right)
$$

given by $s(y)=\left(y, x_{0}\right)$. Then we have an isomorphism

$$
\pi_{1}(M)=\pi_{1}\left(\partial\left(D^{2 n} \times X\right)\right)
$$

from the following commutative diagram:

$$
\begin{aligned}
\pi_{1}\left(S^{1}\right) & \pi_{1}\left(S^{2 n-1}\right) \\
\left\lvert\, \begin{array}{l}
\text { id }
\end{array}\right. & { }^{s_{*}} \\
\pi_{1}\left(S^{1}\right) & \pi_{1}\left(\partial\left(D^{2 n}>X\right)\right) \xrightarrow{p_{*}} \pi_{1}(M) .
\end{aligned}
$$

Applying the van Kampen theorem (see [5], p. 63) to the decomposition

$$
\partial\left(D^{2 n} \mathrm{x} X\right)=D^{2 n} \times \partial X \cup S^{2 n-1} \mathrm{x} X,
$$

we have

$$
\pi_{1}(X)=\pi_{1}\left(\partial\left(D^{2 n} \times X\right)\right),
$$

and hence

$$
\pi_{1}(X)=\pi_{1}(M)
$$

(iv) Finally we show that the assumption

$$
H^{*}(M ; Z)=H^{*}\left(P_{n+k}(\boldsymbol{C}) \quad Z\right)
$$

implies $H^{*}\left(X, x_{0} ; \boldsymbol{Z}\right)=0$. There is a commutative diagram:

Since $t^{*} e(p)=e\left(p_{0}\right)$ is a generator of $H^{*}\left(P_{n-1}(\boldsymbol{C}) ; Z\right), e(p)$ is a generator of $H^{*}(M ; Z)$. Therefore

$$
H^{*}\left(\partial\left(D^{2 n} \times X\right) ; Z\right)=H^{*}\left(S^{2 n+2 k+1} ; Z\right)
$$

by the Gysin seqence for the principal S^{1}-bundle

$$
p: \partial\left(D^{2 n} \times X\right) \rightarrow M
$$

and hence X is acyclic over integers and

$$
H^{*}(\boldsymbol{F} ; \boldsymbol{Z})=H^{*}\left(P_{k}(\boldsymbol{C}) ; \boldsymbol{Z}\right)
$$

by the same argument as in (ii). Then the S^{1}-action on X is semi-free by the P.A. Smith theory from the fact that X is acyclic over integers and the S^{1}-action is free on ∂X. This completes the proof of Theorem 2.1.

Proof of Corollary 2.2. If M admits a non-trivial smooth $S U(n)$-action, then by Theorem 2.1, there is an equivariant diffeomorphism

$$
M=\partial\left(D^{2 n} \times X\right) / S^{1}
$$

as $S U(n)$-manifolds. Here X is a compact contractible ($2 k+2$)-manifold with smooth semi-free S^{1}-action with just one stationary point x_{0}. Therefore the
S^{1}-action on $D^{2 n} \times X$ is semi-free and its stationary point is only $\left(0, x_{0}\right)$. Let U be an invariant closed disk around the point $\left(0, x_{0}\right)$. One may assume that the S^{1}-action on U is linear. Put

$$
W=\left(D^{2 n} \times X-\operatorname{int} U\right) / S^{1}
$$

Then

$$
\partial w=d U / S^{1} \mathrm{u} \partial\left(D^{2 n} \mathrm{X} X\right) / S^{1}=P_{n+k}(\boldsymbol{C}) \mathrm{u} M
$$

Since

$$
\begin{aligned}
& \pi_{1}(M)=\pi_{1}(W)=0 \\
& H_{*}(W, M \boldsymbol{Z})=0
\end{aligned}
$$

and

$$
\operatorname{dim} W=2 n+2 k+1 \geqslant 6
$$

we have

$$
M=P_{n+k}(\boldsymbol{C})
$$

by applying the h-cobordism theorem (see [10], Theorem 9.1) to the triad $\left(W ; \mathrm{M}, P_{n+k}(\boldsymbol{C})\right)$. This completes the proof of Corollary 2.2.

3. Construction of $\boldsymbol{S U}(\boldsymbol{n})$-actions

In this section we construct $S U(n)$-actions on cohomology complex projective spaces, and we have the following results.

Theorem 3.1. Let $n \geqslant 2, k \geqslant 1$ and $p \geqslant 1$. Then there is a compact orientable $2(n+k)$-manifoldM such that

$$
\pi_{1}(M)=\boldsymbol{Z} \mid p \boldsymbol{Z} \quad \text { and } \quad H^{*}(M ; \boldsymbol{Q})=H^{*}\left(P_{n+k}(\boldsymbol{C}) ; \boldsymbol{Q}\right)
$$

and M admits a smooth $S U(n)$-actionwith

$$
F(S U(n), M)=P_{k}(\boldsymbol{C})
$$

Theorem 3.2. Let $n \geqslant 2$ and $k \geqslant 3$. Let G be a finitely presentable group with $H_{1}(G ; \boldsymbol{Z})=H_{2}(G ; \boldsymbol{Z})=0$. Then
(a) there is a compact orientable $2(n+k)$-manifoldM such that

$$
\pi_{1}(M)=G \quad \text { and } \quad H^{*}(M ; Z)=H^{*}\left(P_{n+k}(\boldsymbol{C}) ; \boldsymbol{Z}\right)
$$

and M admits a smooth $S U(n)$-action with

$$
F(S U(n), M)=P_{k}(\boldsymbol{C})
$$

(b) there is a smooth $S U(n)$-actionon $P_{n+k}(\boldsymbol{C})$ such that

$$
\pi_{1}(F)=\mathrm{G} \quad \text { and } \quad H^{*}(F ; Z)=H^{*}\left(P_{k}(\boldsymbol{C}) ; \boldsymbol{Z}\right),
$$

where $F=F\left(S U(n), P_{n+k}(C)\right)$.
First we prepare the following lemma. It is proved by a similar argument as in the proof of Theorem 2.1 and Corollary 2.2, so we omit the proof.

Lemma 3.3. Let X be a compact orientable $(2 k+2)$-manifold which is acyclic over Z (resp. Q). Assume that X admits a smooth S^{1}-action which is free on ∂X. If $n \geqslant 2$, then
(a) $\quad M=\partial\left(D^{2 n} \times X\right) / S$ is a cohomology $P_{n+k}(C)$ over Z (resp. Q),
(b) $\quad \pi_{1}(M)=\pi_{1}(X)$.

Moreover if $n+k \geqslant 3$ and X is contractible, then $M=P_{n+k}(\boldsymbol{C})$.
Now we construct an acyclic S^{1}-manifold. Let W be a closed orientable smooth homology $(2 k+1)$-sphere over Z (resp. Q) and let

$$
\begin{equation*}
Y=P_{k}(\boldsymbol{C}) \times[0,1] \# W, \quad(k \geqslant 1) . \tag{3.4}
\end{equation*}
$$

Then F is a compact connected orientable smooth $(2 k+1)$-manifoldwith boundary

$$
\partial Y=P_{k}(\boldsymbol{C}) \times 0 \cup P_{k}(\boldsymbol{C}) \times 1
$$

It is easily seen that

$$
\begin{align*}
& \pi_{1}(Y)=\pi_{1}(W), \tag{3.5}\\
& H^{i}(Y ; \boldsymbol{Z})=H^{i}\left(P_{k}(\boldsymbol{C}) ; \boldsymbol{Z}\right) \oplus H^{i}(W ; \boldsymbol{Z}), \quad(0<i \leqslant 2 k) . \tag{3.6}
\end{align*}
$$

Furthermore there is a smooth principal S^{1}-bundle

$$
p: E \rightarrow Y
$$

such that $\partial_{i} E \rightarrow P_{k}(\boldsymbol{C}) \mathrm{X} i,(i=0,1)$ is equivalent to the Hopf bundle $S^{2 \boldsymbol{k + 1}} \rightarrow P_{k}(\boldsymbol{C})$, where $\partial_{i} E=p^{-1}\left(P_{k}(C) X i\right)$. Then

$$
\begin{gather*}
\pi_{1}(E)=\pi_{1}(Y), \tag{3.7}\\
H^{*}\left(E, \partial_{1} E ; A\right)=0 \tag{3.8}
\end{gather*}
$$

where $A=Z$ (resp. Q), by (3.6) and the Gysin sequence for S^{1}-bundles. Furthermore

$$
X=E \underset{\partial_{1} B}{U D^{2 k+2}}
$$

is a compact orientable manifold with a semi-free smooth S^{1}-action which is linear and free on $\partial X=\partial_{0} E=S^{2 k+1}$. It is easily seen that

$$
\begin{align*}
& \pi_{1}(X)=\pi_{1}(W), \quad \text { by (3.5) and (3.7), } \tag{3.9}\\
& X \text { is acyclic over } Z(\text { resp. Q), } \quad \text { by }(3.8) . \tag{3.10}
\end{align*}
$$

Proof of Theorem 3.1. Put $W=S^{2 k+1} / \boldsymbol{Z}_{p}$, a lens space, in (3.4). Then there is a compact orientable $(2 k+2)$-manifold X with a semi-free smooth S^{1}-action which is linear and free on $\partial X=S^{2 k^{+1}}$, such that $\pi_{1}(X)=\boldsymbol{Z}_{\beta \text { and }} X$ is acyclic over \boldsymbol{Q}. Then by Lemma 3.3, the $S U(n)$-manifold

$$
M=\partial\left(D^{2 n} \times X\right) / S^{1}
$$

is a compact orientable $2(n+k)$-manifold such that

$$
\pi_{1}(M)=\boldsymbol{Z}_{p}, H^{*}(M ; Q)=H^{*}\left(P_{n+k}(\boldsymbol{C}) ; Q\right)
$$

and

$$
F(S U(n), M)=\partial X / S^{1}=P_{k}(C)
$$

REMARK 3.11. It is known that if G is a finitely presentable group with $H_{1}(G ; \boldsymbol{Z})=H_{2}(G \boldsymbol{Z})=0$, then for each $m \geqslant 7$, there is a compact contractible smooth n-manifold P such that

$$
\pi_{1}(\partial P)=G \quad(\text { see }[12])
$$

It is known that there are infinitely many groups satisfying the above condition.
Proof of Theorem 3.2 (a). Let $k \geqslant 3$. Put $W=\partial P$, a smooth homology $(2 k+1)$-sphere over Z with $\pi_{1}(\partial P)=G$, in (3.4). Then there is a compact orientable $(2 k+2)$-manifold X with a semi-free smooth S^{1}-action which is linear and free on $\partial X=S^{2 k+1}$, such that $\pi_{1}(X)=G$ and X is acyclic over Z. Then by Lemma 3.3, the $S U(n)$-manifold

$$
M=\partial\left(D^{2 n} \times X\right) / S^{1}
$$

is a compact orientable $2(n+k)$-manifold such that

$$
\pi_{1}(M)=\mathrm{G}, \mathrm{ff}^{*}(\mathrm{M} ; Z)=H^{*}\left(P_{n+k}(\boldsymbol{C}) ; Z\right)
$$

and

$$
F(S U(n), M)=P_{k}(\boldsymbol{C})
$$

Proof of Theorem 3.2 (b). Let $k \geqslant 3$. For a given group G satisfying the hypothesis, there is a compact contractible smooth $(2 k+1)$-manifold p such that

$$
\pi_{1}(\partial P)=\mathrm{G}
$$

by Remark 3.11. Let

$$
Y=P_{k}(\boldsymbol{C}) \times[0,1] \# P
$$

a boundary connected sum with boundary

$$
\partial Y=P_{k}(\boldsymbol{C}) \# \partial P \cup P_{k}(\boldsymbol{C}) \times 1
$$

Then $\boldsymbol{P}_{k}(\boldsymbol{C})$ X 1 is a deformation retract of Y, and hence there is a smooth principal S^{1}-bundle

$$
p: E \rightarrow Y,
$$

such that $\partial_{1} E \rightarrow P_{k}(\boldsymbol{C}) \times 1$ is equivalent to the Hopf bundle $S^{2 \boldsymbol{k}+1} \rightarrow P_{k}(\boldsymbol{C})$, where $\partial_{1} E=P^{-1}\left(P_{k}(C) \times 1\right)$. Then

$$
X=E \underset{\partial_{1} B}{U^{2}} D^{2 k+2}
$$

is a compact contractible $(2 k+2)$-manifold with a semi-free smooth S^{1}-action. Then by Lemma 3.3, the $S U(n)$-manifold

$$
M=\partial\left(D^{2 n} \times X\right) / S^{1}
$$

is diffeomorphic to $P_{n+k}(\boldsymbol{C})$ for $n \geqslant 2$, and

$$
F(S U(n), M)=\partial X / S^{1}=P_{k}(\boldsymbol{C}) \# \partial P
$$

Therefore there is a smooth $S U(n)$-action on $P_{n+k}(\boldsymbol{C})$ such that

$$
\pi_{1}(F)=G \quad \text { and } \quad H^{*}(F ; Z)=H^{*}\left(P_{k}(\boldsymbol{C}) ; \boldsymbol{Z}\right)
$$

where $F=F\left(S U(n), P_{n+k}(C)\right)$.

4. Signature of certain smooth \boldsymbol{G}-manifolds

The purpose of this section is to study a signature of closed orientable manifold which admits a smooth G-action with isotropy groups of uniform dimension. We have the following result.

Theorem 4.1. Let G be a compact Lie group and H a closed connected subgroup. Let M be a compact orientable manifold without boundary. Assume that M admits a smooth G-action such that the identity component of an isotropy group G_{x} is conjugate to H in G for each point x of M. Then $F(H, \mathrm{M})$, the stationary point set with respect to the H-action, is orientable, and
(a) if $\operatorname{dim} N(H) \neq \operatorname{dim} H$, then $\operatorname{Sign}(M)=0$,
(b) if $\operatorname{dim} N(H)=\operatorname{dim} H$, then

$$
|N(H) / H| \operatorname{Sign}(M)=\operatorname{Sign}(G / H) \operatorname{Sign}(F(H, M))
$$

Here $N(H)$ is the normalizer of H in $G,|N(H) / H|$ is the order of the finite group $N(H) / H$.

The result is a generalization of the fact that $\operatorname{Sign}(M)=0$ if M admits a smooth circle action without stationary points.

Lemma 4.2. Let G be a compact Lie group and H a closed connected subgroup. Let M be a smooth G-manifoldsuch that the identity component of G_{x} is
conjugate to H in G for each point x of M. Then
(a) the $W(H)$-actionon $F(H, M)$ is almost free (i.e. all isotropy groups are discrete), where $W(H)=N(H) / H$,
(b) there is an equivariant diffeomorphism

$$
M=\mathrm{G} \mathrm{x}_{N(H)} F(H, M)=G / H \mathrm{x}_{W(H)} F(H, M)
$$

(c) if M is orientable, then $F(H, M)$ is orientable.

Proof. By the assumption, the identity component of G_{x} is equal to H for each point x of $F(H, \mathrm{M})$, and the mapping

$$
/: \quad G \times F(H, M) \rightarrow M
$$

given by $f(g, x)=g \chi$ is surjective. Moreover $f(g, x)$ is in $F(H, M)$ if and only if $g \in N(H)$,hus $W(H)$ acts on $F(H, M)$ naturally and (b) is proved. Next, if an isotropy group $W(H)_{x}$ is not discrete for a point x of $F(H, \mathrm{M})$, then

$$
\operatorname{dim} G_{x} \neq \operatorname{dim} H
$$

This contradicts our assumption, and (a) is proved. By (b), the product manifold $G / H \times F(H, M)$ is a total space of a principal $W(H)$-bundleover M. Therefore $G / H \times F(H, M)$ is orientable, if M is orinetable, and hence $F(H, M)$ is orientable.
q.e.d.

Lemma 4.3. Let G be a compact Lie group which is not discrete. Let M be a compact orientable smooth manifoldwithout boundary. Then, $\operatorname{Sign}(M)=0$ if M admits an almost free smooth G-action.

Proof. G contains a circle subgroup and the circle action on M has no stationary points. Therefore $\operatorname{Sign}(M)=0$.
q.e.d.

Proof of Theorem 4.1. Denote by $W(H)^{0}$, the identity component of $W(H)$. Then

$$
G / H \underset{W(H) v}{ } F(H, M)
$$

is a total space of a principal $W(H) / W(H$-bundle over M by Lemma 4.2. (b). Therefore

$$
\text { I } W(H) / W(H)^{0} \mid \cdot \operatorname{Sign}(M \neq \operatorname{Sign}(G / H \underset{W(H) 0}{\mathrm{x}} F(H, M))
$$

Next, $G / H \underset{W(\boldsymbol{A})^{0}}{ } F(H, M)$ is a total space of a smooth fibre bundle over an orientable manifold $(G / H) / W(H)$ vith a fibre $F(H, M)$ and a structure group $W(H)^{0}$ which is connected. Therefore

$$
\operatorname{Sign}\left(G / H_{W(\mathbb{1}))^{0}}^{\mathrm{X}} F(H, M)\right)=\operatorname{Sign}\left((G / H) / W(H)^{\circ}\right) \cdot \operatorname{Sign}(F(\boldsymbol{H},))
$$

for a certain orientation of $F(H, M)$ by [4]. By the above equations,

$$
\text { I } W(H) / W(H)^{0} \mid \operatorname{Sign}(M)=\operatorname{Sign}\left((G / H) / W(H)^{0}\right) \operatorname{Sign}(F(H, M))
$$

Now, if $\operatorname{dim} W(H) \neq 0$ then $\operatorname{Sign}(F(H, M))=0$ by Lemma 4.2 (a) and Lemma 4.3. If $\operatorname{dim} W(H)=0$, then

$$
\text { I } W(H) \mid \operatorname{Sign}(M)=\operatorname{Sign}(G / H) \operatorname{Sign}(F(H, M))
$$

This completes the proof.
REMARK 4.4. Let G be an arbitrary compact connected Lie group and T be a maximal torus. Then $\operatorname{Sign}(G / T)=0$, since G / T is stably parallelizable (see [3], section 5.4).

REMARK 4.5. Let G be a compact connected Lie group and H a closed connected subgroup. Then $\operatorname{Sign}(G / H)=0$ if

$$
\operatorname{rank} G \neq \operatorname{rank} H \quad(\text { see }[7])
$$

Because the left translation on G / H of a maximal torus of G has no stationaly points.

5. $\boldsymbol{S U}(3)$-actions on orientable 8 -manifolds

The purpose of this section is to prove the following result.
Theorem 5.1. Let M be a closed connected orientable 8-manifold. Assume that M admits a non-trivial smooth $S U(3)$-actionwith a principal isotropy type (H). Then
(a) $H^{4}(M ; \boldsymbol{Q})=0$, if $\operatorname{dim} H=0$,
(b) $\operatorname{Sign}(M)=0$, if $\operatorname{dim} H=1$ and M has not isotropy types $(N S U(2))$ and $\left(T_{(2)}\right)$,
(c) $\operatorname{Sign}(M)=0$, if $\operatorname{dim} H=2$,
(d) $\quad H^{4}(M \quad \boldsymbol{Q})=0$, if $\operatorname{dim} H=3$ and M has not an isotropy type $(N S U(2))$,
(e) $\quad M=P_{2}(\boldsymbol{C}) x \quad F(N S U(2), \mathrm{M})$, if $\operatorname{dim} H=4$.

Here $N S U(2)$ is the normalizer of $S U(2)$ in $S U(3)$, the identity component of $T_{(2)}$ is a maximal torus of $S U(3)$ and $T_{(2)}$ has 2-components.

First we recall an additivity property of the signature due to S.P. Novikov (see [1], p. 588). Suppose that Y is a compact oriented $4 n$-manifold with boundary $d Y$. Let $\hat{H}^{2 n}(Y ; \boldsymbol{Q})$ denote the image of the natural homomorphism

$$
j^{*}: H^{2 n}(Y, \partial Y ; Q) \rightarrow H^{2 n}(Y ; \boldsymbol{Q})
$$

Then the bilinear form B on $t i^{2 n}(Y \backslash Q)$ defined by

$$
B\left(j^{*}(a), j^{*}(b)\right)=a b[Y]
$$

is symmetric and non-degenerate by Poincare-Lefschetz duality. We can now define $\operatorname{Sign}(Y)$ as the signature of B. Suppose now that Y^{\prime} is another compact oriented $4 n$-manifold with boundary $\partial Y^{\prime}=-\partial Y$. Then $X=Y \underset{\partial Y}{\mathrm{U}} Y^{\prime}$ is a closed orineted $4 n$-manifold and

$$
\begin{equation*}
\operatorname{Sign}(X)=\operatorname{Sign}(Y)+\operatorname{Sign}\left(Y^{\prime}\right) \tag{5.2}
\end{equation*}
$$

REMARK 5.3. Let ξ be an orientable k-plane bundle over a closed orientable manifold X. Denote by $t(\xi), e(\xi)$ and $D(\xi)$, the Thom class, the Euler class and the disk bundle of ξ, respectively. Then $D(\xi)$ is a compact orientable manifold and there is a commutative diagram:

$$
\begin{gathered}
H^{*}(D(\xi), \partial D(\xi)) \xrightarrow{j^{*}} H^{*}(D(\xi)) \\
\simeq \uparrow \psi \\
H^{*}(X) \stackrel{\cdot e(\xi)}{\cong} \cdot H^{*} \\
H^{*}(X) .
\end{gathered}
$$

Here ψ is the Thom isomorphism defined by

$$
\psi(a)=\pi^{*}(a) \cdot t(\xi)
$$

There is an equation

$$
\psi(a) \cdot \psi(b)=(-1)^{k p} \psi(a b \cdot e(\xi)) \quad \text { for } b \in H^{p}(X) .
$$

Therefore we can calculate $\operatorname{Sign}(D(\xi))$ from the information about the cohomology ring $H^{*}(X)$ and the Euler class $e(\xi)$.

Now we prepare the following results.

Lemma 5.4.

(a) $H^{*}(S U(3) ; \boldsymbol{Z})=\wedge_{z}\left(x_{3}, x_{5}\right), \operatorname{deg} x_{i}=i,(i=3,5)$.
(b) $\quad H^{*}(S U(3) / S U(2) \boldsymbol{Z})=H^{*}\left(S^{5} ; \boldsymbol{Z}\right)$ and the right translation of $N S U(2) /$ $S U(2)=S^{1}$ induces a trivial action on $H^{*}(S U(3) / S U(2) ; Z)$.
(c) $H^{*}(S U(3) / S O(3) \boldsymbol{Q})=H^{*}\left(S^{5} ; \boldsymbol{Q}\right)$, and the right translation of $N S O(3) /$ $S O(3)=\boldsymbol{Z}_{3}$ induces a trivial action on $H^{*}(S U(3) / S O(3) ; \boldsymbol{Q})$.
(d) $H^{*}(S U(3) / T ; \boldsymbol{Z})=\boldsymbol{Z}\left[u_{1}, u_{2}, u_{3}\right] /\left(s_{1}, s_{2}, s_{3}\right)$,
where T is a maximal torus of $S U(3)$ consists of all diagonal matrices, s_{k} is the k-th elementary symmetric polynomials, and deg $u_{i}=2,(i=1,2,3)$. Furthermore the induced action of $N(T) / T=S_{3}$, the symmetric group on 3-elements, is given by

$$
a^{*}\left(u_{i}\right)=u_{a(i)}, \quad a \in S_{3} .
$$

(e) $\quad H^{*}(S U(3) / D(m, n) ; \boldsymbol{Q})=\wedge_{Q}\left(x_{2}, x_{5}\right), \operatorname{deg} x_{i}=i,(i=2,5) . \quad$ Here $D(m, n)$ is a closed one-dimensional subgroup defined by

$$
D(m, n)=\left\{\left(\begin{array}{ccc}
z^{m} & & \\
& z^{n} & \mid \\
& & z^{-(m+n)}
\end{array}\right) ; z \in C,|z|=1\right\}
$$

for any pair of integers $(m, n) \neq(0,0)$.
Proof. Since $S U(3) / S U(2)=S^{5}$, b) is true. (a) is proved by making use of the Gysin sequence for

$$
S U(2) \rightarrow S U(3) \rightarrow S^{5} .
$$

(c) is proved from

$$
\pi_{1}(S U(3) / S O(3))=0 \text { and } \quad \pi_{2}(S U(3) / S O(3))=Z_{2}
$$

(d) is a classical result (see [9]). In fact $u_{i}=p_{i}^{*}(u)$,where u is a generator of $H^{2}\left(P_{2}(\boldsymbol{C}) ; \mathrm{Z}\right)$ and $p_{i} ; S U(3) / T \rightarrow P_{2}(\boldsymbol{C})$ is defined by

$$
p_{i}\left(\left(x_{a b}\right) \cdot T\right)=\left(x_{1 i}: x_{2 i}: x_{3 i}\right) .
$$

Finally (e) is proved from the fact that the Euler class of principal S^{1}-bundle $\pi: S U(3) / D(m, n) \rightarrow S U(3) / T$ is

$$
e(\pi)=n u_{1}+m u_{2},
$$

and hence the homomorphism

$$
H^{2}(S U(3) / T ; \mathrm{Q}) \xrightarrow{\cdot e(\pi)} H^{4}(S U(3) / T ; Q)
$$

is an isomorphism.
q.e.d.

Lemma 5.5.

(a) Let φ be an 8-dimensionalnon-trivial real representation of $S U(3)$. Let $\left(H_{\varphi}\right)$ be the principal isotropy type of the linear action given by φ. Then there are only the following cases:
(i) $\varphi=A d_{S U(3)}, H_{\varphi}=T$: a maximal torus of $S U(3)$,
(ii) $\varphi=\rho_{3}+$ trivial summand, $H_{\varphi}=S U(2)$, where $\rho_{3}: S U(3) \rightarrow O(6)$ is the standard representation.
(b) Let ψ be a 4-dimensionalnon-trivial real representation of $N S U(2)$. Let $\left(H_{\psi}\right)$ be the principal isotropy type of the linear action given by ψ. Then there are only the following cases:
(i) $\psi=A d_{N S U(2)}, H_{\psi}=T$: a maximal torus of $\operatorname{NSU}(2)$,
(ii) $\psi=\sigma_{k}, H_{\psi}=D(k-1,-k),(k \in Z)$,
where the representation $\sigma_{k}: N S U(2) \rightarrow U(2) \subset O(4)$ is given by

$$
\sigma_{k}\left(\begin{array}{lll}
x_{11} & x_{12} & 0 \\
x_{21} & x_{22} & 0 \\
0 & 0 & y
\end{array}\right)=\left(\begin{array}{ll}
y^{k} x_{11} & y^{k} x_{12} \\
y^{k} x_{21} & y^{k} x_{22}
\end{array}\right)
$$

(iii) ψ is inducedfrom a non-trivial real representation of S^{1}, via the natural projection $N S U(2) \rightarrow N S U(2) / S U\left(\underline{\sim}{ }_{\top} S^{1}\right.$, and $H_{\psi}^{0}=S U(2)$, where H_{ψ}^{0} is the identity component of H_{ψ}.

We omit the proof (see [8], Theorem I).
From now on we assume that M is a closed connected orientable smooth 8 -manifold and M admits a non-trivial smooth $S U(3)$-action with a principal isotropy type (H). Then $S U(3) / H$ is orientable by the differentiable slice theorem (see [11], Lemma 3.1).

We will prove Theorem 5.1 by the following many propositions.
Proposition 5.6. Assume that $S U(3)_{x}^{0}$ is conjugate to H^{0} in $S U(3)$ for each $x \in M$. Here G° is the identity component of G and $S U(3)_{x}$ is the isotropygroup at x. Then,
(a) $\operatorname{Sign}(M)=0$, if $\operatorname{dim} H=1$ r 2 ,
(b) $H^{4}(M ; \boldsymbol{Q})=0$, if $\operatorname{dim} H=0$ or 3 ,
(c) $\quad M=P_{2}(\boldsymbol{C}) \times F(N S U(2), \mathrm{M})$, if $\operatorname{dim} H=4$.

Proof. If $\operatorname{dim} H=1$ or 2 , then $\operatorname{Sign}(M)=0$ by Theorem 4.1 and Remarks 4.4, 4.5. If $\operatorname{dim} H=0$, then $M=S U(3) / H$ and hence $H^{4}(M ; \boldsymbol{Q})=0$ by Lemma 5.4 (a). By Lemma 4.2,there is an equivariant diffeomorphism

$$
M=S U(3) / H_{K}^{0} \times F ; K=N\left(H^{0}\right) / H^{0}, F=F\left(H^{0}, M\right)
$$

If $\operatorname{dim} H=4$, then H^{0} is conjugate to $N S U(2)$ in $S U(3)$ and $N(N S U(2)=$ $N S U(2)$. Therefore

$$
M=P_{2}(\boldsymbol{C}) \times F(N S U(2), M)
$$

Finally if $\operatorname{dim} H=3$, then H^{0} is conjugate to $S O(3)$ or $S U(2)$ in $S U(3)$. If $H^{0}=S O(3)$, then $\operatorname{dim} F=3$ and

$$
H^{4}(M ; \boldsymbol{Q})=H^{4}(S U(3) / S O(3) \times F \boldsymbol{Q})=0
$$

by Lemma 5.4 (c). Next if $H^{0}=S U(2)$, then $\operatorname{dim} F=4, F$ admits a smooth S^{1}-action without stationary points and there is an equivariant diffeomorphism

$$
M=S_{S^{1}}^{5} \times F
$$

There is a sufficiently large integer n such that the $\boldsymbol{S}^{1} / \boldsymbol{Z}_{\boldsymbol{n}}$-actionon the orbit space $\boldsymbol{F} / \boldsymbol{Z}_{\boldsymbol{n}}$ is free. Then there is an isomorphism

$$
H^{*}(M ; \boldsymbol{Q})=H^{*}\left(M^{\prime} ; \boldsymbol{Q}\right)
$$

where

$$
M^{\prime}=\left(S^{5} / \boldsymbol{Z}_{n} \times \boldsymbol{F} / \boldsymbol{Z}_{n}\right) /\left(S^{1} / \boldsymbol{Z}_{n}\right),
$$

and there is a fibre bundle

$$
S^{5} / Z_{n} \rightarrow M^{\prime} \rightarrow F / S^{1}
$$

with a structure group $S^{1} / \boldsymbol{Z}_{n}$. Here $F / S^{1}=\left(F / \boldsymbol{Z}_{n}\right) /\left(S^{1} / \boldsymbol{Z}_{i}\right.$. a 3-dimensional rational cohomology manifold. Therefore

$$
H^{4}(M ; \boldsymbol{Q})=H^{4}\left(M^{\prime} ; \boldsymbol{Q}\right)=0 . \quad \text { q.e.d. }
$$

REMARK 5.7. Now Theorem 5.1 is proved for $\operatorname{dim} H=0$ or 4. Moreover, Theorem 5.1 is proved for the case $H^{0}=S O(3)$, since $S O(3)$ is not conjugate to any subgroup of $N S U(2)$ in $S U(3)$ and H with $H^{0}=S O(3)$ is not a principal isotropy group of any 8 -dimensional real representation of $S U(3)$ by Lemma 5.5.

Proposition 5.8. Suppose $\operatorname{dim} H=1$. Then $\operatorname{Sign}(M)=0$, if M has not isotropy types $(N S U(2))$ and $\left(T_{(2)}\right)$.

Proof. By Proposition 5.6 (a), one may assume that there is an isotropy type $\left(K_{1}\right)$ with $\operatorname{dim} K_{1}>1$. Then by making use of the differentiable slice theorem, there is an isotropy type $\left(K_{2}\right)$ and there is an equivariant decomposition

$$
M=D\left(\nu_{1}\right) \cup D\left(\nu_{2}\right),
$$

where $D\left(\nu_{i}\right)$ is an equivariant normal disk bundle of an embedding $S U(3) / K_{i}$ $C M$, and

$$
\partial D\left(\nu_{1}\right)=-\partial D\left(\nu_{2}\right)=S U(3) / H
$$

Thus

$$
\operatorname{Sign}(M)=\operatorname{Sign}\left(D\left(\nu_{1}\right)\right)+\operatorname{Sign}\left(D\left(\nu_{2}\right)\right)
$$

Since

$$
H^{4}(S U(3) / K Q)=0 \quad \text { for } \operatorname{dim} K \neq 2,4,
$$

by Lemma 5.4, $\operatorname{Sign}\left(D\left(\nu_{i}\right)\right)=0$ for $\operatorname{dim} K_{i} \neq 2,4$. Let K be a 2-dimensional closed subgroup of $S U(3)$. Then K is conjugate to one of the following

$$
T, T_{(2)}, T_{(3)} \quad \text { and } \quad N(T)=T_{(6)}
$$

Here $T_{(i)}^{0}=T$ and $T_{(i)}$ has i-components. By Lemma 5.4 (d),

$$
\begin{aligned}
& H^{4}(S U(3) / T ; \mathrm{Q})=\boldsymbol{Q} \oplus \boldsymbol{Q} \\
& H^{4}\left(S U(3) / T_{(2)} ; Q\right)=Q \\
& H^{4}\left(S U(3) / T_{(3)} ; Q\right)=H^{4}(S U(3) / N(T) Q)=0 .
\end{aligned}
$$

Thus $\operatorname{Sign}\left(D\left(\nu_{i}\right)\right)=0$, if $K_{i}=T_{(3)}$ or $N(T)$. If $K_{i}=T$, then $\operatorname{Sign}\left(D\left(\nu_{i}\right)\right)=0$ from Lemma 5.4 (d) and Remark 5.3.
q.e.d.

REMARK 5.9. If $\operatorname{dim} H=2$ in Theorem 5.1, then $H=T$ or $T_{(3)}$, since $S U(3) / T_{(2)}$ and $S U(3) / N(T$ gre non-orientable by Lemma 5.4(d). Theorem 5.1 is proved for $H=T_{(3)}$ by Proposition 5.6, since $T_{(3)}$ is not conjugate to any subgroup of $\operatorname{NSU}(2)$ in $S U(3)$ and $T_{(3)}$ is not a principal isotropy group of any 8 -dimensional real representation of $S U(3)$ by Lemma 5.5. Therefore, it remains to prove Theorem 5.1 for the cases $H=T$ and $H^{\circ}=S U(2)$.

Proposition 5.10. Suppose $H=T$. Then $\operatorname{Sign}(M)=0$.
Proof. If $F(N S U(2), M)$ is empty, then $\operatorname{Sign}(M)=0$ by Proposition 5.6. Now we assume that $F(N S U(2), M)$ is not empty. Then

$$
\operatorname{dim} F(N S U(2), M)=1
$$

by Lemma 5.5, and any stationary point (if exists) of $S U(3)$ is isolated by Lemma 5.5 (a). Let

$$
F(S U(3), M)=\left\{x_{1}, \cdots, x_{k}\right\}, \quad(k \geqslant 0)
$$

and let D_{i} be an invariant closed disk around x_{i}, such that

$$
D_{i} \cap D_{j}=\mathbf{0} \quad \text { for } \quad i \neq j
$$

Let $D=D_{1} \mathrm{U} \quad \cup D_{k}$ and $E=M$-int D. Then

$$
D_{i} \cap F(N S U(2), E) \neq \emptyset, \quad(i=1, \cdots, k)
$$

by Lemma 5.5 (a). Let

$$
E_{0}=\left\{x \in E \mid\left(S U(3)_{x}\right)=(N S U(2))\right\},
$$

let U_{0} be an invariant closed tubular neighborhood of E_{0} in E, and let $U=U_{0} \mathrm{U} D$. Then M-int U is connected and

$$
\left(S U(3)_{x}^{0}\right)=(T), \quad \text { for } \quad x \in M-\operatorname{int} U
$$

Therefore, there is an equivariant diffeomorphism

$$
M-\operatorname{int} U=S U(3) / T \underset{N(T) / T}{ } F, \quad F=F(T, M-\operatorname{int} U)
$$

by Lemma 4.2, and there is a commutative diagram:

$$
\begin{array}{cc}
H^{4}(M-\operatorname{int} U ; \boldsymbol{Q}) \xrightarrow{i^{*}} \rightarrow H^{4}(\partial(M-\text { int } U) ; \boldsymbol{Q}) \\
\cong \mid p^{*} & \cong p^{*} \\
H^{4}(S U(3) / T \times F ; \boldsymbol{Q})^{N(T) / T} \underset{i_{0}^{*}}{\longrightarrow} H^{4}(S U(3) / T \times \partial F ; \boldsymbol{Q})^{N(T) / T}
\end{array}
$$

Here i_{0}^{*} is injective, since $H^{\text {odd }}(S U(3) / T \boldsymbol{Q})=0$ by Lemma 5.4 (d), $\operatorname{dim} F=2$, and each connected component of F has non-empty boundary from the connectedness of M-int U. Thus

$$
\hat{H}^{4}(M-\operatorname{int} U ; \boldsymbol{Q})=0,
$$

and hence $\operatorname{Sign}(M-\operatorname{int} U)=0$. Next, let U_{1}, \cdots, U_{n} be connected components of U. Then we can prove that

$$
\begin{array}{ll}
\hat{H}^{4}\left(U_{i} ; \boldsymbol{Q}\right)=0, & \text { if } U \cap D=\emptyset, \\
H^{4}\left(U_{i} ; \boldsymbol{Q}\right)=0, & \text { if } U_{i} \cap D \neq \emptyset,
\end{array}
$$

and hence

$$
\operatorname{Sign}(U)=\operatorname{Sign}\left(U_{1}\right)+\cdots+\operatorname{Sign}\left(U_{n}\right)=0
$$

Therefore

$$
\operatorname{Sign}(M)=\operatorname{Sign}(M-\operatorname{int} U)+\operatorname{Sign}(U)=0
$$

We recall the following result which is essentially proved in the proof of Proposition 5.6 (b).

Lemma 5.11. Let X be a compact connected orientable smooth n-manifold (∂X is empty or not). Let $n=7$ or 8 . Assume that X admits a smooth $S U(3)-$ action with

$$
\left(S U(3)_{x}^{0}\right)=(S U(2)) \quad \text { for } \quad x \in X
$$

Then

$$
H^{n-4}(X ; Q)=0 .
$$

Proposition 5.12. Assume that $H^{0}=S U(2)$ and M has not an isotropy type $(N S U(2))$. Then $H^{4}(M ; \boldsymbol{Q})=0$.

Proof. If $F(S U(3), M)=\emptyset$, then $H^{4}(M ; \boldsymbol{Q})=0$ by Lemma 5.11. Next if $F(S U(3), M) \neq \emptyset$, then $\operatorname{dim} F(S U(3), M)=2$ by Lemma 5.5 (a). Let U be an invariant closed tubular neighborhood of $F(S U(3), M)$ in M. Then there is an exact sequence:

$$
H^{3}(\partial U ; Q) \rightarrow H^{4}(M ; Q) \rightarrow H^{4}(U ; \boldsymbol{Q}) \oplus H^{4}(M-\operatorname{int} U ; \boldsymbol{Q})
$$

Here

$$
H^{3}(\partial U ; Q)=H^{4}(M-\operatorname{int} U ; \boldsymbol{Q})=0
$$

by Lemma 5.11, and

$$
H^{4}(U ; \mathrm{Q})=H^{4}(F(S U(3), M) ; Q)=0
$$

Therefore

$$
H^{4}(M ; Q)=0 .
$$

q.e.d.

This completes the proof of Theorem 5.1.

6. SZ7(3)-actions on cohomology $\boldsymbol{P}_{4}(\boldsymbol{C})$

In the previous paper [13] we have considered smooth $S U(3)$-actions on homotopy $P_{3}(\boldsymbol{C})$. In this section, first we prove the following result as an application of Theorem 5.1.

Theorem 6.1. Let M be a compact connected orientable 8-manifolduch that

$$
H^{*}(M ; \boldsymbol{Q})=H^{*}\left(P_{4}(\boldsymbol{C}) ; \boldsymbol{Q}\right)
$$

Then for any non-trivial smooth $S U(3)$-action on M, the stationary point set is a 2-sphere and the principal isotropy type is $(S U(2))$. Furthermore there is an equivariant diffeomorphism

$$
M=\partial\left(D^{6} \times X\right) / S^{1}
$$

Here X is a compact connected orientable 4-manifolawhich is acyclic over rationals, X admits a smooth S^{1}-action which isfree on ∂X, the $S U(3)$-action is standard on D^{6} and trivial on X.

Proof. Denote by (H), the principal isotropy type of the given $S U(3)$ action on M. Since $\operatorname{Sign}(M) \neq 0$, the following are the only possible cases from Theorem 5.1,
(a) $\operatorname{dim} H=l$ and M has an isotropy type $\left(N S U(2)\right.$)or $\left(T_{(2)}\right)$,
(b) $H^{0}=S U(2)$ and M has an isotropy type ($N S U(2)$),
(c) $\quad H=N S U(2)$ and $M=P_{2}(C) \times F(N S U(2), M)$.

If $H=N S U(2)$, then $\chi(M)=5$ is divisible by $\chi\left(P_{2}(C)\right)=3$, and this is a contradiction. Next if $\operatorname{dim} H=1$, then there is a decomposition

$$
M=D\left(\nu_{1}\right) \cup D\left(\nu_{2}\right)
$$

as in the proof of Proposition 5.8, where $D\left(\nu_{i}\right)$ is a normal disk bundle over $S U(3) / K_{i}$. One may assume $K_{1}=N S U(2)$ or $T_{(2)}$, and hence

$$
\chi\left(S U(3) / K_{1}\right)=3
$$

by Lemma 5.4. On the other hand,

$$
5=\chi(M)=\chi\left(S U(3) / K_{1}\right)+\chi\left(S U(3) / K_{2}\right)
$$

Thus $\chi\left(S U(3) \mid K_{2}\right)=2$, and hence $K_{2}=T_{(3)}$ by Lemma 5.4. Since $H^{2}\left(S U(3) / T_{(3)} \boldsymbol{Q}\right)=0$, there is a contradiction in the following exact sequence of rational cohomology groups:

$$
\begin{aligned}
H^{1}\left(\partial D\left(\nu_{1}\right)\right) & \rightarrow H^{2}(M) \rightarrow H^{2}\left(S U(3) / K_{1}\right) \oplus H^{2}\left(S U(3) / K_{2}\right) \\
& \rightarrow H^{2}\left(\partial D\left(\nu_{1}\right)\right) \rightarrow H^{3}(M) .
\end{aligned}
$$

Therefore we obtain $H^{0}=S U(2)$. If $F(S U(3), M)=\emptyset$, then there is a fibre bundle

$$
F(S U(2), M) \rightarrow M \rightarrow P_{2}(\boldsymbol{C}) .
$$

Thus $\chi(M)=5$ is divisible by $\chi\left(P_{2}(\boldsymbol{C})\right)=3$, and this is a contradiction. Hence $F(S U(3), M) \neq \emptyset$ and this implies $H=S U(2)$ by Lemma 5.5 (a). Let U be an invariant tubular neighborhood of $F(S U(3), \mathrm{M})$ in M. Then

$$
X=F(S U(2), M-\operatorname{int} U)
$$

is a compact connected orientable 4-manifold with the natural action of $N S U(2) / S U(2)=S$ yhich is free on ∂X. Furthermore there is an equivariant diffeomorphism

$$
M=\partial\left(D^{6} \times X\right) / S^{1}
$$

and X is acyclic over rationals by the same argument as in the proof of Theorem 2.1. Finally,

$$
F(S U(3), \mathrm{M})=\partial X / S^{1}=S^{2}
$$

Next, as a complementary part of Theorem 5.1, we give examples of certain $S U(3)$-actions on 8 -manifolds with non-zero signature.

Let $\psi: N S U(2) \rightarrow U(3)$ be a unitary representation of $\operatorname{NSU}(2)$. Then ψ induces a smooth $N S U(2)$-action ψ_{*} on $P_{2}(\boldsymbol{C})$. Denote by $M(\psi)$, the orbit manifold of the free smooth action of $\operatorname{NSU}(2)$ on $S U(3) \times P_{2}(\boldsymbol{C}$ given by

$$
h \cdot(g, x)=\left(g h^{-1}, \psi_{*}(h, x)\right), g \in S U(3), h \in N S U(2), x \in P_{2}(\boldsymbol{C}) .
$$

Then the compact connected orientable 8-manifold $M(\psi)$ admits a natural smooth $S U(3)$-action without stationary points and

$$
\operatorname{Sign}(M(\psi))=1
$$

EXAMPLE 6.2. Let $\alpha_{k}: N S U(2) \rightarrow U(3$ be a unitary representation given by

$$
\alpha_{k}\left(\begin{array}{ccc}
* & * & 0 \backslash \\
* & * & 0 \\
0 & 0 & y\rfloor
\end{array}=\begin{array}{ccc}
/ 1 & 0 & 0 \\
0 & 1 & 0 \\
\lfloor 0 & 0 & y^{k}
\end{array}\right) .
$$

Then $M\left(\alpha_{k}\right)$ has just two isotropy types

$$
\left(S U(2)_{(k)}\right) \quad \text { and } \quad(N S U(2))
$$

where $S U(2)_{(k)}$ has k-components and its identity component is $S U(2)$. (see Theorem 5.1 (d))

EXAMPLE 6.3. Let $\beta_{k}: N S U(2) \rightarrow U(3$ be a unitary representation given by

$$
\beta_{k}\left(\begin{array}{lll}
x_{11} & x_{12} & 0 \\
x_{21} & x_{22} & 0 \\
0 & 0 & y
\end{array}\right)=\left(\begin{array}{lll}
x_{11} & x_{12} & 0 \\
x_{21} & x_{2} & 0 \\
0 & 0 & y^{k}
\end{array}\right)
$$

Then $M\left(\beta_{k}\right)$ has just three isotropy types

$$
(D(k,-k-1)),(T) \text { and } \quad(N S U(2)),
$$

where $D(k,-k-1)$ is a closed one-dimensional subgroup defined in Lemma 5.4. (see Theorem 5.1 (b))

EXAMPLE 6.4. Let $\gamma: N S U(2) \rightarrow U(3$ be a unitary representation given by

$$
\gamma\left(\begin{array}{lll}
a & b & 0 \\
c & d & 0 \\
0 & 0 & *
\end{array}\right)=\left(\begin{array}{ccc}
a^{2} & \sqrt{2} a b & b^{2} \\
\sqrt{2} a c & a d+b c & \sqrt{2} b d \\
c^{2} & \sqrt{2} c d & d^{2}
\end{array}\right)
$$

Then $M(\gamma)$ has just three isotropy types

$$
\left(D(1,1)_{(2)}\right),(T) \text { and }\left(T_{(2)}\right),
$$

where $G_{(2)}$ is a subgroup of $S U(3)$ such that $G_{(2)}$ has 2-components and its identity component is G. (see Theorem 5.1 (b))

7. Classification of smooth $S U(n)$-actions on orientable $2 n$-manifolds

Let M be a compact connected $2 n$-manifold with non-trivial smooth $S U(n)$-action, then the identity component of each isotropy group is conjugate to one of the following

$$
S U(n), S U(n-l) \quad \text { and } \quad N S U(n-1)
$$

for $n \geqslant 5$. This is proved similarly as Lemma 1.5 . Therefore there is an equivariant diffeomorphism

$$
M=\partial\left(D^{2 n} \times X\right) / S^{1}
$$

as $S U(n)$-manifolds by (1.1) and (1.4). Here X is a compact connected 2-dimensional S^{1}-manifold and the S^{1}-action on $d X$ is free if $d X$ is non-empty. Furthermore if M is orientable, then X is also orientable. Next we remark that for orientable 2-dimensional S^{1}-manifold X, if the isotropy group $S_{x}^{1} \neq S^{1}$ for $x \in X$, then S_{x}^{1} is a principal isotropy group by the differentiable slice theorem, and hence the S^{1}-space $X-F\left(S^{1}, X\right)$ has just one isotropy type.
(i) If X has just one isotropy type $\left(S^{1}\right)$, then $\partial X=\emptyset$ and

$$
M=P_{n-1}(\boldsymbol{C}) \times X
$$

(ii) If X has just one isotropy type $\left(\boldsymbol{Z}_{k}\right)$, then

$$
\begin{array}{ll}
M=S^{2 n} & \text { if } \partial X \neq \emptyset \\
M=L^{2 n-1}(k) \times S^{1} & \text { if } \partial X=\emptyset .
\end{array}
$$

Here $L^{2 n-1}(k)=S^{2 n-1} / \boldsymbol{Z}_{k}$ is a standard lens space.
(iii) If X has just two isotropy types $\left(\boldsymbol{Z}_{k}\right)$ and $\left(S^{1}\right)$, then

$$
\begin{array}{ll}
M=P_{n}(C) & \text { if } \partial X \neq \emptyset, \\
M=S_{s^{1}}^{2 n-1} \times S_{(k)}^{2} & \text { if } \partial X=\emptyset
\end{array}
$$

Here $S_{(k)}^{2}$ is a 2 -sphere with the S^{1}-action given by

$$
e^{i \theta}\left(x_{0}, x_{1}, x_{2}\right)=\left(x_{0}, x_{1} \cos k \theta+x_{2} \sin k \theta,-x_{1} \sin k \theta+x_{2} \cos k \theta\right) .
$$

This completes the classification.
OSAKA UNIVERSITY

References

[1] M.F. Atiyah and I.M. Singer: The index of elliptic operators III, Ann. of Math. 87 (1968), 546-604.
[2] A. Borel et al.: Seminar on Transformation Groups, Ann. of Math. Studies, 46, Princeton Univ. Press, 1960.
[3] A. Borel and F. Hirzebruch: Characteristic classes and homogeneous spaces III, Amer. J. Math. 82 (1960), 491-504.
[4] S.S. Chern, F. Hirzebruch and J.P. Serre: On the index of a fibered manifolds, Proc. Amer. Math. Soc. 8 (1957), 587-596.
[5] R. Crowell and R. Fox: Introduction to Knot Theory, Ginn and Co., 1963.
[6] E.B. Dynkin: The maximal subgroups of the classical groups, Amer. Math. Soc. Transl. 6 (1957), 245-378.
[7] A. Hattori: The index of coset spaces of compact Lie groups, J. Math. Soc. Japan 14 (1962), 26-36.
[8] W.Y. Hsiang: On the principal orbit type and P.A. Smith theory of $\operatorname{SU}(p)$ actions, Topology 6 (1967), 125-135.
[9] J. Leray: Sur l'anneau d'homologie de l'espacehomogène, C. R. Acad. Sci. Paris, 223 (1946), 412-415.
[10] J. Milnor: Lectures on the h-cobordism Theorem, Princeton Math. Notes, 1965.
[11] D. Montgomery, H. Samelson and C.T. Yang: Exceptional orbits of highest dimension, Ann. of Math. 64 (1956), 131-141.
[12] I. Tamura: Variety of varieties (Japanese), Sugaku 21 (1969), 275-285.
[13] F. Uchida: Linear $S U(n)$-actions on complex projective spaces, Osaka J. Math. 11 (1974), 473-481.
[14] H. Weyl: The Classical Groups, 2nd ed. Princeton Univ. Press, 1946.

