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0. Introduction

The purpose of this paper is to study smooth SU(ri)-acύons on a compact
orientable 2w-manifold whose rational cohomology ring is isomorphic to
H*(Pm(C)\ Q). First we show the following result.

Theorem 2.1. Let n >7 and 0<&<w— 4. Let M be a compact orientable
smooth 2(nJ

Γk)-manifold with

Then for any non-trivial smooth SU(n)-actίon on M, the stationary point set
F=F(SU(n), M) is an orientable 2k-manifold with

and there is an equivariant diffeomorphism

M=d(D2nxX)/S1 .

Here X is a compact connected orientable (2k-\-2)-manίfold which is acyclic over
rationals, X admits a smooth Sl -action which is free on dX, the SU(n)-actίon is
standard on D2n and trivial on Xy and

Furthermore, if

H*(M;Z) = H*(P,t

then X is acyclic over integers, the Sl-action on X is semi-free, and

Corollary 2.2. Let w>7 and 0<Λ<w— 4. Let M be a compact connected
smooth 2(n-\-k)-manifold which is homotopy equivalent to Pn+k(C). If M admits
a non-trivial smooth SU(n)-actίon, then M is dijfeomorphic to Pn+k(C).
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Examples of 5?7(w)-actions on cohomology complex projective spaces are

constructed in section 3. And we have the following results.

Theorem 3.1. Let #>2, £> 1 and p^l. Then there is a compact orientable
2(n+k)-manifold M such that

πl(M}^Z\pZ and H*(M\ Q) = //*(PM+,(C); Q)

and M admits a smooth SU(ri)-action with

F(SU(n\ M) = Pk(C) .

Theorem 3.2. Let n^2 and A>3. Let G be a finitely presentable group

with ^(G; Z)=#2(G; Z)=0. Then
(a) there is a compact orientable 2(n-\- k)-manifold M such that

G and H*(M; Z) = H*(Pn+k(C) y Z)

and M admits a smooth SU(n)-action with

F(SU(n), M) = Pk(C) ,

(b) there is a smooth SU(ri)-actίon on Pn+k(C] such that

π,(F)=G and H*(F; Z) = #*(P*(C); Z) ,

αfer* F=F(SU(n), Pn+k(C)).

Next, in section 4, we study a signature of closed orientable manifold which
admits a smooth G-action with isotropy groups of uniform dimension, and we
have a result which is a generalization of the fact that Sign(M)— 0 if M admits
a smooth circle action without stationary points.

Next we study smooth 5ί7(3)-actions on orientable 8-manifolds in section 5,
and as an application we show a similar result as Theorem 2.1 for non-trivial
smooth S£/(3)-action on a cohomology complex projective 4-sρace. We con-

struct examples of stationary point free 5i!7(3)-actions on orientable 8-manifolds
with non-zero signature in section 6.

As a concluding remark, classification of smooth 5f/(n)-actions on orientable

2«-manifolds is done in the final section.

1. SZ7(n)-actions with certain isotropy types

Let E be a manifold with smooth *Sί7(n)-action (w>3). Assume that
the identity component of each isotropy group is conjugate to SU(n — 1) or
NSU(n—l), the normalizer of SU(n—l) in SU(n). Then S1=NSU(n-l)l

SU(n—l) acts naturally on
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X = F(SU(n-l), E) ,

the stationary point set of SU(n— 1). It is easily seen that

(1.1) SU(n)ISU(n-l)xX-+E, [gSU(n~\\ x] -+ gx

is an equivariant diffeomorphism as 5t/(tt)-manifolds, since g^SU(ri) and
g-lSU(n-l)gc:NSU(n-l) imply g<=NSU(n—l).

Lemma 1.2. Let V be a real vector space with linear SU(ri)-action
Assume that the identity component of each isotropy group on the invariant unit sphere
S(V) is conjugate to SU(n-\] or NSU(n-l). Then S(V) = SU(n)/SU(n-l)
as SU(n)-spaces.

Proof. By (1.1), there is an equivariant diffeomorphism

S(V) = SU(n)ISU(n-l)xF(SU(n-l), S(V)) ,

where F(SU(n—l), S(V)) is a sphere. Then it is easily seen that

F(SU(n-l), S(V)) = Sl

by the homotopy exact sequence of the fibre bundle

F(SU(n- 1), S(V)) - S(V) - Pn.,(C) .

Considering ^S^actions on Sl, we have

S(V) = SU(n)ISU(n-l)

as *SC7(w)-spaces. q.e.d.

Lemma 1.3. Let V be a real vector space with linear SU(n)-action such
that S(V)=SU(n)/SU(n—l) as SU(n)-spaces (n>3). Then the SU(n)-action on
V=R2n is equivalent to the standard action.

Proof. This is a known result (see [8], Theorem I), but we give an elemen-
tary proof for the completeness. It is well-known that a real irreducible SU(n)-
vector space R2n with an invariant complex structure is equivalent to R2n with
the standard 5C/(w)-action. So we prove the existence of an invariant complex
structure on V. Denote by Zny the center of SU(n). Then Zn is a cyclic group
of order n, and the ^-action on S(J^) is free, since

(n-l)= {1} .

Consider a direct sum decomposition
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as ^-vector space, where Vt (i= 1, •••, k) are irreducible. Leaving a non-zero

vector vl^ Vl fixed, we have an element gi^SU(n) such that

by the transitivity of the S U(ri) -action on S(V). Then

Since the 2ΓM-action on ^FΊ) is free, there is a complex structure Jλ on Fx such

that

for some #, b^R, 6ΦO, where σ is a generator of ^M, moreover the real vector
space F! is spanned by {̂ , J^} . Therefore there is a complex structure J on

F such that

Jvλ — J !̂ , Jg&i — giJiVi and σ^ = av+bJv

for each v^V. Then

= agv+bgJv ,

= agv -\-bJgv

for any ̂ e SU(n). Therefore the complex structure J is *SC/(w)-invariant, since

gσ—σg and &ΦO. q.e.d.

Let M be a closed connected manifold with smooth *S[/(w)-action (τz>3).

Assume that the identity component of each isotropy group is conjugate to one
of the following

SU(n), SU(n-l) and NSU(n-l) .

Assume that the stationary point set F=F(SU(ri), M) is non-empty. Let U be
an invariant closed tubular neighborhood of F in M. Then there is an equivari-
ant decomposition

M= U\J(SU(n)ISU(n-l)xX)= U \J(S2n~lxX) ,
Sl Sl

where X=F(SU(n— 1), M~ int U) with the natural S'-action. Since

dU= SU(n)ISU(n-l)xdX= S^xQX
sl sl

as 5ί7(w)-maifolds, the ^S^action on QX is free, F=dX/S\ and the disk bundle
U->F with 5C7(w)-action is equivariantly isomorphic to the disk bundle

sl

where the *Si7(w)-action on D2n is standard by Lemma 1.2 and Lemma 1.3.
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Therefore the codimension of F in M is 2ny X is connected, and there is an
equivariant diffeomorphism

(1.4) M=d(D2nxX)/S1 = D2nxQX\jS2n-lxX
sl sl

as SU(ri)-mamfolds.

Lemma 1.5. Let G be a closed connected proper subgroup of SU(ri), (n^7).

If

dimG>n2-4n+7 = dimN(SU(n-2), SU(n)) ,

then G is conjugate to SU(n—l) or NSU(n—l) in SU(ri).

Proof. The inclusion p: GcSC/(n) gives an w-dimensional complex repre-

sentation of G. First we show that the representation p is reducible. Suppose

that p is irreducible. Then G is semi-simple from the Shur's lemma. If G is

not simple, then there are integers />>?> 2 with n=pq, such that G is conjugate
to a subgroup of the tensor product

SU(p)®SU(q)

in SU(pq), by considering the induced representation of the universal covering

group of G. Therefore

If G is simple but not one of the type

and E6,

then G is conjugate to a subgroup of SO(ri) or Sp(n/2), (see [6], p. 336,

Theorem 0.20). But

and hence

If G is of type D2k+l (A>2), then the lowest dimensional non-trivial irreducible

complex representation is (4&+2)-dimensional (see [6], p. 378, Table 30).
Therefore 4k+2tζn and hence

dim G = dim 50(4^+2) =

If G is of type £„ then n^27 (see [6], p. 378, Table 30). Therefore
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2

Finally, if G is of type Ak^ (k<ri)y then

2 ^H>

by the Weyl's formula (see [14], Theorem 7.5). Therefore

dim G = dim SU(k) = k2-

Consequently

2

if p: GdSU(n) is irreducible (n^4). Therefore p is reducible, if

dimG>w2—4n+7 and w>7.

Since p is reducible, G is conjugate to a subgroup of

N(SU(n-p), SU(n)),

the normalizer of SU(n—p) in SU(n). But

dim N(SU(n-p),

for 2<^ <— . Therefore G is conjugate to a subgroup G7 of NSU(n—l). If

w-l), then

where G"=G' Π SU(n— 1), by the isomorphism

NSU(n-l)ISU(n-l) = S1 .

If G/r- 5J7(n~l) then G'=G"=SU(n-\). If G"ΦSE/(n-l), then

dimG'^^-Z)2 - dimN(SU(n-2), SU(n-l)) ,

by making use of the first part of the proof of this lemma for SU(n—l) instead
of SU(ri), and hence

dim G/<(w-2)2+l<«2-4«+7 .

Consequently we see that G is conjugate to SU(n— 1) or NSU(n—l) in SU(ri).
q.e.d.
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Lemma 1.6. Let M be a manifold with smooth SU(ri)-action. If dim M<
4w— 8, then

dimSU(n)x>n2-4n+7

for each x^M.

Proof. Since SU(n)/SU(n)x is equivariantly embedded in M,

dim SU(n)—dimSU(n)x^dimM<4n— 8 .

Hence dim SU(n)x>dim SU(ri)—(4n—8)=n2—4n+7. q.e.d.

2. S{7(/ι)-actions on cohomology complex projective spaces

In this section we prove the following results.

Theorem 2.1. Let n^l and Q*ζk<n— 4. Let M be a compact connected
orientable smooth 2(n-\-k)-manifold with

Then for any non-trivial smooth SU(n)-action on M, the stationary point set
F—F(SU(ri), M) is an orientable 2k-manίfold with

and there is an equivariant dίffeomorphism

M=θ(D2nxX)ISl.

Here X is a compact connected orientable (2k-\~2)-manifold which is acyclic over
rationals, X admits a smooth Sl-action which is free on QXy the SU(n)-actίon is
standard on D2n and trivial on X, and

Furthermore, if

H*(M;Z) = H*(Pn+k(C);Z),

then X is acyclic over integers, the Sl-actίon on X is semi-free, and

Corollary 2.2, Let n^Ί and 0<&<>— 4. Let M be a compact connected
smooth 2(n-{-k)-manifold which is homotopy equivalent to Pn+k(C). If M admits a
non-trivial smooth SU(n)-action, then M is diffeomorphίc to Pn+k(C).

Proof of Theorem 2.1. By Lemma 1.5, Lemma 1.6 and the assumption
and 0</j<#— 4, the identity component of each isotropy group of the
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given SU(ri)-acύon on M is conjugate to one of the following

SU(n), SU(n-l) and NSU(n-l) .

(i) First we show that the stationary point set F=F(SU(ri), M) is non-
empty. Assume F=0y then by (1.1) there is a smooth fibre bundle

F(SU(n-l), M) -»M^Pn_λ(C) .

Thus

X(M) - X(Pn^(C)).X(F(SU(n-\}, M))

and hence

n) .

This is impossible by the assumption 0<A<ra— 4. Thus FΦ0. Then by
(1.4) there is an equivariant diffeomorphism

as Si7(fl)-manifolds. Here X is a compact connected orientable (2k+2)-
manifold with smooth ^-action which is free on dX.

(ii) Next we show that X is acyclic over rationals. Since

D2nxdX->QX/S1 = F
s*

is a 2^-disk bundle, there is an isomorphism

H*(M, S2n~lxX\ Q) = H*-**(F; Q) .
81

Thus

(2.3) H*(M\ Q) = H'(S*-lxX; Q) for i<2n-2.

Now we show that the euler class e(p) of the principal ^-bundle

p: Q(D2nχX)-*M

is non-zero in H\M\ Q). Assume e(p)— 0, then the euler class of the principal

^-bundle

S2n~lxX-*S2n-lxX
si-

is zero in H\S2n~lxX\ Q), and hence there is an isomorphism
sl

H*(S2n-*; Q)®H*(X; Q) = H^S1; Q)®H*(S2n~lxX; Q) .
s1

Therefore

H'(X\ Q) = Q for 0<i<2n-2
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by (2.3) and the assumption

But

άimX= 2k+2*ζ2n—2.

Thus H2k+2(X; Q)=Q and this is a contradiction, since the connected manifold
X has a non-empty boundary. Therefore e(p) Φ 0 and hence

(2.4) H*(d(D2"χX); Q) = //*(<Sr2f'+2*+1; Q) .

There is an isomorphism

#••(/>*• xX;Q) = H^^D2" X X, Q(D2n X X ) ; Q)

by the Poincare-Lefschetz duality, and the homomorphism

; Q) -> H2n+2k+2^(D™xX, d(D*»xX); Q)

is onto for 0<ί <2n+2k+2 by (2.4). Since X is a connected (2&+2)-manifold
with a non-empty boundary,

) = 0 for ί <2n ,

and hence

Jff'(JΓ;Q) = 0 forO<ι<2n.

Therefore X is acyclic over rationals. Then

by the Poincarά-Lefschetz duality, and hence

H*(F; Q) = H*(P,ίC)ι Q) .

Furthermore F(Sl, X) consists just one point by the P.A. Smith theory (see
[2], chapter IV) from the fact that X is acyclic over rationals and the θ^-action
is free on QX.

(ίii) Next we show π^(X)=πl(M). Since F(Sl, X) = \x0} , there is an

s: -

given by s(y)=(y9 x0). Then we have an isomorphism

from the following commutative diagram:
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\ίd Is*
^(S1) - > πι(d(D"x X))

Applying the van Kampen theorem (see [5], p. 63) to the decomposition

Q(D2n x X) = Z>2" x 3JΓ U S2"'1 x ̂  ,

we have

and hence

(iv) Finally we show that the assumption

H*(M; Z) = H*(PM+k(C} Z)

hnplies H*(X, xa; Z)—Q. There is a commutative diagram:

p

Since t*e(p)=e(pQ) is a generator of H*(Pn_l(C)] Z), e(p) is a generator of

H*(M\ Z). Therefore

H*(Q(D2*xX); Z) = H*(S2n+2k+l; Z)

by the Gysin seqence for the principal ^-bundle

p:d(D2nxX)-*M,

and hence X is acyclic over integers and

by the same argument as in (ii). Then the ^-action on X is semi-free by the

P.A. Smith theory from the fact that X is acyclic over integers and the ^-action
is free on QX. This completes the proof of Theorem 2.1.

Proof of Corollary 2.2. If M admits a non-trivial smooth Sf7(w)-action,

then by Theorem 2.1, there is an equivariant diίfeomorphism

M=Q(D2nxX)/Sl

as 5Z7(n)-manifolds. Here X is a compact contractible (2Λ+2)-manifold with
smooth semi-free ^-action with just one stationary point #0. Therefore the
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^-action on D2nxX is semi-free and its stationary point is only (0, #0). Let U
be an invariant closed disk around the point (0, x0). One may assume that the
S'-action on U is linear. Put

W=(D2nxX~mtU)/S1 .

Then

9 w = d u/s1 u d(D2n x xys1 = pn+k(C) u M .
Since

πι(M) = πι(W) = 0,

H*(W, M Z) = 0

and

we have

M = PΛ+A(C)

by applying the A-cobordism theorem (see [10], Theorem 9.1) to the triad
(W\ M, Pn+k(C)}. This completes the proof of Corollary 2.2.

3. Construction of S£7(n)-actions

In this section we construct St/(n)-actions on cohomology complex projec-
tive spaces, and we have the following results.

Theorem 3.1. Let n > 2, k > 1 and p > 1 . Then there is a compact orientable
2(n-\-k)-manίfold M such that

and H*(M; Q) = /ί*(PΛ+,(C); Q)

and M admits a smooth SU(ri)-actίon with

F(SU(n), M) = Pk(C) .

Theorem 3.2. Let n^2 and k^3. Let G be a finitely presentable group
with #,((?; Z)=HJG;Z)=Q. Then

(a) there is a compact orientable 2(n-\-k)-manifold M such that

= G and H*(M; Z) = H*(Pll+k(C); Z)

and M admits a smooth SU(ri)-action with

F(SU(n), M) = Pk(C) ,

(b) there is a smooth SU(ri)-actίon on Pn+k(C) such that

π,(F) = G and H*(F; Z) = H*(Pk(C); Z) ,
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where F=F(SU(n), Pn+k(C)).

First we prepare the following lemma. It is proved by a similar argument

as in the proof of Theorem 2.1 and Corollary 2.2, so we omit the proof.

Lemma 3.3. Let X be a compact orientable (2k-{-2)-manifold which is
acyclic over Z (resp. Q). Assume that X admits a smooth S* -action which is free
ondX. If n^ 2, then

(a) M=d(D2nxX)/S1 is a cohomology Pn+k(C) over Z (resp. Q),
(b) ^(M)=^(X).

Moreover ifn-\-k^3 and X is contractible, then M—Pn+k(C).

Now we construct an acyclic S^-manifold. Let W be a closed orientable

smooth homology (2&-fl)-sphere over Z (resp. Q) and let

(3.4) Y = Pk(C)x[0,

Then F is a compact connected orientable smooth (2k+l)-manifold with
boundary

dY=Pk(C)xO(JPk(C)xl.

It is easily seen that

(3.5) π1(Y) = π1(W),

(3.6) Hi(Y;Z) = H*(Pk(C);Z}®Hi(W;Z}, (0<ί<2*).

Furthermore there is a smooth principal S'-bundle

p: E-* Y

such that d{E-^Pk(C) X i, (ί=0, 1) is equivalent to the Hopf bundle
where d{E=p-\Pk(C) X i). Then

(3.7) π1(E) =

(3.8) H*(E, dβ; A) = Q

where A=Z (resp. Q), by (3.6) and the Gysin sequence for ^"-bundles.
Furthermore

X = E U D2k+2

9^

is a compact orientable manifold with a semi-free smooth ^-action which is
linear and free on QX=dQE= S2k+1. It is easily seen that

(3.9) π,(X) = π^W), by (3.5) and (3.7),

(3.10) X is acyclic over Z (resp. Q), by (3.8).
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Proof of Theorem 3.1. Put W=S2k+ί/ZP, a lens space, in (3.4). Then
there is a compact orientable (2&+2)-manifold X with a semi-free smooth
^-action which is linear and free on dX=S2k+l, such that πl(X)=Zp and X is

acyclic over Q. Then by Lemma 3.3, the St/(n)-manifold

M=Q(D2nxX)IS1

is a compact orientable 2(w+Λ)-manifold such that

π,(M) = Zp, H*(M; Q) = H*(Pn+k(C); Q)

and

F(SU(n), M) = dX/S1 = Pk(C) . q.e.d.

REMARK 3.11. It is known that if G is a finitely presentable group with
H1(G;Z)=H2(G'9 Z)=0y then for each τw>7, there is a compact contractible
smooth w-manifold P such that

πι(dP) = G (see [12]).

It is known that there are infinitely many groups satisfying the above condition.

Proof of Theorem 3.2 (a). Let &>3. Put W=dP, a smooth homology

(2k+ l)-sphere over Z with πλ(QP)= G, in (3.4). Then there is a compact orient-
able (2&+2)-manifold X with a semi-free smooth ^-action which is linear and
free on dX= S2Je+1, such that ^(X)=G and X is acyclic over Z. Then by
Lemma 3.3, the *SC/(n)-manifold

is a compact orientable 2(w+£)-rnanifold such that

π,(M) = G, ff*(M; Z) = H*(Pn+k(C); Z)

and

F(SU(n), M) = Pk(C) . q.e.d.

Proof of Theorem 3.2 (b). Let &>3. For a given group G satisfying the
hypothesis, there is a compact contractible smooth (2ft+l)-manifold p such that

πι(QP) = G

by Remark 3.11. Let

a boundary connected sum with boundary
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Then Pk(C) X 1 is a deformation retract of Y, and hence there is a smooth
principal /S^-bundle

p .E^Y,

such that Q^-^P^CJx 1 is equivalent to the Hopf bundle S2k+1-+Pk(C), where
^^-'(P^COxl). Then

X = E U D2k+2

9jS

is a compact contractible (2^+2) -manifold with a semi-free smooth ^-action.
Then by Lemma 3.3, the SC7(ra)-manifold

M = d(D2nxX)/Sl

is diίfeomorphic to Pn+k(C) for w>2, and

F(SU(n), M) = QX/S1 = Pk(C)φQP .

Therefore there is a smooth St/(rc)-action on Pn+k(C) such that

π,(F)=G and #%F; Z) = H*(Pk(C)\ Z) ,

where F=F(SU(n)y Pn+k(C)). q.e.d.

4. Signature of certain smooth G-manifolds

The purpose of this section is to study a signature of closed orientable
manifold which admits a smooth G-action with isotropy groups of uniform
dimension. We have the following result.

Theorem 4.1. Let G be a compact Lie group and H a closed connected
subgroup. Let M be a compact orientable manifold without boundary. Assume
that M admits a smooth G-action such that the identity component of an isotropy
group Gx is conjugate to H in G for each point x of M. Then F(Hy M), the
stationary point set with respect to the H-actίon, is orientable, and

(a) if dimΛΓ(#)Φdimίf, then Sign(M)=0,
(b) if dimN(H)=dimH, then

\N(H)/H\ Sign(M) - Sign (G/H) Sign (F(H, M)) .

Here N(H) is the normalizer of H in G, | N(H)/H \ is the order of the finite group
N(H)IH.

The result is a generalization of the fact that Sign(M )=0 if M admits a
smooth circle action without stationary points.

Lemma 4.2. Let G be a compact Lie group and H a closed connected sub-
group. Let M be a smooth G-manifold such that the identity component of Gx is
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conjugate to H in G for each point x of M. Then

(a) the W(H}-action on F(H,M) is almost free (i.e. all isotropy groups are

discrete), where W(H)=N(H)/H,

(b) there is an equίvariant diffeomorphism

M = G x F(H, M) = G\H x F(H, M) ,
jvc/Γ) TΓc/n

(c) if M is orientable, then F(H, M) is orientable.

Proof. By the assumption, the identity component of Gx is equal to H for

each point x of F(H, M), and the mapping

/: GxF(H,M)-*M

given by f(g, x)=g χ is surjective. Moreover /(#, x) is in F(H, M) if and only
ifg^N(H), thus W(H) acts on F(H, M) naturally and (b) is proved. Next, if
an isotropy group W(H)X is not discrete for a point x of F(H, M), then

This contradicts our assumption, and (a) is proved. By (b), the product
manifold G/HxF(H, M) is a total space of a principal W(H)-bundle over M.

Therefore G/HxF(Hy M) is orientable, if M is orinetable, and hence F(H, M)
is orientable. q.e.d.

Lemma 4.3. Let G be a compact Lie group which is not discrete. Let M be
a compact orientable smooth manifold without boundary. Then, Sign(M)— 0 if M
admits an almost free smooth G-action.

Proof. G contains a circle subgroup and the circle action on M has no
stationary points. Therefore Sign(M)— 0. q.e.d.

Proof of Theorem 4.1. Denote by W(H)°, the identity component of

W(H). Then

G/H x F(H, M)

is a total space of a principal W(H)/W(H)Ό -bundle over M by Lemma 4.2. (b).

Therefore

I W(H)/W(HY\.Sign(M) = Sign(G/H x F(H, M)) .
Q

Next, GIH X F(H, M) is a total space of a smooth fibre bundle over an orient-

able manifold (G/H)/W(H)° with a fibre F(H, M) and a structure group W(H)°
which is connected. Therefore
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Sign(G/# x F(H, M)) = Sign((GjH)/W(H)").Sign(F(H, M))
Tree")0

for a certain orientation of F(H, M) by [4]. By the above equations,

I W(H)/W(H)°\ Sign(M) - Sign((G/H)/JF(H)°) Sign(F(H, M)).

Now, if dim W(H)^0 then Sign(F(H, M))=0 by Lemma 4.2 (a) and Lemma
4.3. If dimW(H)=Oy then

I W(H)\ Sign(M) = Sign(G///) Sign(F(#, M)) .

This completes the proof.

REMARK 4.4. Let G be an arbitrary compact connected Lie group and T
be a maximal torus. Then Sign(Gr/T1) —0, since G/T is stably parallelizable
(see [3], section 5.4).

REMARK 4.5. Let G be a compact connected Lie group and H a closed
connected subgroup. Then Sign(G/ίί)=0 if

rank Gφrank H (see [7]).

Because the left translation on G/H of a maximal torus of G has no stationaly
points.

5. S£7(3)-actions on orientable 8-manifolds

The purpose of this section is to prove the following result.

Theorem 5.1. Let M be a closed connected orientable 8-manifold. Assume
that M admits a non-trivial smooth SU(3)-acΐion with a principal isotropy type (H).
Then

(a) #4(M; Q)=0, if dim H=0,

(b) Sign(M)=0, if dim H=\ and M has not isotropy types (NSU(2)) and

(T«>),
(c) Sign(M)=0, if dim H=2,
(d) H\M Q)=0, if dim H=3 and M has not an isotropy type (NSU(2)),
(e) M=P2(C) x F(NSU(2), M), if dim #=4.

Here NSU(2) is the normalίzer of SU(2) in SU(3)y the identity component of Γ(2)

is a maximal torus of SU(3) and Γ(2) has 2-components.

First we recall an additivity property of the signature due to S.P. Novikov
(see [1], p. 588). Suppose that Y is a compact oriented 4n-manifold with
boundary dY. Let H2n(Y', Q) denote the image of the natural homomorphism

;*: H2n(Y, 8F; Q) -> H2n(Y; Q).

Then the bilinear form B on ti2n(Y\ Q) defined by
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is symmetric and non-degenerate by Poincare-Lefschetz duality. We can now

define Sign(Y) as the signature of B. Suppose now that Y' is another compact

oriented 4w-manifold with boundary QY'=—dY. Then X= Y U Y/ is a closed

orineted 4^-manifold and

(5.2) Sign(*) = Sign(Y)+Sign(F').

REMARK 5.3. Let ξ be an orientable Λ-plane bundle over a closed orien-
table manifold X. Denote by t(ξ\ e(ξ) and D(ξ), the Thorn class, the Euler
class and the disk bundle of ξ, respectively. Then D(ξ) is a compact orientable
manifold and there is a commutative diagram:

H*(D(ς)tQD(ξ))-^H*(D(ξ))
«tr*

<f<
H*(X) — - H*(X) .

Here \jr is the Thorn isomorphism defined by

There is an equation

Therefore we can calculate Sign(Z)(f)) from the information about the co-

homology ring H*(X) and the Euler class e(ξ).
Now we prepare the following results.

Lemma 5.4.

(a) //*(SC7(3); Z)=Λ^,, xs), deg Xi=i, (i=3, 5).
(b) H*(SU(3)/SU(2); Z)=H*(S5; Z) and the right translation of NSU(2)/

SU(2)=S1 induces a trivial action on H*(SU(3}/SU(2)-, Z).

(c) H*(SU(3)ISO(3); Q)=H*(S5', Q), and the right translation of NSO(3)/
SO(3)=Z3 induces a trivial action on H*(SU(3)/SO(3)', Q).

(d) H*(SU(3)IT; Z)=Z[iίlf u2, ujfa, s2, s3),
where T is a maximal torus of S [7(3) consists of all diagonal matrices, sk is the k-th
elementary symmetric polynomials, and deg u~2, (i— 1,2, 3). Furthermore the
induced action of N(T)/T=S3, the symmetric group on ^-elements, is given by

(e) H*(SU(3)/D(m, n)\ Q)=ΛQ(x2, Λ?6), deg x~i9 (ί=2, 5). Here D(m, n)
is a closed one- dimensional subgroup defined by
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D(m, n) =

z"

|;*e=C, |*| =

for any pair of integers (w, w)Φ(0, 0).

Proof. Since SU(3)/SU(2)=S\ (b) is true, (a) is proved by making use
of the Gysin sequence for

SU(2) -> SU(3) -» S5 .

(c) is proved from

- 0 and

(d) is a classical result (see [9]). In fact u~pf(u)y where u is a generator of
#2(P2(C); Z) and^ ; SU(3)/T-»P2(C) is defined by

Finally (e) is proved from the fact that the Euler class of principal ^-bundle

π: SU(3)/D(m, n)-*SU(3)IT is

e(n) = nuλ-\-mu2,

and hence the homomorphism

//2(5C/(3)/Γ; Q) --̂ l H\SU(3)IT; Q)

is an isomorphism. q.e.d.

Lemma 5.5.
(a) Let φ be an ^-dimensional non-trivial real representation of SU(3). Let

(Hφ) be the principal isotropy type of the linear action given by φ. Then there are
only the following cases:

( i ) φ=Adsu^y Hφ— T: a maximal torus of *Sί7(3),
(ίί) φ—p3 4. trivial summand, Hφ—SU(2),

where p3: 5ί7(3)-^O(6) is the standard representation.

(b) Let ψ be a ^-dimensional non-trivial real representation of NSU(2). Let
(Hψ) be the principal isotropy type of the linear action given by ψ\ Then there are
only the following cases:

( ί ) ψ=AdNSUω, Hψ=T: a maximal torus of NSU(2),

(ϋ) ψ=σk, H$=D(k—l, —k), (&<ΞZ),
where the representation σk: Λ/r5C/(2)-»ί7(2)cO(4) is given by
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0

(iii) -ψ is induced from a non-trivial real representation of S1, via the natural
projection NSU(2)-*NSU(2)/SU(2) = S1, and H$ = SU(2], where H$ is the
identity component of

We omit the proof (see [8], Theorem I).
From now on we assume that M is a closed connected orientable smooth

8-manifold and M admits a non-trivial smooth 5ί7(3)-action with a principal
isotropy type (H). Then SU(3)/H is orientable by the differentiate slice
theorem (see [11], Lemma 3.1).

We will prove Theorem 5.1 by the following many propositions.

Proposition 5.6. Assume that SU(3)* is conjugate to W in SU(3) for each
#eM. Here G° is the identity component of G and SU(3)X is the isotropy group
at x. Then,

(a) Sign(M)=0, ifάimH=l or 2,
(b) #4(M; Q)=0, if dim H=0 or 3,
(c) M=P2(C) x F(NSU(2), M), if dim H=4.

Proof. If dim H=l or 2, then Sign(M)=0 by Theorem 4.1 and Remarks
4.4, 4.5. If dim H=Q, then M=SU(3)/H and hence H\M\ Q)=0 by Lemma
5.4 (a). By Lemma 4.2,there is an equivariant diffeomorphism

M = SU(3)/H°xF'y K = N(H°)/H°, F = F(H\ M).
K

If dimff=4, then H° is conjugate to NSU(2) in SU(3) and N(NSU(2)) =
NSU(2). Therefore

M = P2(C)xF(NSU(2), M).

Finally if dim #=3, then H° is conjugate to SO(3) or SU(2) in SU(3). If
H°=SO(3), then dimF=3 and

H\M; Q) = H\SU(3)/SO(3)xF; Q) = 0

by Lemma 5.4 (c). Next if H°=SU(2), then dimF=4, F admits a smooth
^-action without stationary points and there is an equivariant diffeomorphism

M=S5xF.
si

There is a sufficiently large integer n such that the Sl/Zn-acύon on the orbit
space F\Zn is free. Then there is an isomorphism
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where

and there is a fibre bundle

sηzn -> Mf -> F/sι

with a structure group S^\Zn. Here FISl=(F/Zn)/(SlIZn} is a 3-dimensional
rational cohomology manifold. Therefore

H\M] Q) = H\M'-, Q) = 0 . q.e.d.

REMARK 5.7. Now Theorem 5.1 is proved for dim H=0 or 4. Moreover,
Theorem 5.1 is proved for the case 7?0=5O(3), since SO(3) is not conjugate to
any subgroup of NSU(2) in SU(3) and # with H°=SO(3) is not a principal iso-
tropy group of any 8-dimensional real representation of SU(3) by Lemma 5.5.

Proposition 5.8. Suppose dim H= 1 . Then Sign(M)=0, if M has not ίso-
tropy types (NSU(2)) and (Γ(2)).

Proof. By Proposition 5.6 (a), one may assume that there is an isotropy
type (Kλ) with dimK^l. Then by making use of the differ entiable slice
theorem, there is an isotropy type (K2) and there is an equivariant decomposition

M=D(Vl)(jD(ι>2),

where D(v{) is an equivariant normal disk bundle of an embedding SUty/K;
CM, and

QD(Vl) = -9D(V2) = SU(3)IH.

Thus

Sign(M) = Sign(D(Vl))+Sign(Z)(i»2)) .

Since

H\SU(3)IK; Q) = 0 for dim K*2, 4,

by Lemma 5.4, Sign(Z>(ι/, ))=0 for dim^ί-Φ2, 4. Let K be a 2-dimensional
closed subgroup of SU(3). Then K is conjugate to one of the following

T, Γa>, Γ(β and N(T) = TM .

Here T°W=T and Tαo has ί'-components. By Lemma 5.4 (d),

H\SU(1)IT; Q) =

H\SU(3)/Tm; Q) = Q ,

H\SU(3)IT(Λ; Q) = H\SU(3)IN(T) Q) = 0 .
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Thus Sign(D(ι;ί))==0, if K~TW or N(T). If K~T, then Sign (/>(*,.)) = 0
from Lemma 5.4 (d) and Remark 5.3. q.e.d.

REMARK 5.9. If dim£f=2 in Theorem 5.1, then H=T or T(3), since
S£/(3)/ΓC2) and SU(3)/N(T) are non-orientable by Lemma 5.4(d). Theorem 5.1
is proved for ίΓ=T(3) by Proposition 5.6, since ΓC3) is not conjugate to any sub-
group of NSU(2) in SU(3) and 7^ is not a principal isotropy group of any
8-dimensional real representation of SU(3) by Lemma 5.5. Therefore, it remains
to prove Theorem 5.1 for the cases H=T and H°=SU(2).

Proposition 5.10. Suppose H=T. Then Sign(M)=0.

Proof. If F(NSU(2), M) is empty, then Sign(M)=0 by Proposition 5.6.
Now we assume that F(NSU(2), M) is not empty. Then

dιmF(NSU(2),M)= 1

by Lemma 5.5, and any stationary point (if exists) of SU(3) is isolated by
Lemma 5.5 (a). Let

F(SU(3),M)= {*ι,-,**}, (*>0)

and let Dί be an invariant closed disk around xi9 such that

β ίnZ> y = 0 for

Let D=Dl U U Dk and E=^M— int D. Then

by Lemma 5.5 (a). Let

= (NSU(2))} ,

let ί70 be an invariant closed tubular neighborhood of E0 in E, and let U= U0 U -D.
Then M— int U is connected and

(SU(3)§ = (T), for Λ eM-int U .

Therefore, there is an equivariant diίfeomorphism

M-int U = SU(3)/T x F , F = F(T, M-int U)
NίT)/T

by Lemma 4.2, and there is a commutative diagram:

/*
H\M— int C7; Q) - > H\Q(M-mt C7); Q)

H\SU(3)/TχF-,
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Here # is injective, since Hodd(SU(Z)IT\ Q)=0 by Lemma 5.4 (d), dimF=2,

and each connected component of F has non-empty boundary from the con-
nectedness of M— int U. Thus

#4(M-int C7; Q) = 0 ,

and hence Sign(M— int Z7)=0. Next, let U19 •••, Z7n be connected components
of U. Then we can prove that

Q) = Oί if t/ Π D ^ O ,

H*(Ui;Q) = 0, if C / , Π Z ) Φ 0 ,

and hence

Sign(ϋ) = Signίl/O+.-.+Signίl/.) = 0 .

Therefore

Sign(M) = Sign(M-int l/)+Sign(Z7) = 0 . q.e.d.

We recall the following result which is essentially proved in the proof of
Proposition 5.6 (b).

Lemma 5.11. Let X be a compact connected orient able smooth n-manίfold
(QX is empty or not). Let n=7 or 8. Assume that X admits a smooth SU(3)-
action with

(SZ7(3)2) = (S£7(2)) for xtΞX .

Then

H»-\X; Q) = 0 .

Proposition 5.12. Assume that H°—SU(2) and M has not an isotropy type

(NSU(2)). Then H\M\ Q)=0.

Proof. If F(SU(3)9 M)=0, then H\M', Q)=0 by Lemma 5.11. Next if
F(SU(3), Af )Φ0, then dim F(SU(3), M)=2 by Lemma 5.5 (a). Let U be an
invariant closed tubular neighborhood of F(SU(3), M) in M. Then there is
an exact sequence :

; Q) -> H\M-, Q) -> H\U\ Q)®H\M-'mt U\ Q) .

Here

H\dU\ Q) = H\M~int U-,Q) = 0

by Lemma 5.11, and

H\U; Q) = H\F(SU(3), M); Q) = 0 .

Therefore

H\M; Q) = 0 . q.e.d.
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This completes the proof of Theorem 5.1.

6. SZ7(3)-actions on cohomology P4(C)

In the previous paper [13] we have considered smooth 5t/(3)-actions on
homotopy P3(C). In this section, first we prove the following result as an appli-
cation of Theorem 5.1.

Theorem 6.1. Let M be a compact connected orientable %-manίfold such that

Then for any non-trivial smooth SU(3)-action on M, the stationary point set is a
2-sphere and the principal isotropy type is (SU(2)). Furthermore there is an

equivarίant dίffeomorphism

Here X is a compact connected orientable ^-manifold which is acyclic over rationals,

X admits a smooth Sl-action which is free on dX, the SU(3)-action is standard on Z)6

and trivial on X.

Proof. Denote by (if), the principal isotropy type of the given SC7(3)-
action on M. Since Sign(M)Φθ, the following are the only possible cases from
Theorem 5.1,

(a) dim H=l and M has an isotropy type (NSU(2)) or (ΓC2)),

(b) H°=SU(2) and M has an isotropy type (NSU(2)),
(c) H=NSU(2) and M=Pa(C) X F(NSU(2), M).
If H=NSU(2), then X(M)=5 is divisible by X(Pa(C))=3> and this is a

contradiction. Next if dim //=!, then there is a decomposition

as in the proof of Proposition 5.8, where D(v£) is a normal disk bundle over
SU(3)IK{. One may assume K^= NSU(2) or Γ(2), and hence

J = 3

by Lemma 5.4. On the other hand,

5 = %(M) = X(SU(Z)IKl)+X(SU(3)IK2) .

Thus X(St7(3)/UL2) = 2, and hence K2=T^ by Lemma 5.4. Since
H2(SU(3)/T^ Q)=0, there is a contradiction in the following exact sequence

of rational cohomology groups :

H\M) -* H2(SU(3)/Kl)®H2(SU(3)IK2)

H\M) .
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Therefore we obtain H°=SU(2). If F(SU(3), M)=0, then there is a fibre
bundle

F(SU(2), M) -> M -> P2(C) .

Thus X(M)=5 is divisible by %(P2(C))— 3, and this is a contradiction. Hence
F(SU(3), M)Φ0 and this implies H=SU(2) by Lemma 5.5 (a). Let U be an
invariant tubular neighborhood of F(SU(3), M) in M. Then

), M-intZ7)

is a compact connected orientable 4-manifold with the natural action of
NSU(2)/SU(2)=S1

y which is free on ΘX. Furthermore there is an equivariant
diίfeomorphism

M=d(D*χX)ISl,

and X is acyclic over rationals by the same argument as in the proof of Theorem
2.1. Finally,

F(SU(3), M) = dX/S1 = S2 . q.e.d.

Next, as a complementary part of Theorem 5.1, we give examples of

certain iSί7(3)-actions on 8-manifolds with non-zero signature.
Let -ψ : NSU(2)-*U(3) be a unitary representation of NSU(2). Then

-ψ induces a smooth Λ/'5'i7(2)-action ψ^ on P2(C). Denote by M(ψ), the orbit
manifold of the free smooth action of NSU(2) on SU(3)χP2(C) given by

Then the compact connected orientable 8-manifold M(ψ) admits a natural
smooth 5t/(3)-action without stationary points and

Sign(M(ψ )) - 1 .

EXAMPLE 6.2. Let ak\ NSU(2)-*U(3) be a unitary representation given by

/* * 0\ II 0 0 '

ΛJ* * 0 1 = 0 1 0

\0 0 y/ \0 0 yk/ .

Then M(αfe) has just two isotropy types

(SU(2)M) and (NSU(2)),

where SU(2\k:> has /ί-components and its identity component is SU(2). (see

Theorem 5.1 (d))

EXAMPLE 6.3. Let βk\ NSU(2)~>U(3) be a unitary representation given by
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(#11 X12 0\ /Xn X12 0

v v 0 = he r 0
«Λ/21 1/V22 w I I I/V21 22 w

\0 0 j/ \0 0 yk! .

Then M(βk) has just three isotropy types

(D(k, -*-!)), (Γ) and (NSU(2)),

where Z)(&, —Λ—1) is a closed one-dimensional subgroup defined in Lemma 5.4.
(see Theorem 5.1 (b))

EXAMPLE 6.4. Let γ: NSU(2)-*U(3) be a unitary representation given by

a b

c d 0 I =

Then M(j) has just three isotropy types

(Z)(l, 1)(2)), (Γ) and (Γ(2)) ,

where G(2) is a subgroup of SU(3) such that G(2) has 2-components and its
identity component is G. (see Theorem 5.1 (b))

7. Classification of smooth SZ7(n)-actions on orientable 2n-mani-
folds

Let M be a compact connected 2w-manifold with non-trivial smooth
St/(w)-action, then the identity component of each isotropy group is conjugate
to one of the following

SU(n), SU(n-l) and NSU(n-l) ,

for τz>5. This is proved similarly as Lemma 1.5. Therefore there is an
equivariant diffeomorphism

as ASC7(/*)-manifolds by (1.1) and (1.4). Here X is a compact connected
2-dimensional S^-manifold and the ^-action on dX is free if dX is non-empty.
Furthermore if M is orientable, then X is also orientable. Next we remark
that for orientable 2-dimensional ^-manifold X, if the isotropy group S^ήpS1

for x&X9 then SI is a principal isotropy group by the differ entiable slice
theorem, and hence the ^-space X — F(S1

ί X) has just one isotropy type.
( i ) If X has just one isotropy type (Sl)y then dX=0 and
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(ii) If X has just one isotropy type (Zk), then

M= S2n if 9 Λ Γ Φ 0 ,

M=L2n-\k)xSl if dX=0.

Here L2n-\k)=S2n-λlZk is a standard lens space.
(iii) If X has just two isotropy types (Zk) and (S1), then

if

if 9^=0.
sl

Here 5% is a 2-sphere with the ^-action given by

eiθ (xΌ, #j, #2) = (χo> χι cos kθ+x2 sin &#, — ̂  sin &0-f-#2 cos kθ) .

This completes the classification.
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