Uchida, F. Osaka J. Math. 12 (1975), 375-400

SMOOTH ACTIONS OF SPECIAL UNITARY GROUPS ON COHOMOLOGY COMPLEX PROJECTIVE SPACES

FUICHI UCHIDA

(Received July 24, 1974)

0. Introduction

The purpose of this paper is to study smooth SU(n)-actionson a compact orientable 2*m*-manifold whose rational cohomology ring is isomorphic to $H^*(P_m(C);Q)$. First we show the following result.

Theorem 2.1. Let $n \ge 7$ and $0 \le k \le n-4$. Let M be a compact orientable smooth 2(n+k)-manifold with

$$H^*(M; \mathbf{Q}) = H^*(P_{\mathbf{n}+\mathbf{k}}(\mathbf{C}); \mathbf{Q}).$$

Then for any non-trivial smooth SU(n)-action on M, the stationary point set F = F(SU(n), M) is an orientable 2k-manifold with

$$H^*(F; \boldsymbol{Q}) = H^*(P_k(\boldsymbol{C}); \boldsymbol{Q})$$

and there is an equivariant diffeomorphism

$$M=\partial(D^{2n} imes X)/S^{1}$$
 .

Here X is a compact connected orientable (2k+2)-manifolawhich is acyclic over rationals, X admits a smooth S¹-action which is free on dX, the SU(n)-action is standard on D^{2n} and trivial on X, and

$$\pi_{\scriptscriptstyle 1}(X)=\pi_{\scriptscriptstyle 1}(M) \ .$$

Furthermore, if

$$H^*(M; \mathbf{Z}) = H^*(P_{n+k}(\mathbf{C}); \mathbf{Z}),$$

then X is acyclic over integers, the S^1 -action on X is semi-free, and

$$H*(F; \boldsymbol{Z}) = H*(P_{\boldsymbol{k}}(\boldsymbol{C}); \boldsymbol{Z})$$
 .

Corollary 2.2. Let $n \ge 7$ and $0 \le k \le n-4$. Let M be a compact connected smooth 2(n+k)-manifold which is homotopy equivalent to $P_{n+k}(C)$. If M admits a non-trivial smooth SU(n)-action, then M is diffeomorphido $P_{n+k}(C)$.

Examples of SU(n)-actions on cohomology complex projective spaces are constructed in section 3. And we have the following results.

Theorem 3.1. Let $n \ge 2$, $k \ge 1$ and $p \ge 1$. Then there is a compact orientable 2(n+k)-manifold M such that

$$\pi_{\scriptscriptstyle 1}(M) = \mathbf{Z}/p\mathbf{Z} \text{ and } H^*(M; \mathbf{Q}) = H^*(P_{\mathbf{n}+\mathbf{k}}(\mathbf{C}); \mathbf{Q})$$

and M admits a smooth SU(n)-action with

$$F(SU(n), M) = P_k(C)$$

Theorem 3.2. Let $n \ge 2$ and $k \ge 3$. Let G be a finitely presentable group with $H_1(G; \mathbb{Z}) = H_2(G; \mathbb{Z}) = 0$. Then

(a) there is a compact orientable 2(n+k)-manifoldM such that

 $\pi_1(M) = G \text{ and } H^*(M; Z) = H^*(P_{n+k}(C), Z)$

and M admits a smooth SU(n)-action with

$$F(SU(n), M) = P_{k}(C),$$

(b) there is a smooth SU(n)-action $P_{n+k}(C)$ such that

$$\pi_1(F) = G \text{ and } H^*(F;Z) = H^*(P_k(C); \mathbf{Z}),$$

where $F = F(SU(n), P_{n+k}(C))$.

Next, in section 4, we study a signature of closed orientable manifold which admits a smooth *G*-action with isotropy groups of uniform dimension, and we have a result which is a generalization of the fact that Sign(M)=0 if *M* admits a smooth circle action without stationary points.

Next we study smooth SU(3)-actions on orientable 8-manifolds in section 5, and as an application we show a similar result as Theorem 2.1 for non-trivial smooth SU(3)-action on a cohomology complex projective 4-space. We construct examples of stationary point free SU(3)-actions on orientable 8-manifolds with non-zero signature in section 6.

As a concluding remark, classification of smooth SU(n)-actionson orientable 2*n*-manifolds is done in the final section.

1. SU(n)-actions with certain isotropy types

Let *E* be a manifold with smooth SU(n)-action $(n \ge 3)$. Assume that the identity component of each isotropy group is conjugate to SU(n-1) or NSU(n-1), the normalizer of SU(n-1) in SU(n). Then $S^1 = NSU(n-1)/SU(n-1)$ acts naturally on

ACTIONS ON PROJECTIVE SPACES

$$X = F(SU(n-1), E),$$

the stationary point set of SU(n-1). It is easily seen that

(1.1)
$$SU(n)/SU(n-1) \underset{S^{n-1}}{\times} X \to E, \quad [gSU(n-1), x] \to gx$$

is an equivariant diffeomorphism as SU(n)-manifolds, since $g \in SU(n)$ and $g^{-1}SU(n-1)g \subset NSU(n-1)$ imply $g \in NSU(n-1)$.

Lemma 1.2. Let V be a real vector space with linear SU(n)-action $(n \ge 3)$. Assume that the identity component of each isotropy group on the invariant unit sphere S(V) is conjugate to SU(n-1) or NSU(n-1). Then S(V) = SU(n)/SU(n-1) as SU(n)-spaces.

Proof. By (1.1), there is an equivariant diffeomorphism

$$S(V) = SU(n)/SU(n-1) \times F(SU(n-1)S(V))$$
,

where F(SU(n-1), S(V)) is a sphere. Then it is easily seen that

 $F(SU(n-1), S(V)) = S^1$

by the homotopy exact sequence of the fibre bundle

$$F(SU(n-1), S(V)) \rightarrow S(V) \rightarrow P_{n-1}(C)$$
.

Considering S^1 -actions on S^1 , we have

$$S(V) = SU(n)/SU(n-1)$$

as SU(n)-spaces.

Lemma 1.3. Let V be a real vector space with linear SU(n)-action such that S(V)=SU(n)/SU(n-1) as SU(n)-spaces $(n \ge 3)$. Then the SU(n)-action on $V=\mathbb{R}^{2n}$ is equivalent to the standard action.

Proof. This is a known result (see [8], Theorem I), but we give an elementary proof for the completeness. It is well-known that a real irreducible SU(n)vector space \mathbb{R}^{2n} with an invariant complex structure is equivalent to \mathbb{R}^{2n} with the standard SU(n)-action. So we prove the existence of an invariant complex structure on V. Denote by \mathbb{Z}_n , the center of SU(n). Then \mathbb{Z}_n is a cyclic group of order n, and the \mathbb{Z}_n -action on S(V) is free, since

$$Z_n \cap SU(n-1) = \{1\}$$
.

Consider a direct sum decomposition

$$V = V_1 \oplus \cdots \oplus V_k$$

377

q.e.d.

as Z_n -vector space, where V_i (i = 1, ..., k) are irreducible. Leaving a non-zero vector $v_1 \in V_1$ fixed, we have an element $g_i \in SU(n)$ such that

$$v_i = g_i v_1 \in V_i$$
 $(i = 1, \dots, k)$

by the transitivity of the SU(n)-action on S(V). Then

$$V_i = g_i V_1 \qquad (i = 1, \cdots, k) \,.$$

Since the \mathbb{Z}_n -action on $S(V_1)$ is free, there is a complex structure \mathcal{J}_1 on V_1 such that

$$\sigma oldsymbol{J}_1 = oldsymbol{J}_1 \sigma \ , \ \ \sigma v_1 = a v_1 + b oldsymbol{J}_1 v_1$$

for some $a, b \in \mathbb{R}$, $b \neq 0$, where σ is a generator of \mathbb{Z}_n , moreover the real vector space V_1 is spanned by $\{v_1, J_1v_1\}$. Therefore there is a complex structure J on V such that

$$Jv_1 - J_1v_1$$
, $Jg_iv_1 - g_iJ_1v_1$ and $\sigma v = av + bJv$

for each $v \in V$. Then

$$g \sigma v = agv + bg Jv,$$

 $\sigma gv = agv + bJgv$

for any $g \in SU(n)$. Therefore the complex structure **J** is SU(n)-invariant, since $g\sigma = \sigma g$ and $b \neq 0$. q.e.d.

Let M be a closed connected manifold with smooth SU(n)-action $(n \ge 3)$. Assume that the identity component of each isotropy group is conjugate to one of the following

$$SU(n)$$
, $SU(n-1)$ and $NSU(n-1)$.

Assume that the stationary point set F = F(SU(n), M) is non-empty. Let U be an invariant closed tubular neighborhood of F in M. Then there is an equivariant decomposition

$$M = U \cup (SU(n)/SU(n-1) \times X) = U \cup (S^{2n-1} \times X),$$

where X = F(SU(n-1), M - int U) with the natural S¹-action. Since

$$dU = SU(n)/SU(n-1) \times \partial X = S^{2n-1} \times \partial X$$

as SU(n)-maifolds, the S¹-action on ∂X is free, $F = \partial X/S^1$, and the disk bundle $U \rightarrow F$ with SU(n)-action is equivariantly isomorphic to the disk bundle

$$D^{2n} \underset{S^1}{\times} \partial X \to \partial X/S^1$$
,

where the SU(n)-action on D^{2n} is standard by Lemma 1.2 and Lemma 1.3.

Therefore the codimension of F in M is 2n, X is connected, and there is an equivariant diffeomorphism

(1.4)
$$M = \partial (D^{2n} \times X) / S^{\underline{l}} = D^{2n}_{S^{\underline{l}}} \otimes \partial X \cup S^{2n-1}_{S^{\underline{l}}} \times X$$

as SU(n)-manifolds.

Lemma 1.5. Let G be a closed connected proper subgroup of $SU(n), (n \ge 7)$. If

dim
$$G > n^2 - 4n + 7 = \dim N(SU(n-2), SU(n))$$
,

then G is conjugate to SU(n-1) or NSU(n-1) in SU(n).

Proof. The inclusion $\rho: G \subset SU(n)$ gives an *n*-dimensional complex representation of G. First we show that the representation *p* is reducible. Suppose that *p* is irreducible. Then G is semi-simple from the Shur's lemma. If G is not simple, then there are integers $p \ge q \ge 2$ with n = pq, such that G is conjugate to a subgroup of the tensor product

 $SU(p)\otimes SU(q)$

in SU(pq), by considering the induced representation of the universal covering group of G. Therefore

dim
$$G \leq p^2 + q^2 - 2 \leq \left(\frac{n}{2}\right)^2 + 2 \leq \frac{n(n+1)}{2}$$
.

If G is simple but not one of the type

$$A_k, D_{2k+1}$$
 and E_6 ,

then G is conjugate to a subgroup of SO(n) or Sp(n/2), (see [6], p. 336, Theorem 0.20). But

dim
$$SO(n) = \frac{n(n-1)}{2}$$
, dim $Sp\left(\frac{n}{2}\right) = \frac{n(n+1)}{2}$

and hence

$$\dim G \leqslant \frac{n(n+1)}{2}.$$

If G is of type D_{2k+1} ($k \ge 2$), then the lowest dimensional non-trivial irreducible complex representation is (4k+2)-dimensional (see [6], p. 378, Table 30). Therefore $4k+2 \le n$ and hence

If G is of type E_6 , then $n \ge 27$ (see [6], p. 378, Table 30). Therefore

$$\dim G = 78 \leqslant 3n \leqslant \frac{n(n+1)}{2}.$$

Finally, if G is of type A_{k-1} (k < n), then

$$\frac{k(k-1)}{2} \leqslant n,$$

by the Weyl's formula (see [14], Theorem 7.5). Therefore

dim G = dim
$$SU(k) = k^2 - 1 \leq 3n - 2 \leq \frac{n(n+1)}{2}$$
.

Consequently

$$\dim G \leqslant \frac{n(n+1)}{2},$$

if p: $G \subset SU(n)$ is irreducible $(n \ge 4)$. Therefore p is reducible, if

dim $G > n^2 - 4n + 7$ and $n \ge 7$.

Since p is reducible, G is conjugate to a subgroup of

$$N(SU(n-p), SU(n)), \left(1 \leq p \leq \frac{n}{2}\right)$$

the normalizer of SU(n-p) in SU(n). But

dim $N(SU(n-p), SU(n)) \le n^2 - 4n + 7$

for $2 \le p \le \frac{n}{\hat{z}}$. Therefore G is conjugate to a subgroup G' of NSU(n-1). If G' = NSU(n-1), then

 $\dim G' \!\leqslant\! \dim G'' \!+\! 1$

where $G'' = G' \prod SU(n-1)$, by the isomorphism

$$NSU(n-1)/SU(n-1) = S^1$$
.

If G'' = SU(n-1) then G' = G'' = SU(n-1). If $G'' \neq SU(n-1)$, then

dim
$$G'' \leq (n-2)^2 = \dim N(SU(n-2), SU(n-1)),$$

by making use of the first part of the proof of this lemma for SU(n-1) instead of SU(n), and hence

$$\dim G' \leq (n-2)^2 + 1 < n^2 - 4n + 7$$
.

Consequently we see that G is conjugate to SU(n-1) or NSU(n-1) in SU(n). q.e.d.

Lemma 1.6. Let M be a manifold with smooth SU(n)-action. If dim M < 4n-8, then

$$\dim SU(n)_x > n^2 - 4n + 7$$

for each $x \in M$.

Proof. Since
$$SU(n)/SU(n)$$
 is equivariantly embedded in M,

$$\dim SU(n) - \dim SU(n)_x \leq \dim M < 4n - 8$$

Hence dim $SU(n)_x > \dim SU(n) - (4n - 8) = n^2 - 4n + 7$.

2. SU(n)-actions on cohomology complex projective spaces

In this section we prove the following results.

Theorem 2.1. Let $n \ge 7$ and $0 \le k \le n-4$. Let M be a compact connected orientable smooth 2(n+k)-manifold with

$$H^*(M; \mathbf{Q}) = H^*(P_{\mathbf{n}+\mathbf{k}}(\mathbf{C}); \mathbf{Q})$$

Then for any non-trivial smooth SU(n)-action on M, the stationary point set F=F(SU(n), M) is an orientable 2k-manifold with

$$H^*(F; \boldsymbol{Q}) = H^*(P_k(\boldsymbol{C}); \boldsymbol{Q})$$

and there is an equivariant diffeomorphism

$$M = \partial (D^{2n} \times X) / S^1$$
.

Here X is a compact connected orientable (2k+2)-manifoldwhich is acyclic over rationals, X admits a smooth S¹-action which is free on ∂X , the SU(n)-action is standard on D^{2n} and trivial on X, and

$$\pi_1(X) = \pi_1(M) \ .$$

Furthermore, if

$$H^*(M; \mathbf{Z}) = H^*(P_{n+k}(\mathbf{C}); \mathbf{Z}),$$

then X is acyclic over integers, the S^1 -action on X is semi-free, and

$$H^*(F; \mathbf{Z}) = H^*(P_k(\mathbf{C}); \mathbf{Z}).$$

Corollary 2.2, Let $n \ge 7$ and $0 \le k \le n-4$. Let M be a compact connected smooth 2(n+k)-manifold which is homotopy equivalent to $P_{n+k}(C)$. If M admits a non-trivial smooth SU(n)-action, then M is diffeomorphic $P_{n+k}(C)$.

Proof of Theorem 2.1. By Lemma 1.5, Lemma 1.6 and the assumption $n \ge 7$ and $0 \le k < n-4$, the identity component of each isotropy group of the

q.e.d.

given SU(n)-action on M is conjugate to one of the following

SU(n), SU(n-l) and NSU(n-1).

(i) First we show that the stationary point set F = F(SU(n), M) is nonempty. Assume $F = \emptyset$, then by (1.1) there is a smooth fibre bundle

$$F(SU(n-1), M) \rightarrow M \rightarrow P_{n-1}(C).$$

Thus

$$\chi(M) = \chi(P_{n-1}(C)) \cdot \chi(F(SU(n-1)M))$$

and hence

$$k+1\equiv 0 \pmod{n}$$
.

This is impossible by the assumption $0 \le k < n-4$. Thus $F \ne \emptyset$. Then by (1.4) there is an equivariant diffeomorphism

$$M=\partial(D^{2n}{\displaystyle \mathop{ imes}_{{}_{S^1}}} X)/S^{\scriptscriptstyle 1}=D^{2n}{\displaystyle \mathop{ imes}_{{}_{S^1}}}\partial X\cup S^{{}_{2n-1}}{\displaystyle \mathop{ imes}_{{}_{S^1}}} X$$

as SU(n)-manifolds. Here X is a compact connected orientable (2k+2)-manifold with smooth S¹-action which is free on ∂X .

(ii) Next we show that X is acyclic over rationals. Since

$$D^{2n} \underset{S^1}{\times} \partial X \to \partial X / S^1 = F$$

is a 2n-disk bundle, there is an isomorphism

$$H^{i}(M, S^{2n-1} \underset{S^{1}}{\times} X; \boldsymbol{Q}) = H^{i-2n}(F; \boldsymbol{Q}).$$

Thus

(2.3)
$$H^{i}(M;Q) = H^{i}(S^{2n-1} \underset{S^{i}}{\times} XQ) \quad \text{for } i \leq 2n-2.$$

Now we show that the euler class e(p) of the principal S¹-bundle

$$p: \quad \partial(D^{2n} \times X) \to M$$

is non-zero in $H^2(M; Q)$. Assume e(p)=0, then the euler class of the principal S^1 -bundle

$$S^{2n-1} \times X \to S^{2n-1} \underset{S^1}{\times} X$$

is zero in $H^2(S^{2n-1} \times X; Q)$, and hence there is an isomorphism

$$H^*(S^{2n-1}; \mathbf{Q}) \otimes H^*(X; \mathbf{Q}) = H^*(S^1; \mathbf{Q}) \otimes H^*(S^{2n-1} \times X; \mathbf{Q}).$$

Therefore

$$H^{i}(X; \mathbf{Q}) = \mathbf{Q} \quad \text{for } 0 \leq i \leq 2n - 2$$

by (2.3) and the assumption

$$H^*(M; \mathbf{Q}) = H^*(P_{\mathbf{n}+\mathbf{k}}(\mathbf{C}); \mathbf{Q}).$$

But

$$\dim X = 2k + 2 \leq 2n - 2$$

Thus $H^{2k+2}(X,Q) = Q$ and this is a contradiction, since the connected manifold X has a non-empty boundary. Therefore $e(p) \neq 0$ and hence

(2.4)
$$H^*(\partial (D^{2n} \times X) \mathbf{Q}) = H^*(S^{2n+2k+1}; \mathbf{Q}).$$

There is an isomorphism

$$H^{i}(D^{2n} \times X; \mathbf{Q}) = H_{2n+2k+2-i}(D^{2n} \times X, \partial (D^{2n} \times X); \mathbf{Q})$$

by the Poincaré-Lefschetz duality, and the homomorphism

$$H_{2n+2k+2-i}(D^{2n}\times X; Q) \rightarrow H_{2n+2k+2-i}(D^{2n}\times X,\partial(D^{2n}\times X);Q)$$

is onto for 0 < i < 2n+2k+2 by (2.4). Since X is a connected (2k+2)-manifold with a non-empty boundary,

$$H_{2n+2k+2-i}(D^{2n} \times X; \boldsymbol{Q}) = 0 \quad \text{for } i \leq 2n,$$

and hence

$$H^i(X; \mathbf{Q}) = 0$$
 for $0 < i \leq 2n$.

Therefore X is acyclic over rationals. Then

 $H^*(\partial X; \mathbf{Q}) = H^*(S^{2k+1}; \mathbf{Q}),$

by the Poincaré-Lefschetz duality, and hence

$$H^*(F;Q) = H^*(P_k(C);Q) .$$

Furthermore $F(S^1, X)$ consists just one point by the P.A. Smith theory (see [2], chapter IV) from the fact that X is acyclic over rationals and the S^1 -action is free on ∂X .

(iii) Next we show $\pi_1(X) = \pi_1(M)$. Since $F(S^1, X) = \{x_0\}$, there is an S^1 -map

$$s: \widehat{} \to \partial(D^{2n} \times X)$$

given by $s(y) = (y, x_0)$. Then we have an isomorphism

$$\pi_1(M) = \pi_1(\partial(D^{2n} \times X))$$

from the following commutative diagram:

F. Uchida

Applying the van Kampen theorem (see [5], p. 63) to the decomposition

$$\partial (D^{2n} \mathbf{X} X) = D^{2n} \times \partial X \cup S^{2n-1} \mathbf{X} X ,$$

we have

$$\pi_1(X) = \pi_1(\partial(D^{2n} \times X)),$$

and hence

$$\pi_1(X)=\pi_1(M).$$

(iv) Finally we show that the assumption

$$H^*(M; Z) = H^*(P_{n+k}(C) Z)$$

implies $H^*(X, x_0; Z) = 0$. There is a commutative diagram:

$$S^{2^{n-1}} \xrightarrow{S} \partial(D^{2^n} \times X)$$

$$\downarrow p_0 \qquad \qquad \downarrow p$$

$$P_{n-1}(C) \xrightarrow{t} M.$$

Since $t^*e(p) = e(p_0)$ is a generator of $H^*(P_{n-1}(C);Z)$, e(p) is a generator of $H^*(M;Z)$. Therefore

$$H^{*}(\partial(D^{2n} \times X);Z) = H^{*}(S^{2n+2k+1};Z)$$

by the Gysin sequnce for the principal S^1 -bundle

$$p:\partial(D^{2n}\times X)\to M,$$

and hence X is acyclic over integers and

$$H^*(F; \mathbf{Z}) = H^*(P_k(\mathbf{C}); \mathbf{Z})$$

by the same argument as in (ii). Then the S^1 -action on X is semi-free by the P.A. Smith theory from the fact that X is acyclic over integers and the S^1 -action is free on ∂X . This completes the proof of Theorem 2.1.

Proof of Corollary 2.2. If M admits a non-trivial smooth SU(n)-action, then by Theorem 2.1, there is an equivariant diffeomorphism

$$M = \partial (D^{2n} \times X) / S^1$$

as SU(n)-manifolds. Here X is a compact contractible (2k+2)-manifold with smooth semi-free S^1 -action with just one stationary point x_0 . Therefore the

 S^{1} -action on $D^{2n} \times X$ is semi-free and its stationary point is only $(0, x_0)$. Let U be an invariant closed disk around the point $(0, x_0)$. One may assume that the S^{1} -action on U is linear. Put

$$W = (D^{2n} \times X - \operatorname{int} U)/S^{1}.$$

Then

$$\partial w = dU/S^1 U \, \partial (D^{2n} X X)/S^1 = P_{n+k}(C) \, U \, M \, .$$

Since

$$\pi_1(M) = \pi_1(W) = 0,$$

 $H_*(W, M \ Z) = 0$

and

$$\dim W = 2n + 2k + 1 \ge 6$$

we have

$$M = P_{n+k}(C)$$

by applying the *h*-cobordism theorem (see [10], Theorem 9.1) to the triad $(W; M, P_{n+k}(C))$. This completes the proof of Corollary 2.2.

3. Construction of SU(n)-actions

In this section we construct SU(n)-actions on cohomology complex projective spaces, and we have the following results.

Theorem 3.1. Let $n \ge 2$, $k \ge 1$ and $p \ge 1$. Then there is a compact orientable 2(n+k)-manifoldM such that

$$\pi_1(M) = \mathbf{Z}/p\mathbf{Z}$$
 and $H^*(M;\mathbf{Q}) = H^*(P_{\mathbf{n}+\mathbf{k}}(\mathbf{C});\mathbf{Q})$

and M admits a smooth SU(n)-actionwith

$$F(SU(n), M) = P_k(C)$$

Theorem 3.2. Let $n \ge 2$ and $k \ge 3$. Let G be a finitely presentable group with $H_1(G; \mathbb{Z}) = H_2(G; \mathbb{Z}) = 0$. Then

(a) there is a compact orientable 2(n+k)-manifold such that

 $\pi_1(M) = G$ and $H^*(M; Z) = H^*(P_{n+k}(C); Z)$

and M admits a smooth SU(n)-action with

$$F(SU(n), M) = P_k(C),$$

(b) there is a smooth SU(n)-action on $P_{n+k}(C)$ such that

$$\pi_1(F) = G$$
 and $H^*(F; Z) = H^*(P_k(C); Z)$,

where $F = F(SU(n), P_{n+k}(C))$.

First we prepare the following lemma. It is proved by a similar argument as in the proof of Theorem 2.1 and Corollary 2.2, so we omit the proof.

Lemma 3.3. Let X be a compact orientable (2k+2)-manifold which is acyclic over Z (resp. Q). Assume that X admits a smooth S¹-action which is free on ∂X . If $n \ge 2$, then

(a) $M = \partial (D^{2n} \times X) / S$ is a cohomology $P_{n+k}(C)$ over Z (resp. Q),

(b)
$$\pi_1(M) = \pi_1(X)$$
.

Moreover if $n+k \ge 3$ and X is contractible, then $M=P_{n+k}(C)$.

Now we construct an acyclic S^1 -manifold. Let W be a closed orientable smooth homology (2k+1)-sphere over Z (resp. Q) and let

(3.4)
$$Y = P_k(C) \times [0,1] \# W$$
, $(k \ge 1)$.

Then F is a compact connected orientable smooth (2k+1)-manifold with boundary

$$\partial Y = P_k(C) \times 0 \cup P_k(C) \times 1$$
.

It is easily seen that

(3.5)
$$\pi_1(Y) = \pi_1(W)$$
,

$$(3.6) H^{i}(Y; \mathbb{Z}) = H^{i}(P_{k}(\mathbb{C}); \mathbb{Z}) \oplus H^{i}(W; \mathbb{Z}), \quad (0 < i \leq 2k).$$

Furthermore there is a smooth principal S^1 -bundle

 $p\colon E\to Y$

such that $\partial_i E \to P_k(C)X$ *i*, (i=0, 1) is equivalent to the Hopf bundle $S^{2k+1} \to P_k(C)$, where $\partial_i E = p^{-1}(P_k(C)X)$ i. Then

(3.7)
$$\pi_1(E) = \pi_1(Y),$$

where A=Z (resp. Q), by (3.6) and the Gysin sequence for S^1 -bundles. Furthermore

$$X = E \bigcup_{\vartheta_1 \not =} D^{2k+2}$$

is a compact orientable manifold with a semi-free smooth S^1 -action which is linear and free on $\partial X = \partial_0 E = S^{2k+1}$. It is easily seen that

(3.9) $\pi_1(X) = \pi_1(W)$, by (3.5) and (3.7),

(3.10) X is acyclic over Z (resp. Q), by (3.8).

Proof of Theorem 3.1. Put $W=S^{2k+1}/\mathbb{Z}_{p,2}$ lens space, in (3.4). Then there is a compact orientable (2k+2)-manifold X with a semi-free smooth S^1 -action which is linear and free on $\partial X = S^{2k+1}$, such that $\pi_1(X) = \mathbb{Z}_p$ and X is acyclic over Q. Then by Lemma 3.3, the SU(n)-manifold

$$M = \partial (D^{2n} \times X) / S^1$$

is a compact orientable 2(n+k)-manifold such that

$$\pi_1(M) = \mathbf{Z}_p, H^*(M; Q) = H^*(P_{n+k}(C); Q)$$

and

$$F(SU(n), M) = \partial X / S^{1} = P_{k}(C) . \qquad \text{q.e.d.}$$

REMARK 3.11. It is known that if G is a finitely presentable group with $H_1(G; \mathbb{Z}) = H_2(G\mathbb{Z}) = 0$, then for each $m \ge 7$, there is a compact contractible smooth *n*-manifold P such that

$$\pi_1(\partial P) = G \qquad (\text{see [12]}).$$

It is known that there are infinitely many groups satisfying the above condition.

Proof of Theorem 3.2 (a). Let $k \ge 3$. Put $W = \partial P$, a smooth homology (2k+1)-sphere over Z with $\pi_1(\partial P) = G$, in (3.4). Then there is a compact orientable (2k+2)-manifold X with a semi-free smooth S¹-action which is linear and free on $\partial X = S^{2k+1}$, such that $\pi_1(X) = G$ and X is acyclic over Z. Then by Lemma 3.3, the SU(n)-manifold

$$M = \partial (D^{2n} \times X) / S^1$$

is a compact orientable 2(n+k)-manifold such that

$$\pi_1(M) = G, \text{ ff}^*(M; Z) = H^*(P_{n+k}(C);Z)$$

and

$$F(SU(n), M) = P_k(C). \qquad \text{q.e.d.}$$

Proof of Theorem 3.2 (b). Let $k \ge 3$. For a given group G satisfying the hypothesis, there is a compact contractible smooth (2k+1)-manifold p such that

$$\pi_1(\partial P) = C$$

by Remark 3.11. Let

$$Y = P_{\boldsymbol{k}}(\boldsymbol{C}) \times [0, 1] \# P,$$

a boundary connected sum with boundary

$$\partial Y = P_k(C) \# \partial P \cup P_k(C) \times 1$$
.

Then $P_k(C)X$ 1 is a deformation retract of Y, and hence there is a smooth principal S¹-bundle

$$p: E \rightarrow Y$$
,

such that $\partial_1 E \to P_k(C) \times 1$ is equivalent to the Hopf bundle $S^{2k+1} \to P_k(C)$, where $\partial_1 E = p^{-1}(P_k(C) \times 1)$. Then

$$X = E \bigcup_{\vartheta_1 \not B} D^{2k+2}$$

is a compact contractible (2k+2)-manifold with a semi-free smooth S^1 -action. Then by Lemma 3.3, the SU(n)-manifold

$$M = \partial (D^{2n} \times X) / S^{2n}$$

is diffeomorphic to $P_{n+k}(C)$ for $n \ge 2$, and

$$F(SU(n), M) = \partial X/S^{1} = P_{k}(C) \# \partial P.$$

Therefore there is a smooth SU(n)-action on $P_{n+k}(C)$ such that

$$\pi_1(F) = G$$
 and $H^*(F; Z) = H^*(P_k(C); Z)$,

where $F = F(SU(n), P_{n+k}(C))$.

4. Signature of certain smooth G-manifolds

The purpose of this section is to study a signature of closed orientable manifold which admits a smooth G-action with isotropy groups of uniform dimension. We have the following result.

Theorem 4.1. Let G be a compact Lie group and H a closed connected subgroup. Let M be a compact orientable manifold without boundary. Assume that M admits a smooth G-action such that the identity component of an isotropy group G_x is conjugate to H in G for each point x of M. Then F(H, M), the stationary point set with respect to the H-action, is orientable, and

- (a) if dim $N(H) \neq \dim H$, then Sign(M) = 0,
- (b) if $\dim N(H) = \dim H$, then

|N(H)/H| Sign(M) = Sign(G/H) Sign(F(H, M)).

Here N(H) is the normalizer of H in G, |N(H)|H| is the order of the finite group N(H)|H.

The result is a generalization of the fact that Sign(M)=0 if M admits a smooth circle action without stationary points.

Lemma 4.2. Let G be a compact Lie group and H a closed connected subgroup. Let M be a smooth G-manifoldsuch that the identity component of G_x is

388

q.e.d.

conjugate to H in G for each point x of M. Then

(a) the W(H)-action on F(H,M) is almost free (i.e. all isotropy groups are discrete), where W(H)=N(H)/H,

(b) there is an equivariant diffeomorphism

$$M = \operatorname{G}_{\mathcal{N}(H)} F(H, M) = G/H \underset{W(H)}{\times} F(H, M),$$

(c) if M is orientable, then F(H, M) is orientable.

Proof. By the assumption, the identity component of G_x is equal to H for each point x of F(H, M), and the mapping

$$/: \quad G \times F(H, M) \to M$$

given by $f(g, x)=g \chi$ is surjective. Moreover f(g, x) is in F(H, M) if and only if $g \in N(H)$, hus W(H) acts on F(H, M) naturally and (b) is proved. Next, if an isotropy group $W(H)_{x}$ is not discrete for a point x of F(H, M), then

$$\dim G_x \neq \dim H$$
 .

This contradicts our assumption, and (a) is proved. By (b), the product manifold $G/H \times F(H,M)$ is a total space of a principal W(H)-bundleover M. Therefore $G/H \times F(H,M)$ is orientable, if M is orientable, and hence F(H, M) is orientable. q.e.d.

Lemma 4.3. Let G be a compact Lie group which is not discrete. Let M be a compact orientable smooth manifold without boundary. Then, Sign(M)=0 if M admits an almost free smooth G-action.

Proof. G contains a circle subgroup and the circle action on M has no stationary points. Therefore Sign(M)=0. q.e.d.

Proof of Theorem 4.1. Denote by $W(H)^{\circ}$, the identity component of W(H). Then

$$G/H_{W(H)^{\vee}}F(H, M)$$

is a total space of a principal W(H)/W(H-bundle over M by Lemma 4.2. (b). Therefore

$$| W(H)/W(H)^{\circ} | \cdot \operatorname{Sign}(M \neq \operatorname{Sign}(G/H \underset{W(H)^{\circ}}{\times} F(H, M)) .$$

Next, $G/H \underset{W(H)^0}{X} F(H, M)$ is a total space of a smooth fibre bundle over an orientable manifold (G/H)/W(H) with a fibre F(H, M) and a structure group $W(H)^0$ which is connected. Therefore

$$\operatorname{Sign}(G/H_{W(H)^0} F(H, M)) = \operatorname{Sign}((G/H)/W(H)^0) \cdot \operatorname{Sign}(F(M))$$

for a certain orientation of F(H, M) by [4]. By the above equations,

 $I W(H)/W(H)^{\circ}|\operatorname{Sign}(M) = \operatorname{Sign}((G/H)/W(H)^{\circ}) \operatorname{Sign}(F(H,M)).$

Now, if dim $W(H) \neq 0$ then Sign(F(H,M))=0 by Lemma 4.2 (a) and Lemma 4.3. If dim W(H)=0, then

I W(H) | Sign(M) = Sign(G/H) Sign(F(H, M)).

This completes the proof.

REMARK 4.4. Let G be an arbitrary compact connected Lie group and T be a maximal torus. Then Sign(G/T) = 0, since G/T is stably parallelizable (see [3], section 5.4).

REMARK 4.5. Let G be a compact connected Lie group and H a closed connected subgroup. Then Sign(G/H)=0 if

rank
$$G \neq \operatorname{rank} H$$
 (see [7]).

Because the left translation on G/H of a maximal torus of G has no stationaly points.

5. SU(3)-actions on orientable 8-manifolds

The purpose of this section is to prove the following result.

Theorem 5.1. Let M be a closed connected orientable 8-manifold. Assume that M admits a non-trivial smooth SU(3)-actionwith a principal isotropy type (H). Then

- (a) $H^4(M; \mathbf{Q}) = 0$, if dim H = 0,
- (b) Sign(M)=0, if dim H=1 and M has not isotropy types (NSU(2))and $(T_{(2)})$,
- (c) $\operatorname{Sign}(M) = 0$, if dim H = 2,
- (d) $H^4(M \ Q)=0$, if dim H=3 and M has not an isotropy type (NSU(2)), (e) $M=P_2(C)x F(NSU(2),M)$, if dim H=4.

Here NSU(2) is the normalizer of SU(2) in SU(3), the identity component of $T_{(2)}$ is a maximal torus of SU(3) and $T_{(2)}$ has 2-components.

First we recall an additivity property of the signature due to S.P. Novikov (see [1], p. 588). Suppose that Y is a compact oriented 4n-manifold with boundary dY. Let $\hat{H}^{2n}(Y; Q)$ denote the image of the natural homomorphism

$$j^*: H^{2n}(Y, \partial Y; Q) \rightarrow H^{2n}(Y; Q)$$
.

Then the bilinear form B on $ti^{2n}(Y \setminus Q)$ defined by

 $B(j^{*}(a), j^{*}(b)) = ab[Y]$

is symmetric and non-degenerate by Poincare-Lefschetz duality. We can now define Sign(Y) as the signature of B. Suppose now that Y' is another compact oriented 4n-manifold with boundary $\partial Y' = -\partial Y$. Then $X = Y \bigcup_{Y} Y'$ is a closed

orineted 4*n*-manifold and

(5.2)
$$\operatorname{Sign}(X) = \operatorname{Sign}(Y) + \operatorname{Sign}(Y').$$

REMARK 5.3. Let ξ be an orientable *k*-plane bundle over a closed orientable manifold *X*. Denote by $t(\xi)$, $e(\xi)$ and $D(\xi)$, the Thom class, the Euler class and the disk bundle of ξ , respectively. Then $D(\xi)$ is a compact orientable manifold and there is a commutative diagram:

$$\begin{array}{c} H^*(D(\xi), \partial D(\xi)) \xrightarrow{j^*} H^*(D(\xi)) \\ \cong & \uparrow \psi \\ H^*(X) \xrightarrow{\cdot e(\xi)} H^*(X). \end{array}$$

Here ψ is the Thom isomorphism defined by

$$\psi(a) = \pi^*(a) \cdot t(\xi)$$
.

There is an equation

$$\psi(a) \cdot \psi(b) = (-1)^{kp} \psi(ab \cdot e(\xi)) \quad \text{for } b \in H^p(X) \,.$$

Therefore we can calculate $\text{Sign}(D(\xi))$ from the information about the cohomology ring $H^*(X)$ and the Euler class $e(\xi)$.

Now we prepare the following results.

Lemma 5.4.

(a) $H^*(SU(3); \mathbb{Z}) = \bigwedge_{\mathbb{Z}} (x_3, x_5), \deg x_i = i, (i=3,5).$

(b) $H^*(SU(3)|SU(2)Z) = H^*(S^5;Z)$ and the right translation of $NSU(2)|SU(2) = S^1$ induces a trivial action on $H^*(SU(3)|SU(2);Z)$.

(c) $H^*(SU(3)/SO(3), \mathbf{Q}) = H^*(S^5; \mathbf{Q})$, and the right translation of $NSO(3)/SO(3) = \mathbf{Z}_3$ induces a trivial action on $H^*(SU(3)/SO(3); \mathbf{Q})$.

(d) $H^*(SU(3)/T; \mathbf{Z}) = \mathbf{Z}[u_1, u_2, u_3]/(s_1, s_2, s_3),$

where T is a maximal torus of SU(3) consists of all diagonal matrices, s_k is the k-th elementary symmetric polynomials, and deg $u_i=2$, (i=1, 2, 3). Furthermore the induced action of $N(T)/T=S_3$, the symmetric group on 3-elements, is given by

$$a^*(u_i) = u_{a(i)}, \qquad a \in S_3$$
 .

(e) $H^*(SU(3)|D(m,n); \mathbf{Q}) = \bigwedge_{\mathbf{Q}} (x_2, x_5), \ deg \ x_i = i, \ (i=2, 5).$ Here D(m, n) is a closed one-dimensional subgroup defined by

$$D(m, n) = \left\{ \begin{pmatrix} z^m \\ z^n \\ z^{-(m+n)} \end{pmatrix} | ; z \in C, |z| = 1 \right\}$$

for any pair of integers $(m, n) \neq (0, 0)$.

Proof. Since SU(3)/SU(2)=S(b) is true. (a) is proved by making use of the Gysin sequence for

$$SU(2) \rightarrow SU(3) \rightarrow S^5$$

(c) is proved from

$$\pi_1(SU(3)/SO(3)) = 0$$
 and $\pi_2(SU(3)/SO(3)) = \mathbb{Z}_2$.

(d) is a classical result (see [9]). In fact $u_i = p_i^*(u)$, where u is a generator of $H^2(P_2(\mathbf{C}); \mathbb{Z})$ and $p_i; SU(3)/T \to P_2(\mathbf{C})$ is defined by

$$p_i((x_{ab})\cdot T) = (x_{1i}\colon x_{2i}\colon x_{3i}).$$

Finally (e) is proved from the fact that the Euler class of principal S¹-bundle $\pi: SU(3)/D(m, n) \rightarrow SU(3)/T$ is

$$e(\pi)=nu_1+mu_2$$
,

and hence the homomorphism

$$H^{2}(SU(3)/T; \mathbb{Q}) \xrightarrow{\cdot e(\pi)} H^{4}(SU(3)/T;\mathbb{Q})$$

is an isomorphism.

Lemma 5.5.

(a) Let φ be an 8-dimensional non-trivial real representation of SU(3). Let (H_{φ}) be the principal isotropy type of the linear action given by φ . Then there are only the following cases:

(i) $\varphi = Ad_{SU(3)}, H_{\varphi} = T$: a maximal torus of SU(3),

(ii) $\varphi = \rho_3 + trivial summand, H_{\varphi} = SU(2),$

where ρ_3 : $SU(3) \rightarrow O(6)$ is the standard representation.

(b) Let ψ be a 4-dimensional non-trivial real representation of NSU(2). Let (H_{ψ}) be the principal isotropy type of the linear action given by ψ . Then there are only the following cases:

(i) $\psi = Ad_{NSU(2)}, H_{\psi} = T$: a maximal torus of NSU(2),

(ii)
$$\psi = \sigma_k, H_{\psi} = D(k-1, -k), (k \in \mathbb{Z}),$$

where the representation $\sigma_k: NSU(2) \rightarrow U(2) \subset O(4)$ is given by

q.e.d.

$$\sigma_{k} \begin{pmatrix} x_{11} & x_{12} & 0 \\ x_{21} & x_{22} & 0 \\ 0 & 0 & y \end{pmatrix} = \begin{pmatrix} y^{k} x_{11} & y^{k} x_{12} \\ y^{k} x_{21} & y^{k} x_{22} \end{pmatrix}.$$

(iii) Ψ is induced from a non-trivial real representation of S^1 , via the natural projection $NSU(2) \rightarrow NSU(2)/SU(\frac{2\lambda}{7}S^1)$, and $H^0_{\Psi} = SU(2)$, where H^0_{Ψ} is the identity component of H_{Ψ} .

We omit the proof (see [8], Theorem I).

From now on we assume that M is a closed connected orientable smooth 8-manifold and M admits a non-trivial smooth SU(3)-action with a principal isotropy type (H). Then SU(3)/H is orientable by the differentiable slice theorem (see [11], Lemma 3.1).

We will prove Theorem 5.1 by the following many propositions.

Proposition 5.6. Assume that $SU(3)_x^o$ is conjugate to H^o in SU(3) for each $x \in M$. Here G° is the identity component of G and $SU(3)_x$ is the isotropygroup at x. Then,

(a) $\operatorname{Sign}(M) = 0$, if dim $H = \operatorname{lor} 2$,

(b) $H^{4}(M; \mathbf{Q}) = 0$, if dim H = 0 or 3,

(c) $M = P_2(C)x F(NSU(2), M)$, if dim H = 4.

Proof. If dim H=1 or 2, then Sign(M)=0 by Theorem 4.1 and Remarks 4.4, 4.5. If dim H=0, then M=SU(3)/H and hence $H^4(M; Q)=0$ by Lemma 5.4 (a). By Lemma 4.2, there is an equivariant diffeomorphism

$$M = SU(3)/H^{\circ} \times F K = N(H^{\circ})/H^{\circ}, F = F(H^{\circ}, M).$$

If dim H=4, then H° is conjugate to NSU(2) in SU(3) and N(NSU(2))=NSU(2). Therefore

$$M = P_2(C) \times F(NSU(2), M).$$

Finally if dim H=3, then H° is conjugate to SO(3) or SU(2) in SU(3). If $H^{\circ}=SO(3)$, then dim F=3 and

$$H^{4}(M; \boldsymbol{Q}) = H^{4}(SU(3)/SO(3) \times F\boldsymbol{Q}) = 0$$

by Lemma 5.4 (c). Next if $H^0 = SU(2)$, then dim F = 4, F admits a smooth S^1 -action without stationary points and there is an equivariant diffeomorphism

$$M = S^{\mathfrak{s}}_{S^1} F.$$

There is a sufficiently large integer *n* such that the S^1/\mathbb{Z}_n -actionon the orbit space F/\mathbb{Z}_n is free. Then there is an isomorphism

$$H^*(M; \mathbf{Q}) = H^*(M'; \mathbf{Q}),$$

where

$$M' = (S^{5}/\mathbb{Z}_{n} \times F/\mathbb{Z}_{n})/(S^{1}/\mathbb{Z}_{n}),$$

and there is a fibre bundle

$$S^{5}/\mathbb{Z}_{n} \to M' \to F/S^{1}$$

with a structure group S^1/\mathbb{Z}_n . Here $F/S^1 = (F/\mathbb{Z}_n)/(S^1/\mathbb{Z}_n)$ a 3-dimensional rational cohomology manifold. Therefore

$$H^{4}(M; \mathbf{Q}) = H^{4}(M'; \mathbf{Q}) = 0$$
. q.e.d.

REMARK 5.7. Now Theorem 5.1 is proved for dim H=0 or 4. Moreover, Theorem 5.1 is proved for the case $H^0=SO(3)$, since SO(3) is not conjugate to any subgroup of NSU(2) in SU(3) and H with $H^0=SO(3)$ is not a principal isotropy group of any 8-dimensional real representation of SU(3) by Lemma 5.5.

Proposition 5.8. Suppose dim H=1. Then Sign(M)=0, if M has not isotropy types (NSU(2)) and $(T_{(2)})$.

Proof. By Proposition 5.6 (a), one may assume that there is an isotropy type (K_1) with dim $K_1 > 1$. Then by making use of the differentiable slice theorem, there is an isotropy type (K_2) and there is an equivariant decomposition

$$M=D(\nu_1)\cup D(\nu_2),$$

where $D(\nu_i)$ is an equivariant normal disk bundle of an embedding $SU(3)/K_i$ CM, and

$$\partial D(\nu_1) = -\partial D(\nu_2) = SU(3)/H$$
.

Thus

$$\operatorname{Sign}(M) = \operatorname{Sign}(D(\nu_1)) + \operatorname{Sign}(D(\nu_2)).$$

Since

$$H^{4}(SU(3)/KQ) = 0$$
 for dim $K \neq 2, 4,$

by Lemma 5.4, $\text{Sign}(D(\nu_i))=0$ for dim $K_i \neq 2$, 4. Let K be a 2-dimensional closed subgroup of SU(3). Then K is conjugate to one of the following

 $T, T_{(2)}, T_{(3)}$ and $N(T) = T_{(6)}$.

Here $T_{(i)}^{0} = T$ and $T_{(i)}$ has *i*-components. By Lemma 5.4 (d),

$$\begin{split} &H^{4}(SU(3)/T;Q) = Q \oplus Q , \\ &H^{4}(SU(3)/T_{(2)};Q) = Q , \\ &H^{4}(SU(3)/T_{(3)};Q) = H^{4}(SU(3)/N(T)Q) = 0 . \end{split}$$

Thus $\operatorname{Sign}(D(\nu_i))=0$, if $K_i=T_{(3)}$ or N(T). If $K_i=T$, then $\operatorname{Sign}(D(\nu_i))=0$ from Lemma 5.4 (d) and Remark 5.3. q.e.d.

REMARK 5.9. If dim H=2 in Theorem 5.1, then H=T or $T_{(3)}$, since $SU(3)/T_{(2)}$ and SU(3)/N(T) re non-orientable by Lemma 5.4(d). Theorem 5.1 is proved for $H=T_{(3)}$ by Proposition 5.6, since $T_{(3)}$ is not conjugate to any subgroup of NSU(2) in SU(3) and $T_{(3)}$ is not a principal isotropy group of any 8-dimensional real representation of SU(3) by Lemma 5.5. Therefore, it remains to prove Theorem 5.1 for the cases H=T and $H^0=SU(2)$.

Proposition 5.10. Suppose H=T. Then Sign(M)=0.

Proof. If F(NSU(2), M) is empty, then Sign(M)=0 by Proposition 5.6. Now we assume that F(NSU(2),M) is not empty. Then

$$\dim F(NSU(2), M) = 1$$

by Lemma 5.5, and any stationary point (if exists) of SU(3) is isolated by Lemma 5.5 (a). Let

$$F(SU(3), M) = \{x_1, \dots, x_k\}, \qquad (k \ge 0)$$

and let D_i be an invariant closed disk around x_i , such that

$$D_i \cap D_j = \mathbf{0}$$
 for $i \neq j$.

Let $D=D_1 \cup \cup D_k$ and E=M—int **D**. Then

$$D_i \cap F(NSU(2), E) \neq \emptyset$$
, $(i = 1, \dots, k)$

by Lemma 5.5 (a). Let

$$E_0 = \{x \in E \mid (SU(3)_x) = (NSU(2))\},\$$

let U_0 be an invariant closed tubular neighborhood of E_0 in E, and let $U=U_0 \cup D$. Then M-int U is connected and

$$(SU(3)_x^0) = (T), \quad \text{for} \quad x \in M - \text{int } U.$$

Therefore, there is an equivariant diffeomorphism

$$M-\text{int } U = SU(3)/T \underset{N(T)/T}{\times} F, \quad F = F(T, M-\text{int } U)$$

by Lemma 4.2, and there is a commutative diagram:

$$\begin{array}{ccc} H^{4}(M - \text{ int } U; \ \boldsymbol{Q}) & \xrightarrow{i^{*}} & \to H^{4}(\partial(M - \text{ int } U); \ \boldsymbol{Q}) \\ & \simeq \left| p^{*} & \simeq \left| p^{*} \right. \\ H^{4}(SU(3)/T \times F; \ \boldsymbol{Q})^{N(T)/T} & \xrightarrow{i^{*}_{0}} H^{4}(SU(3)/T \times \partial F; \ \boldsymbol{Q})^{N(T)/T} \end{array}$$

Here i_0^* is injective, since $H^{odd}(SU(3)/TQ)=0$ by Lemma 5.4 (d), dim F=2, and each connected component of F has non-empty boundary from the connectedness of M-int U. Thus

$$\hat{H}^{4}(M-\operatorname{int} U; \boldsymbol{Q})=0$$
,

and hence $\operatorname{Sign}(M-\operatorname{int} U)=0$. Next, let U_1, \dots, U_n be connected components of U. Then we can prove that

$$\begin{split} &\dot{H}^{*}(U_{i}; \mathbf{Q}) = 0, \quad \text{if } U \cap \mathbf{D} = \emptyset, \\ &H^{*}(U_{i}; \mathbf{Q}) = 0, \quad \text{if } U_{i} \cap \mathbf{D} \neq \emptyset, \end{split}$$

and hence

$$\operatorname{Sign}(U) = \operatorname{Sign}(U_1) + \cdots + \operatorname{Sign}(U_n) = 0$$
.

Therefore

$$\operatorname{Sign}(M) = \operatorname{Sign}(M - \operatorname{int} U) + \operatorname{Sign}(U) = 0$$
. q.e.d.

We recall the following result which is essentially proved in the proof of Proposition 5.6 (b).

Lemma 5.11. Let X be a compact connected orientable smooth *n*-manifold (∂X is empty or not). Let n=7 or 8. Assume that X admits a smooth SU(3)-action with

$$(SU(3)_x^0) = (SU(2))$$
 for $x \in X$.

Then

$$H^{n-4}(X;Q) = 0$$
.

Proposition 5.12. Assume that $H^{\circ}=SU(2)$ and M has not an isotropy type (NSU(2)). Then $H^{\circ}(M; \mathbf{Q})=0$.

Proof. If $F(SU(3),M) = \emptyset$, then $H^4(M; Q) = 0$ by Lemma 5.11. Next if $F(SU(3),M) \neq \emptyset$, then dim F(SU(3),M) = 2 by Lemma 5.5 (a). Let U be an invariant closed tubular neighborhood of F(SU(3),M) in M. Then there is an exact sequence:

$$H^{\mathfrak{g}}(\partial U; \mathcal{Q}) \to H^{\mathfrak{g}}(M; \mathcal{Q}) \to H^{\mathfrak{g}}(U; \mathcal{Q}) \oplus H^{\mathfrak{g}}(M-\operatorname{int} U; \mathcal{Q}).$$

Here

$$H^{3}(\partial U; \mathbf{Q}) = H^{4}(M - \operatorname{int} U; \mathbf{Q}) = 0$$

by Lemma 5.11, and

$$H^{4}(U; Q) = H^{4}(F(SU(3), M); Q) = 0$$

Therefore

$$H^{4}(M;Q) = 0$$
. q.e.d.

This completes the proof of Theorem 5.1.

6. SZ7(3)-actions on cohomology $P_4(C)$

In the previous paper [13] we have considered smooth SU(3)-actions on homotopy $P_3(C)$. In this section, first we prove the following result as an application of Theorem 5.1.

Theorem 6.1. Let M be a compact connected orientable 8-manifold uch that

$$H^*(M; \mathbf{Q}) = H^*(P_{\mathbf{A}}(\mathbf{C}); \mathbf{Q})$$
.

Then for any non-trivial smooth SU(3)-action on M, the stationary point set is a 2-sphere and the principal isotropy type is (SU(2)). Furthermore there is an equivariant diffeomorphism

$$M = \partial (D^6 \times X) / S^1$$
.

Here X is a compact connected orientable 4-manifolawhich is acyclic over rationals, X admits a smooth S^1 -action which is free on ∂X , the SU(3)-action is standard on D^6 and trivial on X.

Proof. Denote by (H), the principal isotropy type of the given SU(3)-action on M. Since $Sign(M) \neq 0$, the following are the only possible cases from Theorem 5.1,

(a) dim H=l and M has an isotropy type (NSU(2)) or ($T_{(2)}$),

(b) $H^{\circ}=SU(2)$ and M has an isotropy type (NSU(2)),

(c) H=NSU(2) and $M=P_2(C) \times F(NSU(2),M)$.

If H=NSU(2), then $\chi(M)=5$ is divisible by $\chi(P_2(C))=3$, and this is a contradiction. Next if dim H=1, then there is a decomposition

$$M = D(\nu_1) \cup D(\nu_2)$$

as in the proof of Proposition 5.8, where $D(v_i)$ is a normal disk bundle over $SU(3)/K_i$. One may assume $K_1 = NSU(2)$ or $T_{(2)}$, and hence

$$\chi(SU(3)/K_1) = 3$$

by Lemma 5.4. On the other hand,

$$5 = \chi(M) = \chi(SU(3)/K_1) + \chi(SU(3)/K_2)$$

Thus $\chi(SU(3)/K_2) = 2$, and hence $K_2 = T_{(3)}$ by Lemma 5.4. Since $H^2(SU(3)/T_{(3)}, Q) = 0$, there is a contradiction in the following exact sequence of rational cohomology groups:

$$\begin{array}{rcl} H^1(\partial D(\nu_1)) \to H^2(M) & \to & H^2(SU(3)/K_1) \oplus H^2(SU(3)/K_2) \\ & \to H^2(\partial D(\nu_1)) \to H^3(M) \ . \end{array}$$

Therefore we obtain $H^0 = SU(2)$. If $F(SU(3), M) = \emptyset$, then there is a fibre bundle

$$F(SU(2), M) \rightarrow M \rightarrow P_2(C)$$
.

Thus $\chi(M)=5$ is divisible by $\chi(P_2(C))=3$, and this is a contradiction. Hence $F(SU(3),M) \neq \emptyset$ and this implies H=SU(2) by Lemma 5.5 (a). Let U be an invariant tubular neighborhood of F(SU(3),M) in M. Then

$$X = F(SU(2), M - \text{int } U)$$

is a compact connected orientable 4-manifold with the natural action of $NSU(2)/SU(2)=S^{t}$ which is free on ∂X . Furthermore there is an equivariant diffeomorphism

$$M=\partial(D^{\scriptscriptstyle 6}\! imes\!X)/S^{\scriptscriptstyle 1}$$
 ,

and X is acyclic over rationals by the same argument as in the proof of Theorem 2.1. Finally,

$$F(SU(3), M) = \partial X / S^{1} = S^{2}. \qquad q.e.d.$$

Next, as a complementary part of Theorem 5.1, we give examples of certain SU(3)-actions on 8-manifolds with non-zero signature.

Let $\psi: NSU(2) \rightarrow U(3)$ be a unitary representation of NSU(2). Then ψ induces a smooth NSU(2)-action ψ_* on $P_2(\mathbf{C})$. Denote by $M(\psi)$, the orbit manifold of the free smooth action of NSU(2) on $SU(3) \times P_2(\mathbf{C})$ given by

$$h \cdot (g, x) = (gh^{-1}, \psi_*(h, x)), g \in SU(3), h \in NSU(2), x \in P_2(C)$$

Then the compact connected orientable 8-manifold $M(\psi)$ admits a natural smooth SU(3)-action without stationary points and

$$\operatorname{Sign}(M(\psi)) = 1$$
.

EXAMPLE 6.2. Let $\alpha_k: NSU(2) \rightarrow U(3)$ be a unitary representation given by

$$\alpha_{k} \begin{pmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 & y' \end{pmatrix} \begin{pmatrix} * & * & 0 \\ 0 & 0 & y' \end{pmatrix}.$$

Then $M(\alpha_k)$ has just two isotropy types

$$(SU(2)_{(k)})$$
 and $(NSU(2))$,

where $SU(2)_{(k)}$ has k-components and its identity component is SU(2). (see Theorem 5.1 (d))

EXAMPLE 6.3. Let β_k : $NSU(2) \rightarrow U(3)$ be a unitary representation given by

$$\beta_{k} \begin{pmatrix} x_{11} & x_{12} & 0 \\ x_{21} & x_{22} & 0 \\ 0 & 0 & y \end{pmatrix}^{1} = \begin{pmatrix} x_{11} & x_{12} & 0 \\ x_{21} & x_{2} & 0 \\ 0 & 0 & y^{k} \end{pmatrix}.$$

Then $M(\beta_k)$ has just three isotropy types

(D(k, -k-1)), (T) and (NSU(2)),

where D(k, -k-1) is a closed one-dimensional subgroup defined in Lemma 5.4. (see Theorem 5.1 (b))

EXAMPLE 6.4. Let $\gamma: NSU(2) \rightarrow U(3)$ be a unitary representation given by

	a	b	0	$\int a^2$	$\sqrt{2}ab$	b^2
γ	с	d	$0 \dot{1} =$	$\sqrt{2}ac$	ad+bc	$\sqrt{2}bd$
	/0	0	*/	$\langle c^2 \rangle$	$\sqrt{2}cd$	d^2 /.

Then $M(\gamma)$ has just three isotropy types

 $(D(1, 1)_{(2)}), (T)$ and $(T_{(2)})$,

where $G_{(2)}$ is a subgroup of SU(3) such that $G_{(2)}$ has 2-components and its identity component is G. (see Theorem 5.1 (b))

7. Classification of smooth SU(n)-actions on orientable 2*n*-manifolds

Let M be a compact connected 2n-manifold with non-trivial smooth SU(n)-action, then the identity component of each isotropy group is conjugate to one of the following

SU(n), SU(n-l) and NSU(n-1),

for $n \ge 5$. This is proved similarly as Lemma 1.5. Therefore there is an equivariant diffeomorphism

$$M = \partial (D^{2n} \times X) / S^1$$

as SU(n)-manifolds by (1.1) and (1.4). Here X is a compact connected 2-dimensional S^1 -manifold and the S^1 -action on dX is free if dX is non-empty. Furthermore if M is orientable, then X is also orientable. Next we remark that for orientable 2-dimensional S^1 -manifold X, if the isotropy group $S_x^1 \pm S^1$ for $x \in X$, then S_x^1 is a principal isotropy group by the differentiable slice theorem, and hence the S^1 -space $X - F(S^1, X)$ has just one isotropy type.

(i) If X has just one isotropy type (S^1) , then $\partial X = \emptyset$ and

$$M = P_{n-1}(C) \times X$$
.

(ii) If X has just one isotropy type (\mathbf{Z}_k) , then

$$M = S^{2n} \qquad \text{if } \partial X \neq \emptyset ,$$
$$M = L^{2n-1}(k) \times S^1 \qquad \text{if } \partial X = \emptyset .$$

Here $L^{2n-1}(k) = S^{2n-1}/\mathbb{Z}_k$ is a standard lens space.

(iii) If X has just two isotropy types (\mathbf{Z}_k) and (S^1) , then

$$M = P_n(C) \quad \text{if } \partial X \neq \emptyset ,$$

$$M = S^{2n-1} \underset{S^1}{\times} S^2_{(k)} \quad \text{if } \partial X = \emptyset .$$

Here $S_{(k)}^{2}$ is a 2-sphere with the S¹-action given by

$$e^{i\theta}(x_0, x_1, x_2) = (x_0, x_1 \cos k\theta + x_2 \sin k\theta, -x_1 \sin k\theta + x_2 \cos k\theta).$$

This completes the classification.

OSAKA UNIVERSITY

References

- M.F. Atiyah and I.M. Singer: *The index of elliptic operators* III, Ann. of Math. 87 (1968), 546-604.
- [2] A. Borel et al.: Seminar on Transformation Groups, Ann. of Math. Studies, 46, Princeton Univ. Press, 1960.
- [3] A. Borel and F. Hirzebruch: Characteristic classes and homogeneous spaces III, Amer. J. Math. 82 (1960), 491-504.
- [4] S.S. Chern, F. Hirzebruch and J.P. Serre: On the index of a fibered manifolds, Proc. Amer. Math. Soc. 8 (1957), 587-596.
- [5] R. Crowell and R. Fox: Introduction to Knot Theory, Ginn and Co., 1963.
- [6] E.B. Dynkin: *The maximal subgroups of the classical groups*, Amer. Math. Soc. Transl. 6 (1957), 245-378.
- [7] A. Hattori: The index of coset spaces of compact Lie groups, J. Math. Soc. Japan 14 (1962), 26-36.
- [8] W.Y. Hsiang: On the principal orbit type and P.A. Smith theory of SU(p) actions, Topology 6 (1967), 125-135.
- J. Leray: Sur l'anneau d'homologie de l'espacehomogène, C. R. Acad. Sci. Paris, 223 (1946), 412–415.
- [10] J. Milnor: Lectures on the *h*-cobordism Theorem, Princeton Math. Notes, 1965.
- [11] D. Montgomery, H. Samelson and C.T. Yang: Exceptional orbits of highest dimension, Ann. of Math. 64 (1956), 131-141.
- [12] I. Tamura: Variety of varieties (Japanese), Sugaku 21 (1969), 275-285.
- F. Uchida: Linear SU(n)-actions on complex projective spaces, Osaka J. Math. 11 (1974), 473-481.
- [14] H. Weyl: The Classical Groups, 2nd ed. Princeton Univ. Press, 1946.