MULTIPLICATIVE OPERATIONS IN BP COHOMOLOGY

Shôrô ARAKI

(Received June 27, 1974)

Introduction. In the present work we study multiplicative operations in $B P$ cohomology. In $\S 1$ we show that all multiplicative operations in $B P^{*}$ are automorphisms (Theorem 1.3). Thus they from the group Aut (BP). In §2 we define Adams operations in $B P^{*}$ by the formal group $\mu_{B P}$ of $B P$ cohomology and study the basic proprties of them. These oprations are primarily defined for units in $\boldsymbol{Z}_{(t)}$ and then extended to p-adic units. Thereby we discuss $B P^{*}$ by extending the ground ring $\boldsymbol{Z}_{(p)}$ to the ring of p-adic integers \boldsymbol{Z}_{p}. To achieve this extension simply by tensoring with $\boldsymbol{Z} \boldsymbol{p}$ we restrict our cohomologies to the category of finite $C W$-complexes. Correspondingly we consider all multiplicative operations in $B P^{*}() \otimes \boldsymbol{Z}_{p}$ whenever it becomes necessary to do so. Adams operations could be defined also for non-units, but we are not interested in such a case in this paper. In $\S 3$ we prove that the center of Aut ($B P$) consists of all Adams operations (Theorem 3.1).

We regard the lecture note [2] as our basic reference and use the results contained there rather freely.

1. Multiplicative operations in $\boldsymbol{B P}{ }^{*}$.

Let $B P^{*}$ denote the Brown-Peterson cohomology for a specified prime p. By a multiplicative operation in $B P^{*}$ we understand a stable, linear and degreepreserving cohomology operation

$$
\begin{equation*}
\Theta_{a}: B P^{*}(\quad) \rightarrow B P^{*}(\quad) \tag{1.1}
\end{equation*}
$$

which is multiplicative and $\Theta_{a}(1)=1$. The set of all multiplicative operations in $B P^{*}$ forms a semi-group by composition, which will be denoted by Mult (BP).

With respect to the standard complex orientation of $B P^{*}$ [1], [2], [7], we denote by $e^{B P}(L)$ the Euler class of a complex line bundle L and by $\mu_{B P}$ the associated formal group. Let $\Theta_{a} \in \operatorname{Mult}(B P)$. Putting

$$
\Theta_{a}\left(e^{B P}(L)\right)=\sum_{i \geqq 0} \theta_{i}\left(e^{B P}(L)\right)^{i}
$$

for an arbitrary line bundle L, by naturality we obtain a well-determined power
series

$$
\theta_{a}(T)=\sum_{i \geq 0} \theta_{i} T^{i}, \quad \theta_{i} \in B P^{2-2 i}(T)
$$

By naturality $\theta_{0}=0$ and by stability $\theta_{1}=1$. In particular θ_{a} is invertible.
Put

$$
\phi_{a}(T)=\theta_{a}^{-1}(T)
$$

Then

$$
\begin{equation*}
\Theta_{a}(p t)_{* \mu_{B P}}=\mu_{a}, \quad \mu_{a}=\mu_{B P}{ }^{\phi_{a}} \tag{1.2}
\end{equation*}
$$

Recall that $\mu_{B P}$ is typical. Hence μ_{a} is a typical formal group and ϕ_{a} is a typical curve over $\mu_{B P}$.

Conversely, given a typical curve ϕ_{a} over $\mu_{B P}$, by the universality of $B P^{*}$, [2], Theorem 7.2, ϕ_{a} determines uniquely a multiplicative operation Θ_{a} in $B P^{*}$ satisfying

$$
\begin{equation*}
\Theta_{a}\left(e^{B P}(L)\right)=\phi_{a}^{-1}\left(e^{B P}(L)\right) \tag{1.3}
\end{equation*}
$$

Thus, via (1.3) multiplicative operations Θ_{a} in $B P^{*}$ correspond bijectively with typical curves ϕ_{a} over $\mu_{B P}$ such that

$$
\begin{equation*}
\phi_{a}(T) \equiv T \bmod \operatorname{deg} 2 \text { and } \operatorname{dim} \phi_{a}^{-1}\left(e^{B P}(L)\right)=2 \tag{1.4}
\end{equation*}
$$

for complex line bundles L.
Recall that a typical curve ϕ_{a} satisfying (1.4) can be expressed uniquely as a Cauchy series

$$
\begin{equation*}
\phi_{a}(T)=\sum_{k \geq 0}^{\mu} a_{k} T^{p^{k}}, \quad a_{0}=1, \quad a_{k} \in B P^{2\left(1-p^{k}\right)}(p t) \tag{1.5}
\end{equation*}
$$

where $\mu=\mu_{B P}$ (cf., [2], [3]). Thus multiplicative operations Θ_{a} correspond bijectively with sequences

$$
\begin{equation*}
a=\left(a_{1}, a_{2}, \cdots, a_{n}, \cdots\right), a_{n} \in B P^{2\left(1-p^{n}\right)}(p t) \tag{1.6}
\end{equation*}
$$

via (1.3) and (1.5). The identity operation corresponds to the zero sequence $0=(0,0, \cdots)$.

First we remark
Proposition 1.1. Let Θ_{a} and Θ_{b} be multiplicative operations in $B P^{*}$ such that

$$
\Theta_{a}(p t)=\Theta_{b}(p t)
$$

Then $a=b$ as sequences (1.6). Hence $\Theta_{a}=\Theta_{b}$.
Proof. By (1.2) we see that

$$
\mu_{a}=\mu_{b}
$$

Then, by the uniqueness of logarithm we see that
or

$$
\begin{aligned}
\log _{\mu_{a}} & =\log _{\mu_{b}}, \\
\log _{B P^{\circ} \phi_{a}} & =\log _{B P} \circ \phi_{b} .
\end{aligned}
$$

thus $\phi_{a}=\phi_{b}$. q.e.d.
Let $\Theta_{a} \in \operatorname{Mult}(B P)$. We have

$$
\Theta_{a}(p t)_{*} \log _{B P}(T)=\log _{B P} \circ \phi_{a}(T)
$$

over $B P^{*}(p t) \otimes \boldsymbol{Q}$. Putting

$$
\log _{B P}(T)=\sum_{k \geq 0} n_{k} T^{p^{k}}, \quad n_{k}=\left[C P_{p^{k}-1}\right] / p^{k}
$$

expanding both sides of the above formula as power series of T and comparing coefficients of $T^{p^{k}}$ we get

$$
\begin{equation*}
€ \quad \underbrace{k}_{j=0} n_{j} a_{k-j}^{p^{j}}, \quad k \geqq 0 . \tag{1.7}
\end{equation*}
$$

This is a recursive formula to describe $\Theta_{a}\left(n_{k}\right)$, hence determines $\Theta_{a}(p t)$. We discuss another formula to describe $\Theta_{a}(p t)$.

Denote by \boldsymbol{f}_{p} and \boldsymbol{f}_{p}^{a} the Frobenius operators for the prime p on curves over $\mu_{B P}$ and μ_{a} respectively. Recall that, if we put

$$
\begin{equation*}
\left(\boldsymbol{f}_{p} \gamma_{0}\right)\left(T \geqslant f f \nu^{*} T^{*}>^{\prime} \backslash \quad \mu=\mu_{B P}, \quad \gamma_{0}(T)=T\right. \tag{1.8}
\end{equation*}
$$

then $v_{k} \in B P^{2\left(1-p^{k}\right)}(p t)$ and the sequence $\left(v_{1}, v_{2}, \cdots, v_{n}, \cdots\right)$ forms a polynomial basis of $B P^{*}(p t)$, [2].

Since $\Theta_{a}(p t)_{*} \mu_{B P}=\mu_{a}$, we have

$$
\left(\boldsymbol{f}_{p}^{a} \gamma_{0}\right)(T)=\left(\Theta_{a}(p t)_{*} \boldsymbol{f}_{p} \gamma_{0}\right)(T)=\sum_{k \geq 1}^{\mu_{a}} \Theta_{a}\left(v_{k}\right) T^{p^{k-1}}
$$

Using the fact that $\phi_{a}: \mu_{a} \cong \mu_{B P}$, a strict isomorphism, we compute $\left(\phi_{a \sharp} f_{p}^{a} \gamma_{0}\right)(T)$ in two ways as follows:

$$
\begin{aligned}
& \left(\phi_{a \sharp} f_{p}^{a} \gamma_{0}\right)(T)=\left(\boldsymbol{f}_{p} \phi_{a \neq} \gamma_{0}\right)(T) \\
= & \left(\boldsymbol{f}_{p} \phi_{a}\right)(T)=\sum_{k \geq 0}^{\mu} \boldsymbol{f}_{p}\left(a_{k} T^{p^{k}}\right) \\
= & \left(\boldsymbol{f}_{p} \gamma_{0}\right)(T)+{ }^{\mu} \sum_{k \geq 1}^{\mu}[p]_{B P}\left(a_{k} T^{p^{k-1}}\right) \\
= & \sum_{k \geq 1}^{\mu} v_{k} T^{p^{k-1}}+{ }^{\mu} \sum_{l \geq 0} \sum_{k \geqq 1}^{\mu} w_{l} a_{k} p^{l} T^{p^{k+l-1}}
\end{aligned}
$$

by [2], Propositions $2.4,2.5$ and 2.9 , on one hand, where

$$
[p]_{B P}(T)=\sum_{l \geq 0}^{\mu} w_{l} T^{p^{l}}, \quad w_{0}-p, w_{k} \in B P^{2\left(1-p^{k}\right)}(p t)
$$

on the other hand

$$
\begin{aligned}
& \left(\phi_{a \sharp} f_{p}^{a} \gamma_{0}\right)(T)=\phi_{a \sharp} \sum_{k \geq 1}^{\mu_{a}} \Theta_{a}\left(v_{k}\right) T^{p^{k-1}} \\
= & \sum_{k \geqq 1}^{\mu} \phi_{a}\left(\Theta_{a}\left(v_{k}\right) T^{p^{k-1}}\right)=\sum_{k \geqq 1} \sum_{l \geq 0}^{\mu} a_{l} \Theta_{a}\left(v_{k}\right)^{p^{l}} T^{p^{k+l-1}} .
\end{aligned}
$$

Thus we obtain

$$
\begin{align*}
& \sum_{k \geq 1} \sum_{l \geq 0}^{\mu} a_{l} \Theta_{a}\left(v_{k}\right)^{p^{l}} T^{p^{k+l-1}} \tag{1.9}\\
= & \sum_{k \geq 1}^{\mu} v_{k} T^{p^{k-1}}+{ }^{\mu} \sum_{l \geq 0} \sum_{k \geq 1}^{\mu} w_{l} a_{k} p^{l} T^{p^{k+l-1}} .
\end{align*}
$$

This is a recursive formula to describe $\Theta_{a}\left(v_{k}\right)$.
Let $I=\widehat{B P}^{*}(p t)$, the kernel of the augmentation $\varepsilon: B P^{*}(p t) \rightarrow \boldsymbol{Z}_{(p)}$. By [2], §10, we see that
"the left hand side of (1.9)"

$$
\begin{aligned}
& \equiv \sum_{k \geq 1}^{\mu} \Theta_{a}\left(v_{k}\right) T^{p^{k-1}} \bmod I^{2} \\
& =\Theta_{a}\left(v_{1}\right) T+\Theta_{a}\left(v_{2}\right) T^{p}+-\bmod I^{2}
\end{aligned}
$$

and
"the right hand side of (1.9)"

$$
\begin{aligned}
& \equiv \sum_{k \geq 1}^{\mu} v_{k} T^{p^{k-1}}+{ }^{\mu} \sum_{k \geq 1}^{\mu} p a_{k} T^{p^{k-1}} \bmod I^{2} \\
& \equiv\left(v_{1}+p a_{1}\right) T+\left(v_{2}+p a_{2}\right) T^{p}+-\bmod I^{2}
\end{aligned}
$$

Hence (1.9) implies

$$
\begin{equation*}
\Theta_{a}\left(v_{k}\right)=v_{k}+p a_{k} \bmod I^{2} \tag{1.10}
\end{equation*}
$$

for all $k \geqq 1$. In particular

$$
\Theta_{a}\left(v_{k}\right) \equiv v_{k} \quad \bmod (p)+I^{2}
$$

for $k \geqq 1$. This shows that $\left\{\Theta_{a}\left(v_{k}\right), k \geqq 1\right\}$ forms a polynomial basis of $B P^{*}(p t)$. Thus we obtain

Proposition 1.2. For any $\Theta_{a} \in \operatorname{Mult}(B P)$

$$
\Theta_{a}(p t): B P^{*}(p t) \cong B P^{*}(p t), \text { an isomorphism. }
$$

Let Θ_{a} and Θ_{b} be two multiplicative operations in $B P^{*}$ with corresponding sequences $a=\left(a_{1}, a_{2}, \cdots\right)$ and $b=\left(b_{1}, b_{2}, \cdots\right)$. Putting

$$
\Theta_{c}=\Theta_{a} \circ \Theta_{b}, \quad c=\left(c_{1}, c_{2}, \cdots\right)
$$

we shall discuss the sequence c. Put

$$
\bar{\phi}_{b}(T)=\Theta_{a}(p t)_{*} \phi_{b}(T)=\sum_{k \geq 0}^{\mu_{a}} \Theta_{a}\left(b_{k}\right) T^{p^{k}}
$$

Then

$$
\begin{aligned}
\Theta_{a}(p t)_{*} \mu_{b} & =\Theta_{a}(p t)_{*}\left(\phi_{b}^{-1} \circ \mu \circ \phi_{b} \times \phi_{b}\right) \\
& =\tilde{\phi}_{b}^{-1} \circ \mu_{a} \circ \widetilde{\phi}_{b} \times \widetilde{\phi}_{b}=\mu_{B P}^{\phi a \tilde{q}_{b}} .
\end{aligned}
$$

On the other hand

$$
\Theta_{a}(p t)_{*} \mu_{b}=\Theta_{a}(p t)_{*} \Theta_{b}(p t)_{*} \mu_{B P}=\Theta_{c}(p t)_{*} \mu_{B P}=\mu_{c} .
$$

Thus, likewise in the proof of Proposition 1.1, we have
(1.11)

$$
\phi_{c}=\phi_{a} \circ \tilde{\phi}_{b},
$$

or equivalently

$$
\begin{align*}
\sum_{k \geq 0}^{\mu} c_{k} T^{p^{k}} & =\phi_{a \sharp}\left(\sum_{k \geq 0}^{\mu} \Theta_{a}\left(b_{k}\right) T^{p^{k}}\right) \tag{1.12}\\
& =\sum_{\text {fe^ } \sum_{l} \sum_{l \geq 0}^{\mu} a_{l} \Theta_{a}\left(b_{k}\right)^{p^{l}} T^{p^{k+l}}} .
\end{align*}
$$

This is a recursive formula to describe c_{k}.
A multiplicative operation Θ_{a} in $B P^{*}$ is called an automorphism of $B P^{*}$ if

$$
\Theta_{a}(X, A): B P^{*}(X, A) \cong B P^{*}(X, A), \quad \text { isomorphic }
$$

for all finite $C W$-pair (X, A). Clearly a multiplicative operation Θ_{a} is an automorphism of $B P^{*}$ iff it has an inverse. The set of all atutomorphisms of $B P^{*}$ forms a group, which will be denoted by $\operatorname{Aut}(B P)$.

Theorem 1.3. $\operatorname{Aut}(B P)=\operatorname{Mult}(B P)$.
Proof. It is sufficient to prove that every multiplicative operation Θ_{a} has a right inverse.

Let $t=\left(r_{1}, t_{2}, \cdots\right)$ and $s=\left(s_{1}, s_{2}, \cdots\right)$ be sequences of indeterminates with $\operatorname{dim} t_{k}=\operatorname{dim} s_{k}=2\left(1-p^{k}\right)$. Put

$$
\begin{equation*}
\sum_{k \geq 0}^{\mu} u_{k} T^{p^{k}}=\sum_{k \geq 0} \sum_{l \geq 0}^{\mu} t_{l} s_{k}{ }^{p} T^{p^{k+l}}, \tag{*1}
\end{equation*}
$$

where $s_{0}=t_{0}=u_{0}=1$. Then over $B P^{*}(p t)[t, s]$ we have

$$
\sum_{k \geqq 0}^{\mu} u_{k} T^{p^{k}} \equiv T+u_{1} T^{p}+u_{2} T^{p^{2}}+\cdots \bmod \widetilde{I}^{2}
$$

and

$$
\sum_{k \geq 0} \sum_{l \geq 0}^{\mu} t_{l} s_{k} p^{l} T^{p^{k+l}} \equiv T+\left(s_{1}+t_{1}\right) T^{p}+\left(s_{2}+t_{2}\right) T^{p^{2}}+\cdots \quad \bmod \widetilde{I}^{2},
$$

where $\hat{I}=(s, t)$, the ideal of $B P^{*}(p t)[s, t]$ generated by $s_{1}, s_{2}, \cdots, t_{1}, t_{2}, \cdots$. Thus we can put

$$
\begin{equation*}
u_{k}=t_{k}+s_{k}+P_{k}\left(t_{1}, \cdots, t_{k-1}, s_{1}, \cdots, s_{k-1}\right), \quad k \geqq 1 . \tag{*2}
\end{equation*}
$$

Here P_{k} is a polynomial of $t_{1}, \cdots, t_{k-1}, s_{1}, \cdots, s_{k-1}$ with $\operatorname{dim} P_{k}=2\left(1-p^{k}\right)$ and
$P_{k} \equiv 0 \mathrm{mod} \hat{I}^{2}$.
We want to find a right inverse of Θ_{a}. Putting

$$
\begin{equation*}
\Theta_{a} \circ \Theta_{b}=i d \tag{*3}
\end{equation*}
$$

with undecided sequence $b=\left(b_{1}, b_{2}, \cdots\right)$, we shall decide the sequence b. By (1.12), (*1) and (*2), we get

$$
\begin{equation*}
a_{k}+\Theta_{a}\left(b_{k}\right)+P_{k}\left(a_{1}, \cdots, a_{k-1}, \Theta_{a}\left(b_{1}\right), \cdots, \Theta_{a}\left(b_{k-1}\right)\right)=0 \tag{*4}
\end{equation*}
$$

for all $k \geqq 1$. Since the coefficients of P_{k} depend neither on (a_{1}, a_{2}, \cdots) nor on $\left(\Theta_{a}\left(b_{1}\right), \Theta_{a}\left(b_{2}\right), \ldots\right)$ we may use (*4) as a recursive formula to obtain $\Theta_{a}\left(b_{k}\right)$, so we get $\Theta_{a}\left(b_{k}\right)$ as polynomials of a_{1}, \cdots, a_{k} successively for $k \geqq 1$. By Proposition $1.2 \Theta_{a}(p t)$ is an isomorphism. Thus we get a sequence $\left(b_{1}, b_{2}, \cdots\right)$ so that it satisfies (*4). Thereby Θ_{b} is obtained to satisfy (*3). q.e.d.
2. Adams operations in $B P^{*}$.

Let $\boldsymbol{Z}_{(p)}$ be the ring of integers localized at the prime p and \boldsymbol{Z}_{p} its completion, i.e., the ring of p-adic integers. As is well known the endomorphism

$$
[\alpha]_{B P} \in \operatorname{End}\left(\mu_{B P}\right)
$$

is defined for each $\alpha \in \boldsymbol{Z}_{(p)}$ so that

$$
[\alpha]_{B P}(T)=\alpha T+\text { higher terms. }
$$

It is convenient for us to extend these endomorphisms $[\alpha]_{B P}$ to $\alpha \in \boldsymbol{Z}_{p}$. For this purpose we extend the groud ring $\boldsymbol{Z}_{(p)}$ of $B P^{*}$ to \boldsymbol{Z}_{p} by tensoring, i.e., we consider $B P^{*}(\quad) \otimes \boldsymbol{Z}_{p}$ whenever it is necessary to takl of p-adic integers.

Let $A=B P^{*}(p t) \otimes \boldsymbol{Z}_{p}$. Let F and G be formal groups over A. Let

$$
c: \operatorname{Hom}_{A}(F, G) \rightarrow A
$$

be the homomorphism sending f to a_{1} when $f(T)=a_{1} T+$ higher terms. Since A is an integral domain of characteristic zero, c is injective as is well known (cf., [4], [5]).

Since A is a direct sum of copies of $Z p$ (corresponding to each monomials of v_{k} 's) we give a direct limit topology to A. (Each direct summand is given the topology of $Z p$). Then, using the argument of Lubin [5], Lemma 2.1,1, we see that c is an isomorphism onto a closed subgroup of A.

In case $F=G=\mu_{B P}$,

$$
\operatorname{Im} c \supset \boldsymbol{Z}_{(p)},
$$

because $c\left([\alpha]_{B P}\right)=\alpha$ for $\alpha \in \boldsymbol{Z}_{(p)}$. Hence

$$
\operatorname{Im} c \supset \overline{\boldsymbol{Z}}_{(p)}=Z p .
$$

Since c is injective, for each $\alpha \in \boldsymbol{Z}_{p}$ there exists a unique

$$
[\alpha]_{B P} \in \operatorname{End}_{A}\left(\mu_{B P}\right)
$$

such that $c\left([\alpha]_{B P}\right)=\alpha$. Thus the definition of $[\alpha]_{B P}$ is extended to $Z p$.
Since $c: \operatorname{End}_{A}\left(\mu_{B P}\right) \rightarrow$ Ais a ring homomorphism, for any p-adic integers a and β we have the following relations:

$$
\begin{align*}
& {[\alpha]_{B P}(T)=\alpha T+\text { higher terms },} \tag{2.1}\\
& {[\alpha]_{B P}+^{\mu}[\beta]_{B P}=[\alpha+\beta]_{B P}, \quad \mu=\mu_{B P},} \tag{2.2}\\
& {[\alpha]_{B P} \circ[\beta]_{B P}=[\alpha \beta]_{B P} .} \tag{2.3}
\end{align*}
$$

Let $\alpha \in \boldsymbol{Z}_{(p)}$ (or $\in \boldsymbol{Z}_{p}$) be a unit. Put

$$
\psi_{\infty}(T)=\left[\alpha^{-1}\right]_{B P}(\alpha T)
$$

Since

$$
\left(\boldsymbol{f}_{q} \psi_{\infty}\right)(T)=\boldsymbol{f}_{q}\left(\left[\alpha^{-1}\right]_{B P}(\alpha T)\right)=\left[\alpha^{-1}\right]_{B P}\left(\left[\alpha^{q}\right] \boldsymbol{f}_{q} \gamma_{0}(T)\right)=0
$$

for every $q>1$ such that $(p, q)=1$ by [2], Propositions 2.3 and 2.9 , where $\gamma_{0}(T)$ $=T$, we see that ψ_{a} is a typical curve over $\mu_{B P}$. Moreover ψ_{a} satisfies (1.4) as is easily seen. Thus there corresponds a multiplicative operation in $B P^{*}$ to ψ_{a}. We denote this multiplicative operation by Ψ^{∞} and call Adams operations in $B P^{*}$.

REMARK 1. Even for non-units a Adams operations can be defined on the same way as above. But these operations are defined in $B P^{*}() \otimes \boldsymbol{Q}$ or $B P^{*}$ $(\quad) \otimes \boldsymbol{Q}_{p} \quad$ And these cohomology theories are essentially ordinary cohomologies (corresponding to generalized Eilenberg-MacLane spectra), so we are not interested in these operations in the present work.

REMARK 2. Adams operations in complex cobordism are defined by Novikov [6]. When we regard $B P^{*}$ as a direct summand of $U^{*}()_{(p)}$, our Adams operations will be the restrictions of Novikov's Adams operations to $B P^{*}$.

Let a be a unit of $\boldsymbol{Z}_{(p)}$ (or of $Z p$). Since

$$
\Psi_{a}\left(\alpha^{1}[\alpha]_{B P}(T)\right)=\left[\alpha^{-1}\right]_{B P} \circ[\alpha]_{B P}(T)=T,
$$

we see that

$$
\begin{equation*}
\Psi^{\alpha}\left(e^{B P}(L)\right)=\alpha^{-1}[\alpha]_{B P}\left(e^{3 P}(L)\right) \tag{2.4}
\end{equation*}
$$

for any complex line bundle L.
Since $\Psi^{\alpha}(p t)_{* \mu_{B P}}=\mu_{B P}{ }^{\psi_{\alpha}}$ we see that

$$
\Psi^{\alpha}(p t) * \log _{B P}=\log _{B P} \circ \psi_{\omega} .
$$

Here

Thus

$$
\begin{aligned}
&\left(\log _{B P} \circ \psi_{a}\right)(T)=\log _{B P}\left[\alpha^{-1}\right]_{B P}(\alpha T) \\
&=\alpha^{-1} \cdot \log _{B P}(\alpha T)=\sum_{k \geqslant 0} \alpha^{\alpha^{k-1}} n_{k} T^{p^{k}} .
\end{aligned}
$$

or

$$
\begin{equation*}
\Psi \text { fo })=\alpha^{p^{k-1}} n_{k}, \quad k \geqq 1, \tag{2.5}
\end{equation*}
$$

after extending $\Psi^{\alpha}(p t)$ to $\Psi^{\alpha}(p t) \otimes 1_{Q}$.
Proposition 2.1. $\Psi^{\alpha}(p t) B P^{-2 s}(p t)=\alpha^{s} i d$.
Proof. $\quad\left(n_{1}, n_{2}, \cdots\right)$ is a polynomial basis of $B P^{*}(p t) \otimes \boldsymbol{Q}$. Since Ψ^{α} is linear and multiplicative, for every polynomials x_{s} of n_{k} 's with $\operatorname{dim} x_{s}=-2 s$ by (2.5) we see easily that

$$
\Psi^{\alpha}\left(x_{s}\right)=\alpha^{s} x_{s} . \quad \text { q.e.d. }
$$

Corollary 2.2. If we put

$$
\mu_{B P}(X, Y)=\sum_{i, j} a_{i j} X^{i} Y^{j},
$$

them

$$
\mu_{B P}{ }^{\psi \alpha} \alpha(X, Y)=\sum_{i, j} \alpha^{i+j-1} a_{i j} X^{i} Y^{j} .
$$

Next we prove
Proposition 2.3. $\Psi^{\alpha} \Psi^{\beta}=\Psi^{\alpha \beta}=\Psi^{\beta} \Psi^{\alpha}$.
Proof. Put

$$
[\alpha]_{B P}(T)=\sum_{s \geq 0} \alpha_{s} T^{(p-1) s+1}, \alpha_{s} \in B P^{-2(p-1) s}(p t) .
$$

For any complex line bundle L we have

$$
\begin{aligned}
& \Psi^{\beta}\left(\Psi^{\alpha \alpha}\left(e^{B P}(L)\right)=\Psi^{\beta}\left(\alpha^{-1}[\alpha]_{B P}\left(e^{B P}(L)\right)\right)\right. \\
= & \alpha^{-1} \cdot \Psi^{\beta}\left(\sum_{s \geq 0} \alpha_{s}\left(e^{B P}(L)\right)^{\left(p^{-1)}, s+1\right.}\right) \\
= & \alpha^{-1} \sum_{s=0} \beta^{p-1) s} \alpha_{s}\left(\Psi^{\beta}\left(e^{B P}(L)\right)\right)^{(p-1) s+1} \quad \text { by Proposition } 2.1 \\
& \alpha^{-1} \beta^{-1} \sum_{s=0} \alpha_{s}\left(\beta \Psi^{\beta}\left(e^{B P}(L)\right)\right)^{(p-1) s+1} \\
= & \alpha^{-1} \beta^{-1} \cdot[\alpha]_{B P}\left([\beta]_{B P}\left(e^{B P}(L)\right)\right) \quad \text { by }(2.4) \\
= & (\alpha \beta)^{-1}[\alpha \beta]_{B P}\left(e^{B P}(L)\right) \quad \text { by }(2.3) \\
= & \Psi^{\alpha \beta}\left(e^{B P}(L)\right) .
\end{aligned}
$$

Therefore, by the universality of $B P^{*},[2]$, Theorem 7.2, we concludes the Proposition.

Let a and β be p-adic units. By Propositions 1.1 and 2.1 we see that

$$
\begin{equation*}
\Psi^{\alpha}=\Psi^{\beta} \quad \text { iff } \quad \alpha^{p-1}=\beta^{p-1} \tag{2.6}
\end{equation*}
$$

Let $\boldsymbol{U}\left(\boldsymbol{Z}_{p}\right)$ be the multiplicative group of p-adic units and $\boldsymbol{U}_{1}\left(\boldsymbol{Z}_{p}\right)$ be its subgroup consisting of p-adic integers a such that

$$
\alpha \equiv 1 \quad \bmod p .
$$

As is well known

$$
\boldsymbol{U}_{1}\left(\boldsymbol{Z}_{p}\right)=\left\{\alpha^{p-1} ; \alpha \in \boldsymbol{U}\left(\boldsymbol{Z}_{p}\right)\right\} .
$$

By Proposition 2.3 all Adams operations (for p-adic units) form a multiplicative subgroup of $\operatorname{Aut}(B P)$. We denote this subgroup by $\operatorname{Ad}(B P)$. Then, (2.6) implies that

Proposition 2.4. $\operatorname{Ad}(B P) \cong \boldsymbol{U}_{1}\left(\boldsymbol{Z}_{p}\right)$.
And also
Proposition 2.5. $\Psi^{\lambda}=1$ iff $\lambda^{p-1}=1$.
Next we discuss the relations of Adams operations with Quillen operations (of Landweber-Novikov type). We recall the definition of Quillen operations, [2], [7]. Let $t=\left(t_{1}, t_{2}, \cdots\right)$ be a sequence of indeterminates such that $\operatorname{dim} t_{k}=$ $2\left(1-p^{k}\right)$ and

$$
\phi_{t}(T)=\sum_{T_{e} ;>{ }_{0}}^{\mu} t_{k} T^{p^{k}}, \quad t_{0}=1
$$

a typical curve over $\mu_{B P}$ by extending the ground ring of $\mu_{B P}$ to $B P^{*}(p t)[t]$. Then

$$
r_{t}: B P^{*}(\quad) \rightarrow B P^{*}(\quad)[t]
$$

is the multiplicative operation such that

$$
r_{t}\left(e^{B P}(L)\right)=\phi_{t}^{-1}\left(e^{B P}(L)\right)
$$

for any complex line bundle L. Putting

$$
r_{t}(x)=\sum_{B} r_{E}(x) t^{E}, \quad x \in B P^{*}(X, A),
$$

where $E-\left(e_{1}, e_{2}, \cdots\right)$ runs over all sequences of non-negative integers such that all e_{k} but a finite are zero, we get linear stable operations

$$
r_{E}: B P^{*}(\quad) \rightarrow B P^{*+2|E|}(\quad)
$$

of degree $2|E|$, where $|E|=\sum_{i} e_{i}\left(p^{i}-1\right)$.
Now for a p-adic unit α we have

$$
\begin{align*}
& r_{t} \circ \Psi\left(e^{B P}(L)\right)=r_{t}\left(\psi_{\alpha}^{-1}\left(e^{B P}(L)\right)\right) \tag{2.7}\\
= & \left(r_{t}(p t)_{*} \psi_{a}\right)^{-1}\left(r_{t}\left(e^{B P}(L)\right)\right) \\
= & \left(\phi_{t} \circ r_{t}(p t)_{*} \psi_{o}\right)^{-1}\left(e^{B P}(L)\right) .
\end{align*}
$$

And

$$
\left(r_{t}(p t)_{*} \psi_{n}\right)(T)=r_{t}(p t)_{*}\left(\left[\alpha^{-1}\right]_{B P}(\alpha T)\right)=\left[\alpha^{-1}\right]_{\mu^{\prime}}(\alpha T)
$$

where $\mu^{\prime}=\mu_{B P}{ }^{\phi_{t}} \quad$ Thus

$$
\begin{gather*}
\left(\phi_{t} \circ r_{t}^{\prime}(p t)_{*} \psi_{\omega \cdot}^{\prime}(T)=\phi_{t \sharp}\left(\left[\alpha^{-1}\right]_{\mu^{\prime}}(\alpha T)\right)\right. \tag{2.8}\\
=\left[\alpha^{-1}\right]_{B P}\left(\phi_{t}(\alpha T)\right)=\left[\alpha^{-1}\right]_{B P}\left(\sum_{k \geq 0}^{\mu} \alpha^{p^{k}} t_{k} T^{p^{k}}\right) .
\end{gather*}
$$

Let

$$
\sigma_{a}: \boldsymbol{Z}_{(p)}[t] \rightarrow \boldsymbol{Z}_{(p)}[t]
$$

be an algebra homomorphism such that

$$
\sigma_{\infty}\left(t_{k}\right)=\alpha^{p^{k}-1} t_{k}, \quad k \geqq 1,
$$

and define an operation

$$
\bar{\Psi}^{\omega}: B P^{*}()[i ́] \rightarrow B P^{*}(\quad)[i ́]
$$

by $\bar{\Psi}^{\omega}=\Psi^{\omega} \otimes \sigma_{\alpha}$. Then

$$
\begin{align*}
& \left(\bar{\Psi}^{\omega} \circ r_{t}\right)\left(e^{B P}(L)\right)=\bar{\Psi}^{\omega}\left(\phi_{t}^{-1}\left(e^{B P}(L)\right)\right. \tag{2.9}\\
= & \left(\bar{\Psi}^{\omega}(p t) * \phi_{t}\right)^{-1}\left(\bar{\Psi}^{\omega}\left(e^{B P}(L)\right)\right) \\
= & \left(\Psi_{a} \bar{\Psi}^{\omega}(p t)_{*} \phi_{t}\right)^{-1}\left(e^{B P}(L)\right) .
\end{align*}
$$

Remark that

$$
\bar{\Psi}^{\omega}(p t)_{*} \mu_{B P}=\mu_{B P}{ }^{\psi \alpha}
$$

Thus

$$
\left(\bar{\Psi}^{\infty}(p t)_{*} \phi_{t}\right)(T)=\sum_{k \geq 0}^{\mu^{\prime \prime}} \alpha^{p^{k-1}} t_{k} T^{p^{k}},
$$

where $\mu^{\prime \prime}=\mu_{B P}{ }^{\psi_{\alpha}}$. And

$$
\begin{align*}
& \left.\left(\psi_{\infty} \bar{\Psi}^{\alpha}(p t)\right)_{*} \phi_{t}\right)(T)=\psi_{\alpha \neq}\left(\sum_{k \geq 0}^{\mu^{\prime \prime}} \alpha^{p^{k-1}} t_{k} T^{p^{k}}\right) \tag{2.10}\\
= & \sum_{k \geq 0}^{\mu} \psi_{a}\left(\alpha^{p^{k-1}} t_{k} T^{p^{k}}\right) \\
= & \sum_{k \geq 0}^{\mu}\left[\alpha^{-1}\right]_{B P}\left(\alpha^{p^{k}} t_{k} T^{p^{k}}\right) \\
= & {\left[\alpha^{-1}\right]_{B P}\left(\sum_{k \geq 0}^{\mu} \alpha^{p^{k}} t_{k} T^{p^{k}}\right) . }
\end{align*}
$$

Thus by (2.8) and (2.10) we see that

$$
\phi_{t} \circ r_{t}(p t)_{*} \psi_{\omega}=\psi_{\infty} \circ \bar{\Psi}^{\omega}(p t)_{*} \phi_{t}
$$

then, by (2.7) (2.9) and the universality of $B P^{*}$ we obtain
Proposition 2.6. For any unit of \boldsymbol{Z}_{p} there holds the commutativity

$$
r_{t} \circ \Psi^{\omega}=\bar{\Psi}^{\infty} \circ r_{t}
$$

Corollary 2.7. Let $E=\left(e_{1}, e_{2}, \cdots\right)$ be a sequence of non negative integers of which all but a finite terms are zero. There holds the commutativity

$$
r_{E} \circ \Psi^{\omega}=\alpha^{\mid E} \mid \Psi^{\infty} \circ r_{E}
$$

Corollary 2.8. For any linear stable cohomology operation

$$
\Xi_{s}: B P^{*}(\quad) \rightarrow B P^{*+2 s}(\quad)
$$

of degree 2 s there holds the commutativity

$$
\Xi_{s} \circ \Psi^{\alpha}=\alpha^{s} \Psi^{\alpha} \circ \Xi_{s} .
$$

Remark that every stable cohomology operation in $B P^{*}$ can be expressed as linear combinations of Quillen operations $\boldsymbol{r}_{\boldsymbol{E}}$ over $\boldsymbol{B P} \boldsymbol{P}^{*}(\boldsymbol{p t})$. Then Corollary 2.8 follows from Proposition 2.1 and Corollary 2.7.

Corollary 2.9. Adams operations in $B P^{*}$ commute with all multiplicative operations.

REMARK. Properties of Adams operations in complex cobordism which correspond to Propositions 2.1, 2.2, 2.3, 2.7 and 2.8 are obtained in Novikov [7] by different arguments.

3. The center of $\operatorname{Aut}(\boldsymbol{B P})$.

For any $b \in B P^{2\left(1-p^{k}\right)}(p t)$ we define a sequence

$$
(b, k)=(0, \cdots, 0, b, 0, \cdots)
$$

with b as the k-th term and with all other terms zero. By (1.9) we obtain

$$
\begin{aligned}
& \sum_{l \geq 1}^{\mu} \Theta_{(b, k)}\left(v_{l}\right) T^{p^{l-1}}+{ }^{\mu} \sum_{l \geq 1}^{\mu} b \cdot \Theta_{(b, k)}\left(v_{l}\right)^{p^{k}} T^{p^{k+l-1}} \\
= & \sum_{l \geq 1}^{\mu} v_{l} T^{p^{l-1}}+{ }^{\mu} \sum_{l \geq 0}^{\mu} w_{l} b^{p^{\prime}} T^{p^{k+l-1}}
\end{aligned}
$$

In particular

$$
\sum_{l=1}^{k} \Theta_{(b, k)}\left(v_{l}\right) T^{p^{l-1}} \equiv \sum_{l=1}^{k} v_{l} T^{p^{l-1}}+{ }^{\mu} p b T^{p^{k-1}} \bmod \operatorname{deg} p^{k-1}+1
$$

Recursively on $/, 1 \leqq l<k$, and deleting the same terms successively we see that

$$
\begin{equation*}
\Theta_{(b, k)}\left(v_{l}\right)=v_{l}, \quad 1 \leqq l<k, \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Theta_{(b, k)}\left(v_{k}\right)=v_{k}+p b \tag{3.2}
\end{equation*}
$$

These imply that
(3.3) $\quad \Theta_{(b, k)}(x)=x \quad$ for any $x \in B P^{-2 s}(p t), s<p^{k}-1$,
and

$$
\begin{equation*}
\Theta_{(b, k)}(y)=y+p c b \quad \text { for } y \in B P^{2\left(1-p^{k}\right)}(p t) \tag{3.4}
\end{equation*}
$$

when $y=c v_{k}$ mod decomposables, $c \in \boldsymbol{Z}_{p}$.
Let Θ_{a} be in the center of $\operatorname{Aut}(B P)$. Then

$$
\Theta_{\left(v_{k}, k\right)} \circ \Theta_{a}=\Theta_{a} \circ \Theta_{\left(v_{k}, k\right)}
$$

for all $k \geqq 1$. And by (1.12) we have

$$
\begin{aligned}
& \sum_{l \geq 0}^{\mu} \Theta_{\left(v_{k}, k\right)}\left(a_{l}\right) T^{p^{l}}+{ }^{\mu} \sum_{l \geq 0}^{\mu} v_{k} \cdot \Theta_{\left(v_{k}, k\right)}\left(a_{l}\right)^{p^{k}} T^{p^{k+l}} \\
= & \sum_{l \geq 0}^{\mu} a_{l} T^{p^{l}}+{ }^{\mu} \sum_{l \geq 0}^{\mu} a_{l} \cdot \Theta_{a}\left(v_{k}\right)^{p^{l} T^{p^{k+l}}} .
\end{aligned}
$$

In particular

$$
\begin{aligned}
& \Theta_{\left(v_{k}, k\right)}\left(a_{k}\right) T^{p^{k}}+{ }^{\mu} v_{k} T^{p^{k}} \\
\equiv & a_{k} T^{p^{k}}+{ }^{\mu} \Theta_{a}\left(v_{k}\right) T^{p^{k}} \quad \bmod \operatorname{deg} p^{k}+1 .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\Theta_{\left(v_{k}, k\right)}\left(a_{k}\right)+v_{k}=a_{k}+\Theta_{a}\left(v_{k}\right) \tag{3.5}
\end{equation*}
$$

Put
(3.6) $\quad a_{k} \equiv \lambda_{k} v_{k} \quad \bmod$ decomposables, $\lambda_{k} \in \boldsymbol{Z}_{p}$.

Then by (3.4) and (3.5) we obtain

$$
\begin{equation*}
\Theta_{a}\left(v_{k}\right)=\left(1+p \lambda_{k}\right) v_{k}, \quad k \geqq 1 \tag{3.7}
\end{equation*}
$$

Next, putting

$$
v_{k}^{\prime}=v_{k}+v_{1}^{\left(p^{k}-1\right) /(p-1)}
$$

for $k>1$, by commutativity

$$
\Theta_{\left(v_{k}^{\prime}, k\right)} \circ \Theta_{a}=\Theta_{a} \circ \Theta_{\left(v_{k}^{\prime}, k\right)}
$$

and by the same argument as (3.5) we obtain

$$
\begin{equation*}
\Theta_{\left(v_{k}, k\right)}^{\prime}\left(a_{k}\right)+v_{k}^{\prime}=a_{k}+\Theta_{a}\left(v_{k}^{\prime}\right) \tag{3.8}
\end{equation*}
$$

Applying (3.4) and (3.7) to (3.8) we obtain

$$
\left(1+p \lambda_{k}\right) v_{1}^{\left(p^{k}-1\right) /(p-1)}=\left(\left(1+p \lambda_{1}\right) v_{1}\right)^{\left(p^{k}-1\right) /(p-1)} .
$$

thus

$$
\begin{equation*}
1+p \lambda_{k}=\left(1+p \lambda_{1}\right)^{\left(p^{k}-1\right) /(p-1)} \tag{3.9}
\end{equation*}
$$

Let λ be a p-adic unit such that

$$
\lambda^{p-1}=1+p \lambda_{1} .
$$

Then (3.9) implies that

$$
\begin{equation*}
1+p \lambda_{k}=\lambda^{p^{k}-1} \tag{3.10}
\end{equation*}
$$

for all $k \geqq 1$. Thus, by (3.7), (3.10) and Proposition 2.1 we see that

$$
\Theta_{a} \mathrm{I} B P^{*}(p t)=\Psi^{\lambda} \mathrm{I} B P^{*}(p t)
$$

Then by Proposition 1.1

$$
\Theta_{a}=\Psi^{\lambda}
$$

In other words every multiplicative operation which is in the center of $\operatorname{Aut}(B P)$ is a suitable Adams operation. Let $Z(\operatorname{Aut}(B P))$ denote the center of $\operatorname{Aut}(B P)$. The above result and Corollary 2.9 imply

Theorem 3.1. $\quad \operatorname{Ad}(B P)=Z(\operatorname{Aut}(B P))$.
Corollary 3.2. $Z\left(\operatorname{Aut}(B P) \cong \boldsymbol{U}_{1}\left(\boldsymbol{Z}_{p}\right)\right.$.
OSAKA CITY UNIVERSITY

References

[1] J.F. Adams: Quillen's Work on Formal Groups and Complex Cobordism, University of Chicago, 1970.
[2] S. Araki: Typical Formal Groups in Complex Cobordism and K-theory, Lectures in Mathematics 6, Kyoto University, Kinokuniya Book-Store, 1973.
[3] P. Cartier: Modules associés a un groupe formel commutatif. Courbes typiques, C.R. Acad. Sci. Paris 265 (1967), 129-132.
[4] A. Fröhlich: Formal Groups, Lecture Notes in Mathematics 74, Springer-Verlag, 1968.
[5] J. Lubin: One-parameterformal Lie groups over \mathfrak{p}-adic integer rings, Ann. of Math.

80 (1964), 464-484.
[6] S.P. Novikov: The method of algebraic topology from the view point of cobordism theories, Izv. Akad. Nauk SSSR 31 (1967). Translation: Math. USSR-Izv. 1 (1976), 827-913.
[7] D. Quillen: On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc. 75 (1969), 1293-1298.

