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1. Introduction. Let X=(X,, P,,*x&R'pe a one-dimensional standard
Markov process with generator A

Au(x) = a(x)u'(x)+o(x)u’(x)/2

n ) ) )

Y _w(x }n x, dy) .
Y s W)tx, &)
In this article, we shall discuss how the sample paths of X approach a single
point. Let o, be the first hitting time of the sample path to the origin:
a,=inf{t>0; X,=0}. Set Q,={w; o(0)< +oo}. Define Qi, QT and Qf by

Qf = {wEQ1; 38>0, VtE[a‘o(co)—Ep'o(w)), Xt(“’)>0} ’
Qr = {oeQ,; He>0, Vie[oy(0)—Eo)(0)), X(w)<O0},
and

Q= {oeQ,; tlo(w) st X, (0)<0<X,, (o)} .

Our present problem is to decide whether P,(Q1/Q,), P(Q1/Q,) and P,(Q1/Q,)
are positive or not. When X is spatially homogeneous, the problem was treated
by T.Takada [15] in case o=0 and by N.Ikeda-S.Watanabe [3] in case o=0
who also applied their results to the study of two-dimensional diffusion processes.
Their method is based on the estimate of the singularity of the Green function
on the diagonal set. Recently P.W.Millar [10] solved a similar problem in-
dependently. Let T, be the first exit time of the sample path of a spatially
homogeneous process from (—oo, x] (x>>0). Millar gave, in terms of the ex-
ponent, a necessary and sufficient condition that Py(X, =x)>0.

Here we shall consider the class of spatially inhomogeneous Markov pro-
cesses determined by A under certain regularity conditions on a, o and Lévy
measure 7(x, dy). We shall give some sufficient conditions that P,(Q7/Q,)=1,
P (Q7/Q)=1 and P, (Qi/Q,)=1. Our method consists in estimating the
singularity of the Green function as in [3]. More precisely, under the regularity
conditions that will be given in §2, put
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(1.2) Y(x, & = ia(x)g—a(x)zez/2+g °Q(eiE—1——1';|5_Z:02)n(x, dw) .

Then A can be written in the form:

(1.3) afw= | v of@e,

namely, we can regard A as a pseudo-differential operator having its symbol
Yr(x,€). On account of the theory of pseudo-differential operators, the equation
(A—A)u=fadmits a fundamental solution g,(x, y), which is of the form

1 o s
(1'4\/ g‘h\/xf’ _',V') :'%S _:"("_y)ﬁ—.g:—_\-f-gx,l(fo)‘ )

- o TNy )
with a continuously differentiable function g, ,(x, ¥). Therefore the singularity
of the Green function is the same as in the spatially homogeneous case and the
results of [3], [15] concerning the manners of hitting remain true in the present
case.

The organization of the present paper is as follows. In section 2, we state
our theorems. In section 3, we mention some related facts from the theory of
pseudo-differential operators. We construct the above mentioned fundamental
solution in section 4 and estimate its singularity in section 5. In section 6, 7 and 8
we prove our theorems by making use of the estimates established in section 5.

2. Theorems. Denote by B(R") (.B(R”)) the space of C~(R”")-functions
whose derivatives of any order are bounded (vanishing at infinity). Let a(x) and
a(x) be the bounded C~-functionswith its first derivatives @’(x)and o’(x)belong-

ing to B Let v(x,y) be a nonnegative function of B(R?). We assume that
v(x,y) satisfies following two conditions:
(v.1) there exists a positive constant ¢, such that

V(x) y)>cl on R'x {y; |y| _S_l} ,
(».2) there exists a positive constant L such that

v(x,y) is independent of x, if | x\ =L.

Define n(x, y) by

"2, y>o0,

n(x,y) = where 0<@;<2,i=1, 2.
V(x;y) , y<0,
ly! +¢2

1) We denote B(or B) for B(RY) (or Jé(R‘)) for simplicity.
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Consider the following operator 4 on B:
Au() = a(o (%) +o (@) u(%)]2

2.1 o
& 7 futen—u L@ )y

It is known that there exists a unique standard Markov process X= {X,,P,,
xR} whose generator is the closure of A (in fact, X is a Hunt process, see
Sato [11]). Let G, be the resolvent of X:

Gufi)= B e fixoi'= " i f) SECUR).

Then it can be shown that there exists a density g\(x, y) of Gx(x, dy) with respect
to Lebesgue measure dy (sece §4).
Now our results are as follows.

Theorem 1. If (i) o(x)*=0c">0 or (ii) o(x) =0 and max (a,, a,) > 1, then
P.(Q,)>0 for any x=0.

Theorem 2. (1) //o(x)=a*>0, then we have
(i) PQrUOT|Q)=1 forany x=+0.
(ii) More precisely, for any x= 0,

ey 37 = (0)? Ogn, o 92,
@2 Bl ai] = S0 [:, 03, 0 —ai(x 0) ©0,0+)],

(2.2b) E [e*0; QT = 9 [—g)\(O, 0)%‘3(9@ 0)+gx(x,0) (O, 0—)] .
onN 7 Iv-/ 4
2) If o(x)= 0 and a,>ct,, a, > 1[resp. o, < atyy ay > 1], then P(Q3i] Q,)=1 [resp.
P.(Q71Q,)=1] for any x= 0.
3) //o(x)=0and a,=a,>1, then P(Q7|Q,)=1 for any x=+0.

3. Pseudo-differential operators. In this section, we shall collect a
number of known facts needed for later section from the theory of pseudo-
differential operators. We refer to Kumano-go [6] for details. We denote by
S%50=0<p=1, —co<m< oo,the set of C*(RX R)-functionsp(x,£) such that

.1 | D70gp(x£) | = Cy o(1+ | £])"°*~*Pfor any x, §ER",

where Dj=(—1i0/0x)® and 0§=(0/0&)f. An element of S" s is called a symbol.
Set S = 9 S%sand S;5= D S%s. For a function p(x, £ belonging to S™5,

we define a pseudo-differential operator P=p(x, D,)

1) Cu(RYis the totality of bounded continuous functions on R!.
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by
Pu(x) = p(x, D,)u(x)= ZLS‘” e+t p(x, E(E)ES, ucB P
ﬂ -0
Let $7, be the totality of p(x, D,), where p(x, & is a function of S" ;s  Set
Ss=US%sand $;7=U $% ;. We call E belonging to $% 5 a right (or left)

parametrix of P, if PE=I—K for some K,€ 3,5 (or EP=I—K,for some K,
$;5) A parametrix is a right and left parametrix. Following theorem gives a
sufficient condition for the existence of parametrix.

Theorem 3.1. (Hirmander [2]). Let p(x, &) be a symbol belongs to ST, ;.
If p(x,0) satisfies the following conditions (i), (ii):
(i) Forsome 8,>0 and m,,
| p(x, §)=0,(1+1£1)™  for any x, ¢€R.
(ii) For any nonnegative integers o, 8, there exists a constant Cusg>0 such that
1 Do p(x8)[p(xE) | < Cup(1+4+ 1EL)P**3%  for any x, EER" .
Then there exists a parametrix E=e(x, D,), where e(x, £).S,5".

REMARK 3.1. e(x, & can be constructed as follows (HUrmander [2]).
Let e;,j=0, 1, 2, <<+ be functions determined by the following relations

eo(x) &) = l/p(x’ 6) ’
(3.2) .

e;(x 8 = Ogex(x, £)Dyp(x,8) forany j =1 .

P\, &) 1= tR=1"Q0)
E<j

Let ¢ be a C=-functionsuch that ¢(&)=0 if |E\ < 1/2, =1 if |\ = 1. Choose
a sequence 1<¢,<t,< + <ty % oo such that

(3.3) | 070¢ {e;(x, &)p(&/t )} | =277(1+4 | g|)m-rprea-itt,

for |&1 =t¢;, |a+B| =j. Then e(x, £ can be written in the form

(34) e®, ) = e, D+ 3 e,(x,)H(¢lt))

Let H,, — 00 <s< 00 be the Sobolev space with norm ||u||2= V, (+1&1%°|a(g)|?
J—o0

dE. We need the following sharp form of Garding inequality.

Theorem 3.2. (Kumano-go [7]). Let p(x, § be a function of SP,. If
p(x, £ satisfies the following inequality: For some 8 >0 and m, such that 0=m

rW
1) We define 12({")=J e itzy(x)dx for ued.
2) 4 is the space of rapidly decreasing functions.
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—m,=0<1,

| p(x, £\ 28(1+|&l)™ foramy x, EER’,
then
&|[ul)2 s m-ora= 1 p(%, D Yulli4Collual 2 m—1s2s uesd.

We shall give the characterization of $;5.

Theorem 3.3. (Kumano-go [7]). Let P=p(x,D,) be an element of
aa. Ifwe define K(x,w) by

K, uw)= 5| etp(s, e)ae,

then K(x, w) belongs to B(RX R)and K(x, w) satisfiesthe following: For any a, 3,
N, there exists a constant C=Cagysuch that

(3.5) | 9505 K(x,w)| =C(1+4 |w|?*)™N”  for any x, wER".
Pu(x) can be written in the form

(3.6) Pu(x) = [: K(x, x—yyu(y)dy, ussd.

Proof. Because p(x, £)eS;5, we have
1+ | Y0508 K wp0) = -L{ emt(1- DBy ieyozp(x, e} de
7[ —00

From this we get (3.5). By the Fubini theorem we have (3.6).
For later use we shall quote the index theorem of Kumano-go [8]. We call
a function p(x, & of Sp’; be slowly varying, if for any «, G,

| DZ0gp(x,5)\ = Cap(x)(1+ | &) * 3 ~# for any x, éeR',
where Cag(x)is a bounded function such that Cag(x)—0as | x| —co, if @=0.

Theorem 3.4. (Kumano-go [8]). Letp(x, &) Sis, m > 0 be slowly varying.
Suppose that there exist positive constants Cy and 0<T=<1 such that (p(x, &)—&)™*

exists on

Ee = {{eC; dist(f, (—oo0, 0)=Cy(1+1&1)™}
and the estimate of the form
(37) |(D20p(x, £)) (p(x, §)—) | < Cap(x) (1] )2* 7

holds uniformly on By, where Cag(x)is a bounded function such that Csg(x)— >0
as |x|—oo, ifa£0. Then P=p(x,D,) as the map from LZ?into itselfwith the



m S. MAANABE
domain D(P)= {uc L*; Puc L*} has index 0.

4. Construction of the fundamental solution. Throughout this
section, we always assume that (a) a,=a,and (b) o(x)’=c*>0 or ;> 1.

Let A be the integro-differential operator defined by (2.1) and «r(x, & be
the function defined by the following equation

a&an 1

“4.1) Yz, &) =ia(x)6—oa(x)’¢ 2/2—{—\ |e'f"’ — = |n(x,w)dw .
L+

Then it is easy to see that A can be written in the form

42) Au(x) = 1 ( drtp(x, E)a(E)dE, uc.

In Lemma 4.1, we collect some properties of A as a pseudo-differential
operator when the following condition (c) is satisfied.
(¢) There exists a constant L,>1 such that

v(x,¥)=0  on Rx{y; |yl=L}.

Lemma 4.1. Let the condition (c) be satisfied. Then we have
(1°) (%, & belongs to St ,. [/ a(x)=0, then ) belongs to S
(2°)  For any A>0, the symbol of N—A satisfies the following: There exists a
constant 8,>0 such that

(4.3) [ A—r(x, )| =8,(1+1&[)* forany x, EER.

(3°) For any A>0 and for any nonnegative integers a, B, there exists Cag>0
such that for any x, EER}

“4.4) | (DO {IN—(x, £ (M— (i, £)) 7| S Cog(14-|E])7FHo®

where §=2—a, if a,>1, =0 if o(x)’=c*>0.
(4°) Choose a constant 7y such that 1<y <2if o(x)’=0*>0, 1<y<a, if o;>1
and fix it. Let A, be the pseudo-differentiabperator having r(x, £)=(n— ty(x, &)
(14T E1%)7"* as to symbol.  Then we have index(A;)=0.

Proof. Proof of (1°).  Since a/ and ¢’belong to B, it is obvious that ta(x)E
—o(x)’E*[Delongs to S7,.  Set

o(x, &) = SI:ILI(e"S“’-l— 11'5_7;)02)11(% w)dw .

Since ¢ can be written in the form

oo £) = [ (cro—1— 120 1) g

14w/ |w| "+
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et ) )

;Twz\/l’(x;ﬁ) dwand to pove

that F(x, w)eS;, if 0<a<l, F(x, w)e Sy, if 1<a<2, |070:F(x, w)| =
Con(1+1€])" (1+log(le] V1) if a=1.

First we consider the case of 0<a<1. In this case, F(x,f) can be written
in the form

it is sufficient to consider F{x, §)=J\ '{e"gw—l—
o

A9 Fs, &) = (e )05 D, l%dw

Set Fyx, &)= S (et —1) v(x, w)dw and Fy(x, 5)——15S l—zgf;w)z)dw. It is

clear that F, belongs to Sl, oo We show F,belongs to Sf,. Set M,= = wegl&[}rns’
|omonu(e,w)|,1=0, 1,2, . If n—0, then we have O"Fi(x, g):{ (e'to—1)

24 ;(lx’ w) rfro . Therefore, for |£] <1,noting that | & — 1| < |ew| < |w], we

get

la”'F(x $)|<S liy(x_’wﬂd <M '1L_1_; ‘

For the case | &| > 1, by putting |&|w=1y, we have

SL1|E|elE/|E|J’ 16’:1}(x’ _y_)dy'

e 3
<lel{[ X o +SL"Eli]}i dy}s 2=

|0z F(x, £)] = [&]"

Thus we have
(4.6) |05 F (%, &) =C, o(14-1£1)".
If n>1, we have

Ly gitw

OmOLF (x, &) — (z)"s T, wd
For |4 =1, we get

AN ‘ L g ML} ®
(20F (e, €)| <M,[ P < Wl

For |fT >1, we have
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aznagFl(x’ _E) — (i) | & nS 1€l P §/I£I.vyn @-15my ( ,--——)dy

Yy
1€
= (@"|&1*"Fyx, €) .
For the estimate of Fy(x, £), set F§'(x, &)= Sle" E/181Y y"“""a;f'vi, I—&I>dy and

1€l
F@(x, &)= S et t1E1Y y=am1gDy ( |>dy Then we obtain for Fs¥, | F§(x, )|
M_ . For F§», by integration by parts, we have
n—a

roso=g (=g Slronls gl

+(-12 ') (5) r—a—1)r—a—2)-(—a)

XSI Eet&'/lél.v I-o- 1(6’8"‘ )( lél)%.l)

For the terms corresponding to /=1, we have

gM S n—a— ldy_

L1|E|
¢f 1817 yi-a=1(q1gm,, <x,L d ‘
) R OL
|1 " eftwa!™*71(0;,07w) (« w)dzlosM SLI w'™* 'dw
le ®Jut DA 8 T
é ]‘4I+ml4i_m .
—
For the term corresponding to /=0,
Smleii/lm L (gm) (x, )dy‘ Sle dy é_M_"',
. . y1+m a
Thus F, is bounded and the inequality
“.7) 1070:F\(x, O\ =Cpu(1+1£1)*7",  n=1

holds. It follows from (4.6) and (4.7) that F, belongs to S7,. Combining the
fact that F,belongs to S;,and a<1, we have Fe S ,.
Next let us consider the case of 1 <a<<2. Set

Fi(x, §) = S:l(e"iw—l—i&w) ”(;;’Jriv) dw and

m al+m £
1) (@0, u)(x,—i%T) means ———&cl:,—(a%z) y

1€1
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v(x, w)dw .

Fyx,w) —i S e

Then F can be written in the form F(x, &)=F,(x,£)+Fy(x,£). It is evident that
F,belongs to S},. In order to prove (3.1) for F,, it suffices to show (3.1) for the
case 8=0. In fact, since

1 pitw__
8eF(x, §)~—zS %ﬁm—})v(x, w)dw,

it reduces to the case 0<a< 1. If 8=0, then we have for |£\ =1,

mo(x, )
|07Fy(x, §)| = |&]® S:ﬂh(e"f/'f"”—l—il—i::lw>—-—am ”(x’ €] /dw’

=< |&|® S:A%"*dw—kr %:r—medw}

1+

(2 +- L+ Lmaer.

For |£| <1, noting |ef#—1—jew| < = |5w|2< |w|?, we have
|02F,(x, &) S M| "wedw = Mom (L)~
0 2—a
Thus F, belongs to S%,. Combining this and the fact that F,&S;,, we obtain

that F belongs to S9,.
Finally consider the case a=1. We have

L ; m
) m — (" itw_q1_ iéw | 07v(x, w)
#8)  oFey = Lo 10 %) g,
" (L, onv(x, w) 1 wdpy(x, w)
— tw__
@8b)  0roF(x, §)_zso (erte—1) 222 B gy g R

(4.8¢) OmatF(x, E) = (i)"S et 2gmy(x, wydw, n=2 .
First we consider the case n=0. If | &| <1, then we have
(2P, &)1 = | (eto—1—igu) X Dy | . (70500 2) g

14+a?
=2M,L,.
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If TET > 1, then we have

m Y
[0pF(x, £)| = ’EI'S:llgl{ei-s&m(E)y_l_ zlff';(zfg}a” V(jz|$’>dy‘

™ol x, Y
< |5|‘S:{ei°sgﬂ(£)y—‘l— ilcfzgfzg)}a v(izlél dy‘

SfllEl {e"sg"@”—l— ,1:%3523} }OZ‘V(’C» %) dy ’

8\

= Ll¢l+L]¢l.

For I,, we have

o™ | x,

S:{e"'“"‘@’—l—i-sgn(&)y} " |$| dy‘

\8”'1}(90, l—%«)

)

L=

+|{i-sentey(1-

ozs( %)’dy—}—S:—“;)(z—igddyg oM, .

1
=]
0

For I,, we have

m Y
L owls )
S {e: sgn(®)y __ 1} i dy ’
1 y

L e e

<2MS dy+§Ll'€‘___M dy = 2M,+M SL dw

¥ y(1+yE) 18 w(14-w°)

<M, (2+log L,| £]).

I<

Therefore we have

4.9) |07 F(x, &) =Cp(14+1€]) (1+1log(l&] V1)) .0

Next we consider the case n=1. The second term of (4.8b) is bounded. Denote
by / the first term of (4.8b). For |& >1, we have

1) aVb=max(a, b),aAb=min(a, b).
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s‘fnlilé.\‘gn(s)y _16,,. (x— dyl<2M log L, &] .
0 y \

I/l =
For | ¢l =1, we have

1] gs:‘m | 6™ (x, )| dwo< ML, .

Therefore we get
(4.10) 1070:F(x, £)\ =C,,(1+1og(l€IV1)) .
Finally we consider the case n=2. If | £] £ 1, then we obtain

(020 (s, )| < M| "w2d = Mo
0 n—

If IEI > 1, then we have

0yorF(x, &) = (i):_l SLllgle"'sg”‘f)’ y"“ZGZ‘v(x, J-)dy
[&]"7" do 1€

B (i)n {Slei'sg”(g)y "”26"‘1/(36' Yy d _I_SLlIE'ei-sgn(E)y n-zamy(x Yy d }
= £ YT i e /P8
i U rlaas! g &)

Set

Ll)dy and |, = Sbllg‘e"‘g"@yy”‘zaz'u (x, _X_)dy .
1

1
— ei-sgn(g‘)y ”"— za;ny (x’
J.= ey E &l

Then we have for J,,
| il =M,,/(n—1) .

For J,, by integration by parts, we get

1= S (@) ¢ a0l .”a>}

y=1
/ 1 \n 1 -1
ey sgn({-" K * )/(n =3
Lyl d
P eisan®y =1 (glamy) | x, Y
I @ ”)< BUEE

For the terms corresponding to /=1, we have

‘§1I‘ Sfl £l ¢i+sEn I - 1(3’6"‘1/)( )dy ‘ <My o(L)*?
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For the term corresponding to I=0, we have

sl"'ﬂei.sgn(s)yl(8:'1/)(90, L)dy ' =M, logL,|¢| .
y ¢l

Therefore we get | J,| <C(1+log|é&|) for | & >1. Hence we have
@.11) |000RF(%,0)\ < Co (14 €1 Y"(1+log( | €] V1))
It follows from (4.9), (4.10) and (4.11) that

|050¢F(x, )\ <Cpa(1-HE1)(1+10g(] £\ V1)) .
Thus the proof of (1°) is completed.

Proof of (2°). Note that
A—(x, &)= 7x+2% a(.ac)zez-l-.,(o° (1—cos ew)n(x, w)dw

—1 {a(x)g—}—S:(%—sin Ew Jn(x, w)dw} .

1
Set czzg 1=cosy - Thenusi _/ 1), we have o |&|>1

o e
A=, 9\ Znhst 0@ E ] (1—cosmm(x, wydo

1 1 (= ‘y_[)
2nt L oyet el (—cosy)——E2

it

gx+%a(x)252+clczl gl

Thus (2°) is proved.

Proof of (3°). Let @;> 1. For m=1, we have by (I°) and (2°)

6?6:’(7\,—1}1‘(30, &)) ’SC 1+ _"+(2_¢1).§C 1+ | él -n+Q2-o,)m .
7\,—‘\Il‘(x, 5) = m,n( “Sl) = m,n( )

For the case m=0 and n=2, we have

EA—Yr(x, £)) -
E—XW éCo,n(1+l§l) .

Form=0and. n=1, we have
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‘asa—«z»(x, )| < @ IEI+CAFIEN™ — 11 1g)).
v Ty Lowrercatann T

Therefore we get

0305 (A —Y(x, £)) <C 1 THt@-apm
0 ) <o o) (1461

In case o(x)*=0*> 0, (4.4) is clear. The proof of (3°) is completed.
Proof of (4°). It is sufficient to verify that the conditions in Theorem 3.4
are satisfied for 4,. First note that A—+Jr(x, £) is slowly varying. This follows

from the fact that @/(x)and o’(x) belong to B and 87v(x,y), m=1 are zero for
\x\ =L. Next we show the estimate (3.7) for Jr,(x, £). If n=+Jry(%, §), then we
have

dist(n, (—oo, 0]) = |7| =Re n=8(14 | &|2) @ P,

Therefore  {(A—+r(x, &)) (1+ |&]?)"2—&} ' exists on Eg if we choose
T<a;'(;—7Y) Then since Re(A—y (%, £))>0,
[(A—(x, £)) (14-6) 7" =8| = [Re(A—p(x, £)) (1+&°)"*—Re |
>Re(A—vyr(x, £))—Re{  if Re&=0,
=Re(r—¥(x, &) if Re£=<0.

In view of the proof of (2°), we have
[(A—yr(, £)) (148) "] ZCsl (v —r(x, €)) (1467 on Eg.
It is easy to see that
|0208(A—r(x, £)) (1+6")7""| = Ca p| 008N —r(, &) (14€7)7"".

Combining these two estimates and (4.4) it follows that the estimate (3.7) holds.
Thus the conditions of Theorem 3.4 holds for r((x, £. The proof of (4°) is
completed.

Although the following remark is well known, we shall state here for later use.

REMARK 4.1. (Maximum principle). Let u(z0) be a function of B. It
u(x,)=sup u(x) for some x,, then Au(x,)<0. Moreover there exists a point x,
*ER

such that u(x,)=u(x,)and Au(x,)<O0.
Now we shall show the existence of the Green operator of 4 and construct
its kernel.

Lemma 4.2. Let the condition (c) be satisfiedand A be the operator defined
by (2.1). Then we have
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(i) For anyfeH.., there exists a unique solution uec B of the equation
@.12) (—Ay = f.
(ii) For anyfeEH.., define G,fas the unique solution of (4.12) Then G, is a

continuous operator from H., to B.

Proof. First we note that 4 can be written in the form

4.13) Au(x) = F (%, )Fu(-)) (%), ue B,

where Fu, 7 'u denote the Fourier transform and the Fourier inverse trans-
form in distribution sense respectively. In fact, for any uEJ’g, there exists a

sequence {u,} of ¥ such that u,—u in B. Therefore Fu,—Fuin &’. Because
Yr(x, )E0,", we have Jr(x, )Fu,—(x, )F7uin &’. Define 4, by
Apu(x) = T (% §) (1+ 1817 7u(@) (x),  weBA<y<m?).

Consider 4, as a map of L* with domain D(4))={ucsL?*; AusL?. First we
show that A, is one-to-one. Let u be a function of L? such that A =0. Set

g(x) — LSN __fixg—
22 (141 €[
Since the symbol +r, satisfies the condition of Theorem 3.2 for ra=2 — v, m,=2
Y if a'(x)zga-2> 0’ a,—v if o> 1) we have |Iu[|s+m—e/2§Cs/HuHs+m—1/2(VS)‘
Therefore € H.. Combining this and g& L', we obtain v&B. So we have

(A—=A)o(x)= 7 H{A—Y(x, +)) To(+ )} (x)=Ao(x) =0 -

By Remark 4.1, we have o(x)=0, hence u(x)=0. Therefore ker(4,)= {0}.
Combining this and index(4,)=0, we have coker(4,)=L?/Im(A4,)={0} . Thus
A, maps D(4,)onto L*(R"). Let f be any function of H.. Then since /belongs
to L?, it follows that there exists a unique & L? such that Ap=f. Set u=gyv.

de and o(x) = gxu(x) .»

Then by Theorem 3.2, uc B and using the same argument as above, we have
(A—A4)u=f. Uniqueness follows easily from Remark 4.1.

Finally we shall prove the continuity of G,. By the closed graph theorem,
it is sufficient to show the following:

fo fa€H., fu—f iH.., G\f,—v in B, then v=G,f.

Since it follows from (2.1) that 4 maps B into B continuously, we have
fa=(A—A4)G\f,—(A—A4)dn B. On the other hand, f,—fin H., we have

1) Oxis the totality of C*-functionssuch that each derivative is dominated by some polynomial.
2) m=2if 6(x)?=02>0, =a, if a;>1.

3) gfux)= S:g(x—y)u(y)dy
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f=(x—4)v in B. The proof is completed.
By Lemma 4.1, there exists a parametrix Q=g(x, D,) of A—A, where
geS752,,. Define K by the following equation:

(4.14) K=I-(—A4)0.

Then K maps H_.. to H. continuously. Hence G,K=G,—Q maps H_.. to
B continuously. This implies that Gy,—Q maps &’ to 6 continuously. By
Schwartz’ kernel theorem (Schwartz [13]), there exists a C>~-function k(x, y)
such that

(4.15) G\ f(x)—Qf (e T k(= y)f(y)dy, [feD.>
Set
4.16) o, ¥) = £ €57k (x, £)de,
2w~

— 1 * £(X— f
@ g ) = B T ety 09(F Je+hon
and
(4.18) &x,3) = grd% y)tgrix, ¥)

Since fceS =, k=0, 1, 2, y (- &F kg (x, £)dé and Jl" eF g (x, &)
¢(t£)d§ are well-defined. By (3.2) of Remark 3.1, the right hand side of (4.17)

7
converges uniformly in x, y.

Lemma 4.3. Under the same condition in Lemma 4.2,
(1) G,y has the kernel representation:

(4.19) G @) = [ an NfOWy,  feD,

where g, is the function defined by (4.18).

(i) (@) ga(x,y) is a nonnegative function, (b) g x,y) is a continuous function
and C*=-functionexcept on the diagonal set, (c) gx,(%,y) is a continuously differen-
tiable function and C*-functionexcept on the diagonal set.

Proof. First note that

(420 Grf@= Of)+| k) oy, feo.

On the other hand, Qf(x)can be written in the form

1) is the totality of C “-functions on R! of compact support.
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Ofts) = (" eta(x, )/ (0, S5

Using the fact that ¢, S73*af, k=0, 1, 2, *++ and (3.2), we have

ofw) =17 J 17 eemigio, eyag+ 33 L™ ertg, (o, e)9( £ )de) )y

J oo d oo F= 7 t,
From this and (4.20), we obtain (4.19). The proof of (i) is completed. Next
we show (ii). It is clear that g,, and g,, are continuous in x,y. So g is
continuous in x, y. By Remark 4.1, we have G,f=0 if f=0. Therefore ga
is nonnegative. Although the proof of the fact that g,, and g,, belong to
C=(RxXR—A) is found in [2], for completeness we present the proof. By
integration by parts, we have

) = amyog O p
Ero(®, y) = WS—me 85"“q°(x’ §)ds .

Since ¢,&S721,, We have

ak+l ‘-t 6k+l
B! {e perri o 5)} ’
. TR ey icroyys 087 TRV (%,
= ‘ (—i&) 23 (,)(15) et W,wg&—ﬂ?

=Cil¢l* g(f) |&]7(1+ | &] ) *r h+D+ac=D
§C6(1+ l El )_dl .

Therefore we have

8k+lg)"O . L B (k) l){ 071tz 1 }
syt &9 = 5 3300 oray 5o
0.k B )
Soe 6(k—rp+<1—r2>Iei(y_x)£ak+lqo(x E)}d$ )
_oo axk"la_y"’zl gkt ’

Thus we have g, ,& C=(Rx R— A). By the same way we have g, , € C*(RXR—A)
IMC'(RXR). The proof of (ii) is completed.

y
the singularity of 0g,/0y. By Lemma 4.3 it is sufficient to consider g%, y)
only.

5. The estimates of the singularity of In this section we estimate

Lemma 5.1. Let g, (%, y) be the function defined by (4.16). Then we have
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. ag)\,o — __1_ - E[)“_‘I’R(xa 5)]8111(_’}'—90)6
C1) et )= — e e

1" &l E)cos(y—x)¢ +
T b4 SO A —rr(x, E)F+yru(, £) & Jor a4,

where \rg and Ny are the realpart and the imaginarypart of Jr respectively.

Proof. Since fy, and +rjare even and odd functions of & respectively, we
have

_1 £ Ix—alnalx. 2\leos(v—ag
7% NP e® OT T, &)
1 ‘1‘“- Alrsx. Elsin(v—x)e
w0 [A— gl ), £

&ri%y) = ds

€.

Therefore it suffices to prove that the following integrals

" ED—(, Osin(y—n)e 4,
Yo [AM—Arr(%, E)I*+rurl(x, £)°

and

Lsz - &rs(x, £)cos(y—x)& de
Jo [7\—\1"1?(90' f)]z—i_"l"l(x; 6)2

are uniformly convergent for | x— y | =8>0. First we show this for ;. Set

G R e D IAA

and

r0 =~ |l rm A b

Then F,and F, are monotone increasing and

EA—rr(x, £)] = F,(£)—F,(&

b alo, BTl & 0 1O
Note that the set of pseudo-differential operators forms an algebra, that is if
pdx, D,) belongs to S, i=1, 2, then p,(x, D,)p,(x, D,) belongs to $;3+™2 (see

[6]). Using this, we have ——— 1A~ \Isz(x,’?)] —— belongstoS7%* ! forsome
LN —rr%, 7)) (%, 1)

m>1. Hence we get

‘2{——7][—)‘_. ’ A \l—fiforlnlgM’
On U [h— (%, M s (e, )" ) 1™
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where M is a constant independent of x. According to this and

lim — Ev—ve]l __ =0 uniformly in x, we have lim F,(§)=Ilim F,(£)=a.Set
g |A— YR Y £roo £>o00
F(¢)=F,(E)—a and F(£)=F,£)—a. Then F; and F, converge to 0 uniformly

in x and

EIv—rr(, £)] e e
M—rr(x, E)P 4, £) Fy(&)—F,(¢)

Therefore by the second mean value theorem, for [x— y| =6>0,

Iers[x—wR(&_st&’
|9, A —rr(x, &)+l E)?

Ny . Ny .
<1, Fuesino—s)zag |+ || Fe)sin(y—m)ede

< 2 {FN)+ PN+ F(N)+F(N)} 0, 25 N, Ny—sco .
The proof for I, is the same as above. Q.E.D.

Lemma 5.2. (i) If o(x)’=0*>0 0n R or (ii) o(x)*=0">0 on a neighbor-
hood of the origin and o,> 1, then

980

(5:22) lim %822 (x, 0) = lim %824(0,5) = — 2+,
z40 ay 40 ay G(U)"

(5.2b) lim 980 (x, 0) = lim 2820(0,y) =L 4 C,
=yo 0y 710 9y o(0)

" c1y e —ae+{" (5 j_“zuz—gu)n(g, u)du]dg
27 - A —&(0, &))" +4(0, &)

1, f- EI:S:(Eu—sin gu)n(0, u)du:ld
2d-=" I —9ral0, EF 100, &Y

Proof. By Lemma 5.1, we have

%g(x 0) — 1= &r—rlx, E)]sinag ;. , 1f Eryle, E)cosxé de
dy ~ " wJo[A—yr(% P (% E) 2 JO[A—Arr(% )] el E)
=I+1,.
First we show lim I, 1 .
“0 o0y
Set
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G(x,m) = [qu_a(x) 7+ S (1 —cos—x—) n(x, u)du:]

and

H(x, ) = ——a(x)xn—l—xg { (Hlf 2)—sinz7):1} n(x, u)du]2 .

Then we have

_nsin 77|:7\x2+ @nz—i— ngm

—eo

(1—cos 7]—u\)n(x, u)du |dn
1= _S x7 L

m G(X, n)+H(x, 7)
Since
5 { [Mc +o-(x) 2—|—x$ w(l—cos%)n(x, u)du:l}'é_ 2 R
on G(x, n)+H(x,n) 7

by the same argument as in the proof of Lemma 5.1, we can write

[Mc + o-(x) 4t S (1 cos—\n(x, u)du—l
- G(x, n)+H(x, 7)
(F,, F, have the same property as Fj, F, in the proof of Lemma 5.1).

= Fy(1)—F(n)

Using the second mean value theorem, for any &£>0, there exists a constant
N >0 such that

nsmn[)w + cr(x)znz—l—x S m(1—-cos—77—;>n(x, u)du]dn
t “S G(x, )+ H(x, )

<s
for any x. Since the integrand is bounded in [0, N/,

ns:nn[)ucz—l— —o(x)*n* 4 S (1 —cos™ )n(x, u)du]

lim = S
240 g7 G(x, n)+H(x, 7)
_ lj’” 2 sinnd
adoa(0)7? 7

Consequently we obtain lim I,= In case x<0, we have

1
S (0

nsmn[kx + o-(x)znz—l—x S °c)(l—cos”—f)n(x, u)du]dn
h= _ﬂo G, n)+H(x, 1) :
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so lim I.= . For I,, we devide I, into two terms
40 a(0)
Eu _ d
. 75 E[ a(x )5+S (H- s Eu)n(x, u) u]cosx&‘ "
2rd - (A —yr(x, E)*+rus(x, E)
1= g‘r‘)‘w Tu s uyn(x,u ’u}cosx{-‘
- -dE.
Lrd e A —vrr(, E)]"+ri(x, §)°
Using Lebesgue's convergence theorem,
—a)e+{" (-2 —£u) n(0, ) du
B S R e

0 * 2pdoe [A—PR(0, & )P40, E )
i g[r (Eu—sinEu)n(0, u)du]
23—« [A—yog(0, EYF+4a(0, EY

The same estimate shows that

limi_)g""’m _’y): - + C, lim ag}“’fﬂ N = 1

, +C
o dy (0)2 no 0y (0

The proof of Lemma 5.2 is completed.
Next we shall consider the case o(x) =0. We shall devide into the following

three cases:
A 1<,=a,<2, (D) <, <1<, <2 and (111) 1=a,<a,<2.
We write « in the following form according to the above cases.

Case (). Y(x, &)= ic,(x)f—}—}“ﬁoge"f“—l —iEu)n (x, u)du |

where ¢,(x) = a(x) +J(” ualn(x,zlL) du.
o 14u

Case (II). (x, &) = zcz(x)f—i—s (et — 1) () g,

] 1+a

+S (et —1—igu)"® W) gy
0 ute

Y CYETY Aas (o0 ,,2— 0,

ro
where (%) = a(x)+ i + v(x, w)du
Joo LU |u|72 Yo LU

v(x, 1)
lul?

— 7, ’ ifu___ 1 __ qu
Case (III). r(x, &) = zca(x)fj—l—g—w(eE 1 —l—l—u"’)
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+ 1 iz ) g,

u+¢

where ¢,(x) = a(x)+ Smu—?—(f—’uzi) du .

Set afx,E)—= S“(l—cosv)&ﬁ@dv, ay(x, £) = S° (1—cos0) 1% %8 4o,
0 Pt _eo ity

by(x, £) — S:(sinv—v)”_(x_’“@dv

7)14-4'1
and

so (sin v—v)Mdv, ifa,>1,

|7)l1+02

by, E) — S(_)msm'v ¥x0/E) 4, if a,<1,

1+
\’4+2

o v \v(x,9[E) 1 - _
J_w\sm'v 1_!_1)2/&2/ - dvlong’ if o, 1,

Then +r(x, £) can be written in the form
Case (I). (I<a,=a,<2).
(5-3) ‘l"(x’ E) = _(al(x, §)£“1+az(x, S)E"z)
+i(by(x, E)E™+by(x, E)E2+cy(%)E) -
Case (ID. (0<a,<1<;<2).
G4 Y(x, )= —(a(x, OE™+ay(x, £)E™)
+1(b,(x, E)E"1+by(x, E)E™+ci(x)E)
Case (ITI). (1 = a,<a,<2).
(5.3) "I’(x’ E) = —(al(x» E)E“l—}—az(x, E)sz)
+i(bi(x, E)E™1+by(x, E)ElogE+-ci(x)E) .
Set

1—cosv

l—cos'vdv’
o |7)l l—l'-d2

ey a,(x) = v(x, O)S

0
b

a(%) = »(x, O)S:
bi(%) = v(x, O)S”Si“”—” do

o o't

and
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v(x,O)S SINO—Vg i >,

|.v|1+¢

bi®) =\ »(x, O)S SNV g i <],

lvlu—w
v(x, 0), if a,=1.

Lemma 5.3. Let a(x,£), a(x), b(x,£) and b(x), i=1,2 be as above. Then
we have the following estimates

(5 ©) a(x, Ey—a(¥) = O(E™),
O(&™), if a>1,
(5.7) a(%, £) —ay(x) = { O(&™"), f o<1,
O(t'logg), o a.=1,
(5.8) bi(x, £)—b,(x) = O(E'~™)
and

O™ ™), if a,>1,
(5.9) by(x, £)—b,(x)= | O(E™"), f o<1,

O((logg)™), o an=1,
uniformly in x, as E—>oo,

[a}

A fon -\
Proof. In the following, we use the notation — (x, u/g) for 95 y=ufte
ay

n
a

Throughout the proof we assume £>1. For ay(x, £)—ay(x), we have

(. £)— )| =|| TS0 (o, wfg) (s, 0))d

+’S 08 oo, wfg) (s, 0))du

_ 1—cosu * du _ 1 1
<M. { i }ng ( ' ,
=mg||, - ut | alsmg 2(3——a,)+a1——1>

where M, is the same constant as in the proof of Lemma 4.1. Hence we have
(5.6). For b,(x, £)—b,(x),we have

18, )b, @] <[ 002 o, o) —n(x, 0))do

1+a.

HS s lii;w—_v(V(x, v[E)—v(x, 0))dv

1+ 0.

+

® smnov—v
SSL——-— v(x, 0)dv

1 7)1+ao1
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R R o S A WEma
smfo Loy Mt 2 1]
23—a,)t 2—a, £ Liv Y (a,—2)6%!

Thus we have (5.8). By the same way, we have (5.7) for a,>1. If a,<1,then
we have

e, €)—ax) = | TS (e, wle) o, O

[ s e, wje) (o, O [ IS e, O

£L Iu|1+m l |1+¢

=L+1+1, .

For I,, we have

_ 10v ®1—cosu M, 1
| 1|—l COS”__xuedu' M, /¢ - duy = 71 |
o lulm ( /) S—1 Iul 2 2(3—(12) E
For I,
1(""¢1—cos v, (., .\ .
= e o
. ]_S 1/$1—cos 6'() 81} ’)dv ZMS dv — ZM]L:"“Z_L
2 EATD g dnfoln a1 g

where o’ is a mean value such that v<<v'<0.
For I,, we get

L <M 1
athlwz 6"2

1
Therefore | a,(x, & )—ay(x)| <05§¢
where ¢, depends only on L,, a, and M, i=1, 2.

b

In case a,=1,

§L;1 “1—
o, )—ao)] = [[2 152 ot —yferty—o(,0)f 15252

ELy1— -
S 1_(::)_81 {v(%, —y/&)—v(x, 0)} dy—u(x, O)S 1 c:)s ydyl
y £L, y

0
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= [}, ot )Ly 12521, ) ot Oy

o, O)S 1— cosydy

¥
=L+ 1L+1,.
For I,
LM e 1Y ay < e
¥
For I,
I <M log L, &(t11—cos y » = 2M,log ¢L, )
& Ji ylogéL, ” 3
For I,, we have
I,<2M,[L¢ .
Therefore
log ¢
(510) |a2(x) 5)_a2(x)l gc&T ’

where ¢, depends only on L,, M, and M,. Thus (5.7) is proved. Finally for
by(x, &)—by(x), if a,>1 then the same estimate as that of b,(x, &£)—b,(x) holds.
If a,<1, then we have

b, =) = | S5 (. 0/8) (e, 0o

! sinw
] T e ofe) ot O)do

+S_w15|51lnljfa [v(x, v/&)—v(x, 0)]dv

=L+L+1, .
For I,, we have
Cogdalel®m 1—a, ¢

For I,



HITTING PROPERTIES 241

e do _ ML 1
eonlwn” 1—a, &

_ _S lssnewh(x,w) o, OYldw|<

o]+
For I,
|| _ZMS m"f’?z %?
Thus we obtain
(.11 18:(%, §)—bo(%)| =c:67%

where ¢, does not depend on x, £ R,
Finally consider the case a,=1.

z(x 5 ) - bz(x)

1 y—s v(x, —y/[§)
= r It sl (12 B

B SELI sl;zy v(x, —y/€)dy+ } {

1

=I+1,.

(e, 98 o
1og$S Wiyen? )

For I,, we obtain

llllgloée( +e+ )

For I,, we get

JAE - S‘Ll{v(x, —[8)_(x0)1 4, , log £L,

log&éL,Jr YW(l+y*&") y )7

<1 S“*Iv(x, —y/§)—v(x, 0)| . v(x, 0) (¢ ydy

= log £L,9: y(1+y &%) “ ' logeLd g4y

< M Stad + M, log eU4+LY) _LM+1
§log gL, ) log ¢L, &+1 log ¢L,

So we have
(5.12) [bo(x, £)—by(x)| =c,(log &),

where ¢, does not depend on x, §&R'. By (5.11) and (5.12), we obtain (5.9),
which completes the proof of Lemma 5.3.

Now we can estimate the singularity of gﬂ Set
'y
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5.13 I(x, y)= _l = EIN—r(®, 5)]Sin(y_x)'$d
19 e RO Sy
and

5.14 X, = l - 5"!’1("0’ §)cos(y—x)§ de .
Ol S = S° A —vr(®, E)F+i(, §) ¢

In the rest of this paper, we set

Dr(%, §) = —(a(x)6"1+a,(x)E™)

and
(BEEBEE @, i a>1,
Dr(x, 8) = (Bu(%)E"1+-b, (%)% +c,(%)€),  if <1,
(bl(x)§m1+bz(x)$ log $+ca(x)$)’ if o, = 1
Define A,(x) by
hl(x) = z .
2T (o, +1) [a,(x)*+by(x)"]

Then we can show the following lemma.

Lemma 5.4. Assume that a,>a, Let n be the largest positive integer such
that a,—2+n(o,—a,)<0 Then we have
(i) // a,=*1, then

619 Iwmy)= —"Ore—a)sen(y—») y—sl

k . .
+ 35 3D (@) e ort sk ersinede)

X sgn(y—k)y—a & -2+ (0 - )+ j(B,— 1)
o )]yl o )

G.16)  Jxy) = —%@F(Z—al)l y—x|m?

n ) . _ _ _ _
13m0 e concds)
S &
X I y'_xl al—2+k(w1—w2)+j(w2—1)_‘_‘07(36, y) Iy_xl 20, -3
+o4(%,9)
where {D;Jz)-k-ﬂ} 0S5k,
continuous functions.

Gi) If ti=1, then

, ) are bounded
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_ _h(x) o -2
(5.17) I(x,y) = ——I‘(Z—al) sgn(y—x)| y—x|™

+ 33 233 D% togeyrg-ermen-eosin sae)

L ) sgn(y—x) Ty-x\ 217216172
ly—=|

+oy(x, y) | y—x |201_3+7)6(x’y);

Xd
foe

G1  Jwy)= —Ore—a)) y—sl
upIpihy E:.f;“(x)S“aogs)f-'zl-%—kwrw cos )

% log (_ l xl ® -2+ (0~ )
| y—a| /) -
+v,(x, y)l J"—x| - a+vs(x) y) )
where {D(]k+1(x)}o§_;§k,1§k§m {E1 k+1(x)}o§,sk 1sksn and 9; S<]<8 are bounded
continuous functions. In case o,—2+n(a,—a,)=0, \ y— xl 2SI should be

replaced by log(Ty_Tl\/ 1).

Proof. (i) First we show (5.15). Denote by c(x) for ¢,(x) or ¢,(x). Then
I(x, y) can be written as follows:

I(x, ) = 1 S“’ A€ sin (y—x)EdE
[H—al(x, )"t a(x, )T+ [b(x, )™+ bi(x, £)6™s+o(x)ET
_1 sin (y—x)gdé
T o [7\+a1(x £)e"+ay(x, £)e% -+ [bi(x, £)6*1+by(x, £)g%+c(x)e]”

The first term is a bounded continuous function. Denote by I (x,y) the second
term. Then we have

) = L [T[a@E " e sin (e
o 7 do [A— g, OF+D(x, &)

1 S“ {al(x7 EE M ta(x, §)E % a(x)¢"1+a,(x)E % }
o {A—r(®, &))+ri(x, £)° (A—Dg(x, &)+ Ds(x, &)’
X sin (y—x)&dé
= Lx, )+ 1, y)

For the estimate of I(x,y), we employ the method of Ikeda-S.Watanabe
[3 p. 165]. Set by(x, £)=b,(x)+c(x)&*~*. Define
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A(%,8) = a(x), B(x, §) = ax), Dypulx, § = — 285
@\%) 4 oy (x)

Ay, &) = By(x, 5)__Z(al(x)Zzg;z‘i:‘_bz(g)éz(x) §) Ay, &)

and

By, E:(x) ) 2(,’ sz) Ayx, &), 1=k=n+1.
wnw) +o{a)

Then we have the following formula:

{519 ( sin{y x)g& Aulx. £)E O~ k-D@ -0 | B (s £)a1+0~ k@ -3
(7&+al(x)§“1—|—a2(x)§ 2) +(b1(x)$m1+b2(x)§ 2+c(x)§)
= rDaz,k(x, £) sin (y—x)g- g~ k- D@ Ay e

Ay, 84O | By (3, EHHI 0D
(7\' + al(x)ewl + az(x)g‘”z)z -+ (bl(x)e"l + bz(x)5w2+ c (x)&')"’

+ Sw sin (y—x)&
0
+ek(x) y) ’

where ex(x, y) is a bounded continuous function. From this formula, it is easy
to see that D,, «(, £) is a polynomial of degree k in &~®2, Therefore D,, x(x,5)
can be written in the form

Dm2 (%, __aL(fc_)i R
) e b
Dwz.k+1(x: 5) = Dz&’,kﬂ(x)(&l—mz)k“l‘ '“+Df:z),k+1(x) ’ 1<k=n,

where the coefficients D ,.,(x), 0 <j<k,are bounded continuous functions.
Hence we have

I(x,5) = 32 32 DZu(x) g o srosn(g-sy sin (y—a)ede-+or()

1 j=0
1

PO
o
x> Il

Z (j) k(x)l y_xlal—2+(k—1)(m1—w2)+j(¢2-—1)
= »»

x-
»-

ngn(y~x)$ T ATE@Ca AT sin gdgtvy(x,y) ,

where ¥ is a bounded continuous function. Noting that DS ,(x) =0 and

DO (x)— )
P e

Iz(x, y) = —@F(Z—al) sgn (y_x)|y_x| ®-2

we obtain

n+1 k
+ Z 2 D(j) X I —x wl—2+(k—1)(u1~uz)+j(w2—1)
Koz j=0 wz.k( ) Yy |
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Xsgn (y-x) (‘”51- TG T DA P sin EdE+vy(%,Y) .
Jo

For Iy(x, y), we have

L ("ol —ae oo O™ ¢y g
(A «lrn(x, OF +ni(w, &7 Sti, —#)¢dé

1 (""{ : : 1z 2}

T 0 A—yg(x, 6)) Fdrr(x, £ (A—Dg(x, &)+ (x, £)

X §(, &) sin (y—)2ds

EIA(x: y)+15(x, y)

Using Lemma 5.3, it is easy to see that I,(», y)is a bounded continuous function.
For I, set

Hx, &) = (a(x, £)—a(%))E"+(ax(, §)—a(x))§,
(G21)  fIX*. &) = 2n—(a(x, §)+ au(%))§“1—(ax(x, £)+a(x))§%,

Ki(x, &) = (bi(x, £)—bi(%))s"1+(bo(, §)—by(x))€2,

Ky(%, &) = (ba(%, )+b (%)) 1+ (bo(x, £)+b,(x))§%2+2¢(x)¢

(5.20) Is(%, y)=—

and

EDg(x, &) sin (y—x)¢ )
{r—vr(®, &P+ vi(x, €7} {(A—Dr(x£))’+Ds(x, &)}

E(x, y; &) =

Then we have

7 do ::,(x,y, e) 7 Jo ::'.(x, v; &)
= I+1,.
By Lemma 5.3, it is easy to see that I, is bounded continuous. For the
estimate of I, set

al<x’y—x) a(%) = a,(x, y; n)ly xl

-1

ba( ) —bix) = B(x, 33 ,,)I,_y_:gll_ ,
y—x 7%t
a(x, y; n)'l_—x—' , ifa,>1,
7

az(x, L)—az(x) =
— X — .
Y az(x’ ys "7) lyﬂa,le ’ ifa, <1,

and
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_ | @yt .
bz(x7y; ﬂ)u_—%—y lfaz>1)
b,(x, 7 )—bz(x) - K

y—x

—_— - o
bz(xa ¥ ﬂ)lL;gcl—f, ifaz<1-
\ n2
Then we have
Ii(x, y) = _S_gp%_—_og)I y—x|?? J(:l’e(x,y 7) sin ndn ,

where
Ri(x, y; m)Ry(x,y, n)Ry(x,y, 1) ,

(Si(> y5 0)*+Sa(x, y; 2 )(T(x, ¥ . 1) +Tx, y; 1))

R(x, y;1) = a,(x)n""+a,(x)n' " y—x)®1™ %,

Ry(x, y; 1) = by(x, y;n)yn+Dby(x, y; n)nf(y—a)",

. '/ 7 ‘ ®; /i Byl 1y x)B By

R, vi ) = e T ) (b (12 )00 ooy —)
+2c(x)n(y—x)*?,

Sy(x, y; n) = x(y—xw"l+a1<x, —”—)n“'lJraz <x L)ﬂ‘”i(y—x)“*‘“z ,

y—x

R(x,y; 1) =

y—x
S.(x, v: =5 x_L LI A x_L B y—x)P1" %2 X —x)%17!
(%, ¥5 1) = by %, m®14-b,( x, o y—x)*1™ 2t c(x)n(y—x)™7",
o - y—X N\ y—x
Ti(x, y; 1) = My—ai+a,(x)n® 1+ a,(x)n®2(x—x)*1 "%
and

Ty, 5 1) = by(xyr*s-+-by(x)n®s(y—x) %~ % o(x)yn(y—8)™ .

In the above expressions, we set B =a,—1+(ay,—a,) if a,>1, =2(a,—1) if
a,<1 and y=qa,V 1. Applying the second mean value theorem, we obtain the

integral S“R(x, ¥ m)dn is uniformly convergent in x, y. Hence gwR(x, y; 7)ydn
0 0

is bounded continuous. Thus we have (5.15). By the same argument as that of
I(x,y), we obtain (5.16). '
Next we show (ii). I(x,y) can be written as follows:

_ 1 (" (ax, &) tayx, £)E) .
I(x, _ —x)ede+oyx, ¥),
(x y) /4 SO (K—“ l,,/'R(x) &))2 l,b](xy 5)2 o (y x)$ E v (x y)

where v, is bounded continuous. Denote by I,(x,y) the first term of the right
hand side of the above expression. Then we get

_ 1 ("(a(x)g "t a(x)E ) sin (y—a)8
L(w y) = n'S (v—D(x, &)+ Dy(, £ dé




HITTING PROPERTIES 7
_ L[ fa(x, )1 t-a)(x,£)e "2 ay(x)E" 1t ay(x)E )

7 Jo \Ov—re(®, &)Y+ (3, £ ) (A —Dx(w, §)) + P, &)
x sin (y—x)&dé

= Iz(x: y)—I—Is(x, y) .
For the estimate of I(x, y), we set by(x, &) = by(x)log & +c(x), A(x, & = a,(x),
B e, Dt O 5D

At §) = B, &)~ 2D D 4,5, )

and

Bg..(x, = ——-—~—2( ) 2( ’E) A% <k=n+1.
k+1( & = ( )\ bx( )2 ( ’E) ’ I=sk=
lhen by (5.19), we get

["sin(y—s)e sl eV B, e ke e

(- (g e (e b.E Tog £ ewle)
= (Do 9 S, —wg-greraverevae
o]

('°° . Ak \% a\elto,~k(o,—~6,) | DR )
+ 1 sin(¢y—x)& +
Jo

1("MV’ e\ el+o,— (1)@, Je
(A tay(x)&%1+ ay(x)672)"+(by(x)E™"+by(x)dog &+c(x)E)* ~

+ex(x, ¥),

where € is bounded continuous.

From this formula, it is clear that D, x(x, &
is a polynomial of degree k in log &  Hence D, x(x, £) can be written in the form

Dl 1%y = _al(x)
B (x E) al(x)2+ 61(-%)2 4
D, x1i(x, &) = DiR1i(x)(log £)*+---+DB (%),

where the coefficients D{2,,,
fore we have

1<kEn,

0= j<k are bounded continuous functions. There-

I(x, y)

2 :1-

+u
,_.-

0 (”(x)g 1~ — (k~1)(®;— 2)(10g &-)J Sn_, _x)sds_}_vs(x y)

ar

sz(J)(x) son (v—ax)| y—ox| =2+ kD@~ wz)(log 1 )r
- y—x|

x5 (,,, )| (log gy grerareaisin sdeto ),

where vg(x,y) is a bounded continuous function
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~lan )
— -, we obtain

Noting that D§}}(x)=0, D{%}(x)=
aG\X)+0(%)

L(x, ) = —MI‘(Z —ay)sgn(y—x)|y—x| %72
+3333 {33(7)Dew) {7 tog gy eosin ede |

X (log -

L

1 ) sgn(y—x) y—x| BT EDG) Lo (6 1)

For I, we devide Ix, y) into two terms: Iy(x, y) =I,(x,y)+I(x, y), where
I,, I, are defined by (5.20). By Lemma 5.3, it is easy to see that I, (x,y) is a
bounded continuous function. For I, define H(x, &), Hy(x, &), Ki(x, £ and
E(x, y; &) by (5.21). We define Ky(#, £ by

K, &) = (bi(x, &)+b:(%))e"+ (b, £)+b,(x))¢ log &+2¢(x)§ -

Then we get
1 (= Hy(x, &)Hy(x, &) 1 (=K, (x, &)Kyx, &)
s\X, = d d
L )= z Jo E(xy & E+ﬂ Jo E(x,y; 8) ¢
= I+1,.
Using Lemma 5.3, we can show that I, is bounded continuous. For I, set
7\ g () — .yl y—=l
a7 ) e = asys 12,
by(x, ) b(x)— b,(x,y 7)l2*I""
(5 52) b= by 122
i _ N ] i
az(x, —)—a x) = a,(x, y; 7 lo
y—x o(x) = a(x, y; 7) S e
and

b, x,—) b®)= byw, y m) —F —
logly x|

Substituting this into I, and applying the second mean value theorem to I,, we
obtain

L, y) = B8 gyt ),

where v, is bounded continuous. Thus we have (5.17). By the same way, we
obtain (5.18). This completes the proof.
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Lemma 5.5. If o(x)=0and a,>a, a,>1, then g\(x,y) satisfies one of
the following conditions:

(A) lim %(x,y) = %(x,x—) exists finitely and lim ig—’i(x, y) = —o0,
T o [y Ay rv= dy
lim 6—gi(x,y) = %l(y—l—, y) exists finitely and lim -‘,’?—"(x,y) = —oo,
=y dy dy =42 7dy

(B) There exist nonnegative constants ¢,, ¢,, a, f3, r and & such that ¢,>1, ¢,>1,
O<a<pB<land

EPle, < ga(%, x)—gr(x, x—E)<c,EP,

& <log %)r/ < g\(x, x)—g\(x, x+£)<028"(log %)
Jorany €€ (0, &] and x .

r
’

Proof. By virtue of Lemma 5.4, we have

Wi, y) = [ Aly=sl2), a8 yls,
oy T Lo(ly—alw), s yta.

Therefore only two cases occur: (i) lim %(x, y) and lim %(x, y) exist
Tos dy sy dy 7T

ﬂn
finitely or (ii) Iim’j%ﬁ(x, y) and lim ?A(x, y) do not exist. If the inequality
y4% y =yy dy

Ero(%, X)—gx o(%,9)=0holds (we show this soon later), then since ;<2 we have

lim ?J(x, y)=lim %(x, y)=co. Therefore if (i) occurs, it is nothing but the

v vy v !

case (A). Let (ii) occur. Then 282 [Sx, y)=0(] xv v/ "a( l(\)g
y

—I—‘——I\/")/) for some
x—=y

oyt a,—2<a,<0 and r=0. Therefore we have

& ) —gmate) = | %@ Y)dy=0(e%"")

Jx

and
£:(x, %) —gx(x, x—€) = S,_g%gf(x’ )y =0( &% log 1Y).

Since 0<a,—1<<a,+1<<1, it follows that the case (B) holds. Therefore it
sufficies to prove that g, (%, ®)—gx«(%, y)=0 for all #, . Let x be any point in
R'and fix it. Set
1 S“ - de
(2) 2) = — e iz .
O =2 ) T o
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Let {X{,P{, yeR'} be a Lévy process whose exponent “(&)is r(x, £).
Then g5”(2)is the density of the Green measure of Lévy process X with
respect to Lebesgue measure. Let G be the corresponding Green operator
and % be any point such that £==0. Let B be an interval containing the origin
and BN {#} =¢. Then for any Borel set A(cB),

s g(y—R)dy = $ BPle ng(y—X3)dy -
A
Since g§* is continuous, we have

£ (y—F) = EPlgd(y—X)]  foryeB.

Since the exponent ¥ of the Levy process X®satisfies the following inequality

[" ROy =@ He<teo  (1>0),

by virtue of Theorem 2 of [5] we have PL” (g,<<00)>0. Letting B| {0}, by
quasi-left continuity of Lévy process and by the above fact, we obtain

80— ) = Bl gin(0) <g(0)
Noting that g5”(2)=g. «(%,x+=2), we have
Zro(%, x— X) =< g, o(%x) for any x and =0 .
Thus Lemma 5.5 is proved.

Lemma 5.6. [fo(x)=0 and a,=a,>1, then g\(x,y) satisfiesthe following:

622  lim&@®Y—a@®yEe) o

evo g, (%, ¥)—g\(%, x+E) for any ya,

— co<lim EN—=& —€)—g:\(—¢, 0) (=&, —€)—g\(—*%, 0) 0.
OB — IR 0, 060, =) B 0. 0—g0 —8) <

Proof. Set ﬁl(x, &= a1(x, &)—l—dz(x, ), ﬁz(x» &= bl(x!E) + bz(x’ 8, dl(x)=
a,(x)+ay(x) and @,(x)=>b,(x)+b,(x). Then 2 5 can be expressed in the form
y

Urgy ;100 NESOwEde  _1(7 a8 sin (g,
oy ' 7 Jo [A—y r(x, E)*+rs(%, £ 7 Jo [A—Dg(x, &)+ Di(x, £)*
LA adw e aern )
T o A— g%, &)+ Yri(x, 5)2 A —@g(x, &))"+ D (x£)*

et 98
XSO L e vl OF el & O TN
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= 1+I2+13+I4-

It is easy to see that I, is bounded continuous. Using Lemma 5.3, we have
L=0(|y—=x|**®). For I,, noting that @,(x)=0, we have I,=0(| y—x|**1~%).
Next we consider I,. Let z be the largest positive integer such that a,—2+

(n— 1)(2—2a,)<0. Then we have

NAk(x)ewmﬁ(k—l)(z—zwl)sin(y_x)&-d _ °°B X)E1 B = E-20) iy T
L T ey = | B e

[ Aula)e oo sin
o O aEEY e

where A,(x)=2,(%), B(x)=Aux)/&(x), Apn(¥)=—Bu®)e(xf, 1<k=n+1, and
oyu(%, y) is a bounded continuous function.
From this formula we have

%) ed&'i"vu(xy y) s

L y) = _%(zﬂsgn(y—x) | y—2x| “1‘2+;?:h,-(x) sgn (y-x) \ y-x\ 17#ramnenep
+o(x, y),

where A, (x)= - - hj,- 2<j=n+1, and v are bounded con-

2T (e, —1) cos ”5“ -d,(x)

tinuous functions. (5.23) follows from this estimate. Since g & C* (RXR— A)
and g,(x, x)—gu(x,x+E)=0(E""?),we have (5.22). This completes the proof.

Now we shall show that Lemma 5.2, 5.5 and 5.6 hold without the condi-
tion (c¢). Let A be the operator defined by (2.1) with the conditions (a) and
(b). Let X(y) be a C=-f unction of compact support such that 0<X=<1 and
X(y)=1for |y|<L,, =0for |y| =L,+1. Set

m(x,y) = n(x, Y)X(y), m(x,y) = n(x, y)(1—X(y)) and

a) = ()~ 2= Nay.

A can be written as follows.

Au(x) = {al(x)u’(x)—l—o-(x)zu/:x)/Z-l—g } [u (x—{—y)—u(x)—-}l—)y_’—:%—z]nl(x, y)dy}
(5.24) J%_—w(w [u(x+y)—u(x)]n(x, y)dy=AVu(x)+A%u(x).

Since A® satisfies the condition (c), there exists the density g’ of the Green
operator G of A, The next lemma is needed to show the regularity of g,
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in the Theorem 5.1.

Lemma 5.7.  Let k(x,y) be thefunction defined by (4.15) and K be the operator
defined by (4.14). Then k(x,y) can be written in the form.
(5.25) k(x’ y) :Jr g&l)(x’ z)h(z’ ydz ,

where h is the kernel of K (h(x,y) corresponds to k(x, x—y) in Theorem 3.3).

Proof. Note that k(x,y) is the kernel of GhK. On the other hand, we
have for fe D,

G:Kf(x) = | g, AXRNEMx = (7 {[” a0, bt s} f3) dy -

Therefore we obtain (5.25), which completes the proof.

Theorem 5.1. Let A be the operator defined by (2.1) with the conditions
(a) and (b). Then we have

(i) For any f € H.., there exists a unique ue Bsuch that
A—Au=f.

(i) Let G, be the inverse of(N—A). Then G, has the kernel representation

Grf@) = |~ e 9)f(2)dy,

where g\(%, y) is of the form

ei(z—y)g

& y) = i Sm détaa(*9),  &.EC(RXR).

—eA— ‘I’(xs f)

Proof. Let X, m, n, and a, be as in the paragraph before Lemma 5.7.
Write A as in (5.24). It is easy to see that the proof of (i) is the same as the
proof of [12, p. 537]. From (5.24), we have the following integral equation for
the density g\(x, y) of Green measure:

(5.26) axy) =gl HT g0, 2)A0g\(%y)dz.

The equation (5.26) can be solved by successive approximation and gx(x,y) is
given in the form

a(x y) = g5+ e 9) »

where g5¥(x, y)= (;, g1(x, 2)APg (2, y)dzk=2, 3, ---. Using the estimates
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for g’ in §5, Lemma 54, 5.6 and 5.7, we obtain uZ g3¥(x,y) is a continuously
E=2
differentiable function. Hence setting gx.(%, ¥)=g%(x,%) +k§g§”(x, ¥), we
prove the theorem.
6. ProofofTheorem 1. Now we can prove the Theorem 1. Let x and

y be any point in R* such that x#y. Choose an open interval B containing y
such that BN {x}=¢. Then for any Borel set AC B, we have

gA a\(x, 2)dz = ‘M E [e*8g\(X,,, 2)]dz .
Since g, is continuous, we have
(6.1 &\, 2) = E[e™* 5g\(X,,2)] , =€B.
By quasi-left continuity of X, letting B | {y}, we obtain

(6.2) ax,y) = E[e*]gNyy),  *x*y.

Set ( ) 1 re P E-DE
e 2 PN=—\—-" —
Bl ) 3 B

5.5, we have g, ((x,y)>0for any x, y. Next we show g\(x, ¥)>0. First note
that gx=gxo+8:.=0, 2,,€C" and g, (x, )=<grd*, x). If gi(x, ¥)=0then we

have g, (%, ¥)—gro(%, X)=—gr1(%, ¥)+82:(%, ¥)  Therefore

d&. Then as is seen in the proof of Lemma

ﬁ{ﬁgk.o(x’y)'—gx.o(x)x) < lim —&x (%, )48 1(%,%)

yrs y—x 747 y—x
= lim —gk,l(x)y)+g>\,1(x’x) < lim gk,o(x’y)—gk,t\(x’x) .
"E y—x TonE y—x

Since g (%, ) is not differentiable at x and g, ,(x, )= ga (%, %), we have

li_mgk.o(x’y) _g/\,o(x’x) <li_—mg}‘.o(x’y)_gk.o(x»x) .

YV E y_x 4 y—x

This is a contradiction. Thus we have g\(x, x)>0. Therefore we can choose
finite number of open sets U, -+, U, such that g\(x',y)>&>0if ¥/, y' € U,,

i=1, .-, and U;NU;F¢, i=1, -, I—1, U U;D[x, 3] Let x=x<x,--
i=1
<%, <%y, =Y, %;, € U; T1 U;y,, i=1, ---,1—1. By (6.2), we have

a\(%is %;41) = g\(Xis1s xi+1)Ex,-[e-M’i+1], i=1, 1.

Hence for some §>0,

’ \

E, [eon]= i > 5 i=1, 1.

EMNXit1y Xi4)
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This implies P, (0',, < ©0)>§,7=1, <+ /. Bythe strong Markov property, we
have Px(ay<—i—<x>)>0 for any x ==y, which completes the proof of Theorem 1.

7. Martin boundary theory. In this section, we shall prepare some
lemmas from the theory of Martin boundary for the proof of the part (3) of
Theorem 2. For the theory of Martin boundary, we refer to Kunita-T.Watanabe
[9]- Although almost parallel arguments to [9] hold, we present this section
for completeness, since we do not assume the existence of dual process.
Let X=(X,, P,, x&R') be the process defined in §2. Define X°= (X3, P3,
x€R\{0}) by X;=X,if t<o,, =0ift=0c,and P )=P, , c,<). Let G}
be the resolvent of X?. By the strong Markov property, the density g3(x,y) of

W%, dy)with respect to dy is given by

(7.1) 8(%.y) = g% y)—E.[e7]gx(0,)

g, 0) x
0 O)gx( ) *0.

For any Borel set A of R*\ {0}, define 7,=inf {t=0; X?= A4}. For any bounded
measurable function fand for any Borel set A of R"\ {0}, define

HAf(w) = Efe 4 f(X0,); T4<0y] .

Set u,(x)=E,[e*0; QF], u(x)=E,[e *0;QI and uy(x)=E,[e”**0Qf] for x=0.
We call f a A-harmonic function (relative to X°) in R\ {0} if for any open set 4
with A compact in R\ {0},

(7.2) flx) = Ejle (X2, 7, <o)

= gx(%, ¥)—

REMARK 7.1. It follows from the existence of the continuous density of
G\(x, dy) that every A-excessive function is lower semi-continuous. Indeed by
Fatou’s lemma, G,f(x)is lower semi-continuous (/ is nonnegative bounded
measurable).  Since every A-excessive function fis an increasing limit of G,f,
(f«is nonnegative bounded measurable), / is lower semi-continuous. In view
of [1, p. 197], we see that there exists a reference measure.

Lemma 7.1. wu;,i=1, 2, 3 are \-harmonic (relative to X°) in R*\ {0} .

Proof. First consider the case 7=1. Note that 74.<<o, on Q,. Indeed by
Remark 7.1, we can apply Theorem 4.2 of [16]. Therefore we have

Ex[e_}\TA:; X’r‘ic“EA XTAL‘: 0] =

Thus we get P (7 ,,=0,Q,)=0. By the strong Markov property, we have

A€

u,(x) = El[e acu (X2 ); Tae<oy].

'TAC
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By the same way, we obtain (7.2) for u.—= 2, 3, which proves the lemma.

Lemma 7.2. (1) Let A be a compact set of R\ {0} and B(C R*"\{0}) be a
neighborhood of A.  Then we have

(7.3) inf ([ g2y, x)dy>0.

*€4dJB
(2) (i) For any open set A in R\ {0} andfor any y= A, we have
283, ) = g%, ¥) -

(i) For any ye R\ {0}, g3 ,y) is A-harmonic (relative to X°) in R*\ {0, y} .
(3) Let x,c R\ {0} be fixed. Let V be an open interval of R'\ {0} containing x,
with VC R\ {0} .  Then there existsan open interval U(x,)(C V) containing x, such
that

&%, ) > Eg[e 7 gA( X000 ¥); Toe<oo]  for any x, ye U(x,).

Proof. (1) By (7.1), g3(#, y) is continuous in (R'x R")\ {0} and

£ 1) = g 9—25 Vg 0, 1) > g, (4,9 —2,0, ) >0 .
&\0, 0)

Therefore inf ( &y, x)dy>0. Thus (1) is proved.
*cd JB

(2) (i). Let A be any open set in R"\ {0} and / be any continuous function of
compact support such that /=0 on 4°. Then by the strong Markov property we
have

[ B4 (X 305 ma <l fOoy = B "o (X0t; 7a<or,

— 0
J o 360 ()
Since g3(%, y) is continuous in (R*X R)\ {0}, we get
Eg[e—kTAgR(XEA, Y); Ta<o,] = g% ») forye A andx=+0.

For the proof (ii), let 4 be an open set in R*\ {0, y} with A compact in R*\ {0, y}.
Then by (i), for 3’ &(A)°we have

HE83(® y') = gi(® ¥') -

Thus (2) is proved.
(3) For any x, y=£0 (x=£y), we have
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gi(xy) =83y, y)Eale ™ T, <a] .
Since by the right continuity of paths, P, {r,>0}=1, we have
(74) &, y) <gX(y, ¥)
~ Applying the Riemann-Lebesgue theorem to g(x, ¥), we have lim &5b(x,9)=0,
%]

uniformly on any compact set of y. Therefore by virtue of (7.1), (5.26) and
Lemma 5.7, we have

(7.5) limg}(z,y) = 0  uniformly iny: \x,—y|<1.
12| >

Therefore it follows from (7.4), (7.5) and the continuity of g3 that there exist
constants 8§, and &, () such that
Inf[8(3, )&= =& fory: [x—y|<8,.

By the continuity of g}, for any &;: 0 <<€, <<&,, there exists a constant § >0
(8<8,) such that for |x—ux,| <8, \y—ux,|<<$,

&Ny, y)—&ix, y) <&, .

Therefore we have

Ejle gl (X200 3); Tre<oo =gl (3, ¥)—&E <) .

So it is sufficient to put U(x,)={x; |x—x,| <8} I1 V, which proves the Lemma
7.2.

Lemma 7.3. Let {u,} be a sequence of measures on R\ {0} . Define G p.by

Clunle) = |, 80 D).

If there exists a locally integrable function v such that Gu,<wv, then we have
(i)  There exists a subsequence {[l:,,h}Of {unpsuch that {1n,}converges to some y weakly.
(ii) Iffor the above {pn},GR ., converges to some u almost everywhere with
respect to Lebesgue measure, then

IimaGlu=Gu .

@4
Especially if u is n-excessive, then u=Glu.
(iii) If for any nonnegative bounded measurable function f with compact support and
Jor any £>0, there exists a compact set A in R\ {0}such that

(7.6) ( Bf)ealdy)<e, n=1,2, ,

va
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then lim aGu=G2u, where G? f(_'y)=(=K1 gYxy)f(x)dx. Note that if there exists
v \{0}

L2 Sad
a compact set A, such that supp (u,)C 4,, n=1, 2, -+, then the condition in (iii) is
Sulfilled.

Proof. For the assertion (i) it is enough to show that, for each compact set,
ua(A) is bounded. Let B be a compact neighborhood of 4. By Lemma 7.2,

c=jn£g &y, x)dy>0. Hence

o> o] Guwarz| ([ e nasfund)zen ).

For (ii), let 4, converge weakly to 4 and let f be a nonnegative bounded measur-
able function of compact support. Using the facts that v=GAp,, and &Y fis
nonnegative continuous, we have

[, foms = lim | f)Gn e =lim [ LS9l

2( . G omd) =, f@Cux)ds.

\{o}
Therefore u=GY pa.e. 1f*. On the other hand, for any a>0,
u=lim G p,,, 2lima GG} pw) ZaGo(lim GRp,,) = aGlu  a.e. dx.
k-»oo k>oo “k>oo
So we have

s . f(Alim @Gl u(x)dx
R\{o} r7ey

= 1i o : Ao 0
~tim |, aGefouG)yzlin , aCif»)Cur)y

®p0
> §R,\mf(y) %g} aGy(GR p)(9)dy = SRI\M F(9)Gu(y)dy .

Hence we have

(7.7) lilg aGou(x) =Gy u(x) a.e. dx .

Since the both sides of (7.7) are A-excessive, we have },ir.,r} aG%u=G) . Finally
we shall prove (iii). Letfbe a nonnegative bounded rfneasurable function with

compact support. Then by the assumption, for any £>0, there exists a compact
set A4 in R*\ {0} such that (7.6) holds. So we have

tim (G2 (@) livd G0N )+ lim | G2 A(3)uan (@)

k> o J R*\{0}
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< .. COu@)+im | G|, E @)+,

R\

Therefore we have

S R\(0} fleyu(x)dz= S R\o} é)?f (9 w(dy)+-¢€.

Hence u<Gypa.e. dx. This implies that lim aGSu<Gu. Thus the proof is
compléted” “* '

Lemma 7.4. Let A be an open set in R\ {0} with A compact in R*\ {0}.
Then there exists a measure u; (i=1, 2, 3) concentrated in A such that

Hhu@={ @), (=1,23.

Proof. First we show for the case i=1. Since u, is A-excessive, setting
Ja(%)=n[u,(x)—nGY ,u(x)]we have wu,(x)=lim G}f,(x). We shall first prove
n-yoo

Lemma 7.4 for v,(x)= G2 f.(x). Let B be a compact set in R*\ {0}, then by the
strong Markov property '

%o

Hiev, (x)= E°[S eNf( X dir, < 0'0] >0 as B 1 R\{0}.

TR

So we have HjH}v,(x)< Hjcv,(x)—>0as Bt R\{0}. Since Hjv, is A
excessive, by setting fy .(x)=m[H }v,(x)—mG3,nH v, (x)lye have H}v,(x)=
li_I;ﬂ GRfum(X).  Set Uy =GR fymaNd p, m(@y)=Ffnm(¥)dy. Then using Lemma

7.2, we have
Hl)i“vn,m(x) = HE‘G;\) ll*n,m(x) = SBHz)}‘gg(x, y).um,m(dy) + SBC‘HQ"gg(x) y)ll‘n,m(dy)
¢
=( Hygw Dim@)= " (% Dinady).
B JB

For any nonnegative bounded measurable function / with compact support,

JiB G (D)t m(dy) = SJ,}! (uze\m) o, y)f(x)dx} Lo @Y)

< A < A A
<[ Ehvun@f @i | HyHio <)

gSRl\”chv,,(x)f(x)dxeo as B1R\{0}.

Therefore by Lemma 7.3, there exists a measure p, on R'\ {0} such that
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H}v,(x)=G3 p,(x). Next we shall show u,((A)°)=0. Let us suppose that there
exists a compact subset D of (A)°such that pu,(D)>0. Then there exists a point
%,€ D such that for any neighborhood Q containing x,, p(Q)>0. Let V(C(A)°)
be an open interval containing x, with V' R*\{0}. Then by Lemma 7.2,
there exists an open interval U(x,)(C V')containing x, such that for any
x, ye U(x,),

Eo[e ""'Wgo(X w’y) y Tre << °'o] <g,‘(x, y)

Therefore

(%0 V) a(dy)> EL’OD e g (XY, y)u..(dy)] .

SU(xo)nD UlxdN D

On the other hand g3( , y) is A-excessive (relative to X°), we have

8o D)) 2| E3fe 7 gy(X e, Minld)

S R\ 0\Wx N D> (RN\OP\W(xp) N D>

Therefore we have
V(%) >Eq [e 7o, (X70,.); T,e < 0] -

This contradicts Lemma 7.1.  So p,((A)°)=0. Thus Lemma 7.4 is proved for
,(%)=G2f,(x). Again applying Lemma 7.3 to GYpu,—=H}v,, we have

H}u(x) = Gu(x)  for some p with supp (u)CA.

The proof for u,(x),i=2, 3 is similar to that of #,, which completes the proof.
Using the estimates in Lemma 5.6, we can construct the Martin boundary
A of the process X9.  Set

g%, )

wy) = &6 y)

Let A be the set of infinite sequences {y,} such that {y,} does not converge to
any point in R'\ {0} and for which «(x, y,) converges. We call {y,}, {z.} (€4)
equivalent if hm (%, y,,)_hm (%, 2 ,,) Define A as the set of all equivalence

class of A. Smce l1m x(x, y)= g"Ex’ — 2by Lemma 5.6, any {y,} (€4) which
&\¢6 0)

converges to 0 are equivalent. So the origin belongs to A and there exists no
points of A except the origin in [—N, NJ (N>0).

Lemma 7.5. Let {u,} be a sequence of (Radon) measures on (R'\{0}) U A
such that supp(u.) are contained in [—M, M] (M>0)and {p.[—M,M]} is
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bounded. Let u be a weak limit of {pn}. If

"( * ’7)l"n(d 77)

=1,
(R\{ohua

is dominated by a locally integrable function and if v,, converges a.e. dx to a
function u, then

lim aGlu = }
apee (R\\{opua

k(5 m)p(dn) .

Proof. Let/ be a continuous function with compact support, then

sRl\(O)f(x)u(x)dx _52 SR \lo)f( ) S(R‘\(o)) ua K(x, n)[bn‘(dﬂ) }dx
fle)ut,

il
S(Rl\(ol) ua lJ R\ (o}

| Dl s

J R\ {0} UwrNopua

R
Thus u(x)=5 x(x, 7)u(dn)a.e. dx. The rest of the proof is the same as
(R\(ohua e

that of Lemma 7.3 (iii). This completes the proof.
After above preparation we can prove the following lemma.

Lemma 7.6. There exist nonnegative constants ¢,, ¢,, € such that

EJe* Qi] = % - Jor any x=0 |
&\, V)
E. e *0; Q7] = gx(x, 0) or any x=£0,
e 5] = 28D for any

E [e0; Q] = gk(x, 0) for any x+0.
&0, 0)

Proof.  First we show this lemma for u,(x)=EFE,[e % Qi]. For any open
set A in (R'\{0}) U A with A compact, we can choose a sequence {4,}of open
sets in R"\ {0} with A, compact in R\ {0} such that 4, 1 AN(R"\{0}). We
denote [4] for AN(R"\{0}) in the rest of the proof. By Lemma 7.4, there
exists a measure v, such that

H, () = |8 )aldy)
Define s, by pa(@y)=2g3(cy)va(dy), then supp(u.)C A, and {p.(R'\{0}) U A)}

is bounded. Therefore there exists a subsequence {[l/,,k} of {u.t wihch con-
verges to some p,4. On the other hand since

() ={_ e(w D)uad) > Himu() a5 n— oo,
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and H} u,(x)<1py Lemma 7.5 we have

lim ¢GS Hiaqu, = S - «(+ Mpa(dn) .

@4o

Because Hyu,(x)is A-excessive (relative to X°), we get
Hite() = {__ e, m)ualdn)-

Next let 4 be {0} =A. Choose a sequence A, of open sets in (R'\{0})UA
such that 4, | A. Then since H{a ju,(x)is a monotone decreasing sequence and
{4, (R"\{0}) U A)} is bounded, it follows from Lemma 7.5 that there exists a
measure u, such that

lim aG2(lim Hiagie)(x) = § (s, npd(dn).
On the other hand, in view of the proof of Lemma 7.1, we have lim Hpy ju,(x)
=u,(x). Do we get v

lim aGu,(¥)= | «(x, nuddn).
2% JA

Since u, is A-excessive, we have
(o) = ||, Dldn) = (0}, 0

Thus we proved the lemma for #,. By the same way, we can prove the lemma
for u;, =2, 3. The proof of lemma is completed.

8. Proof of Theorem 2. In this section we shall prove Theorem 2 by
using the estimates established in §5. Before entering the proof, we note that
g, is an accessible stopping time on ,. Indeed let R, be the hitting time of

A= {x; Ex[e”‘%]>1—l1 and let A= {R,<o,, Vn}. Since E,[e %] is \-
n

excessive (relative to X) and every A-excessive function is lower semi-continuous
(see Remark 7.1), 4, contains an open set which contains the origin. Therefore
in view of the proof of Lemma 7.1, AD£,. On the other hand, by Proposition
(4.12) of [1. Chapter 1V] lim R,= T on A a.s. Thus &, is accessible on £,.

Proof of (1). Let X?, G% and g3 be as in the beginning of §7. For x=0,
put

a0 AN

x) = lim and F (x)= hmg"(x’ y)
he= 740 g4, 9) o g(b, y)
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Then by Lemma 5.2 we have

F.(x) = lim &%, ¥)gx0, 0)—ga(x, 0)gx(0, ¥)
740 g\(a, ¥)gA(0, 0)—g.(a, 0)gr(0, ¥)

” {){‘ m ag)\{v ﬂ\_ﬂl\/\yv’o)—aa;i}‘(o, 0+)

8.1 - - & S -
gk(O’ O)iﬂl(a, P I | O+)
oy oy

20, 0) 2820 0 (. ) %820, 0-)
dy Oy

F (x) = J :
&0, 0%, 0) 6,0 {0, 0-)

We can choose constants ¢ and b such that the denominators do not vanish by
virtue of Lemma 5.2. In fact, if for all fl®dO

20, 02822, 0)— g.(a. 002820, 0+) = 0,
dy dy

then we have g,(0, 0)(%(0—# , O)-—%‘(O, 0+ )) =0. Hence by (S.2a) and
vay y

(5.2b), we have o(0)"*g,(0, 0)=0. This is a contradiction.
By (8.1), (5.2a) and (5.2b), we get

(8.2)
(01 {2:0,0) 8@, 0)—gi(a, 0)F20. 0.1}
F.(0—)= —2g\0, 0) +0 F04=0.

(07 {£0,0) §EA (B, 0)— g6, 0) 3520, 0 )}

Since F,(X?) is a A-excessive function relative to X°, e ™F (X?)is a super-
martingale® having left limit with probability one. Therefore

(8.3) P {lim e ™F_ (X ?)exists/Q,} = 1 for x=0 .
140,

Combining (8.2) and (8.3), we have P (QF|Q,)=0. Hence we have
P.(QyUQ" ]Q,)=1 for any x40, which completes the proof of (i).
Next we show (ii). Let {r,} be the sequence of stopping times such that

14 [l 4 Ty

7,=0, 7,=inf\r X% ——, — ». Then as noted in the paragraph before the
L n nd

1) e MFi(X)}si<sis a supermartingale’ means {e MF+(X)(o,5)(t), F1, Pi}is a super-
martingale.
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proof of (1), 7,<a,, Vn and limT,=o, 0on Q, ass. Setf, (0)=e *+F (X° (w)).
Then {f, (w)},2, is a nonnegative bounded martingale. So there exists fo(w)=
lim f, (@) such that EY[ fu(0)/Bi=f. (©)®, (as. P;) n=0. Hence we have

E3[fo(@)] = E5[f:(@)].

By (8.2), we have
(e F (0+) on Qf,

f-@)=1 ¢

on Q1.
Hence we obtain

(0, 0) %8 (xe, 0K, o)%%;o, 0+),

Tn

E}[e*nF (0+); Qf] = E} e
L a0, 0)252(a, 0)—gi(e, 0)E2(0, 0 +)
oy oy
for n=0.
Therefore we get
Efferro;0i] — —=(OF E‘ 0,.0) 282 (x, 0)—g.x, 0 645’*0,0+].
[ 7008] = 2 L 00 F5n(s, 0z, 0) (0, 0+)
By the same way, we have
B 0] = 2O [ 00,0 %8s, 0 0) %0, 0-)] .
e 0] = 5 o] 60 0785 08, 00290, 0-)

This completes the proof of (1).

Proof of (2). Let us suppose the condition (A) of Lemma 5.5 satisfied.
We can choose a constant c& R*\ {0} such that

i, ™ %2, e, 0) %30, 0-) 0
y oy
Put K(\:t‘;_—_limg&(&l) x#=+0. Then we have
740 g3(¢, ¥)
ag)\ ag)\
—g?\(o’ 0) —(x’ 0)+gh(x) O)“*(O) O_)
K(x) = - ay a_',V ’
—6:(0, 0)282(¢, 0) + gu(c, 01,9820, 0 -)
dy dy

lim K(x)= oo and limK(x)=0.
x40 x40

As before, e™K(X?) is a nonnegative supermartingale having a left limit.

2) Y is the o-field generated by X9, 0=s=<t.
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Therefore we have Py(lim e™™ K(X?)exists/Q,)=1 for x=0. It follows that
140,

P.(4t,% oy, X,,<0/Q,)=0for x%0. This implies that P,(Qy/€;)=1for x=0.
Next suppose the condition (B) of Lemma 5.5 is fulfilled. We construct a
finite measure ¢ on (— oo, 0) such that

Uw=| éﬁgj §§ w(dy)

has the property
Ux)<oo for xR\{0} and lim UXx) = oo .
x40
Fix ce R\ {0} . Note that

(8.4) Mx, —€) _ g0, 0)[ga(x, —&)—ga(x, 0)]+2a(x, 0)[£:(0, 0)—£x(0, —&)]
gK(L‘, _"8) gA(O) 0)[g;\(6, *5)—&(5» 0)]+g.\(6’ 0)[g)\(05 O)_gx(os _8)]

Putting y=x-& and using the condition (B), we have

axx, —&)—gix, () = ga(x, x)—ga(x, x+(E—y))—[gx(x, x) —ga(x, x—2)]
gKe'»(log %) for 0< y<at, 0<E<E,

that is g\(x, —&)—ga(x, O)gK&“(log -}:) for —é=x<—(1—a)E, 0ELE,.
RN
Hence gi(x, —&) =K,&% log —) . By the same way, we have e, —E)<K,EP.

So we have

G 8)>K’8" ”’(log )r for —€=x<—(1—a)f and 0=<€ZE,.
gh(c’ _'C)

We conclude from this that there exists a constant K””>0 such that

g,\(x, xn) 7 n(as- B 1
=K (1-a B(log(l_a)n

where x,= — €, (1—a)”. Choose a constant b such that 0<<b<<1 and (1—a)*"#b>1.

r
) for x,2x=zw, ., n=1,2,---,

Define a finite measure 4 on (—oo, 0) by ,u:f} b"6,,. Because
n=1

lim ax, — gx(x’ O) ,
a0 g)\(ca _8) &:¢ o)

we get

Ux) = So &%, ¥) w(dy) <+ oo for any x=0.
°°g,\(‘0» )
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0 r
Since U(x);M’L)b"=K"(l—a)”<"ﬁ’ (l\og 1 b” for xE [%,, Xp1), we

gg(c,“x,,) (1_"2)”/ .
have lim U(x)=co. Since e”™U(X7?)is a nonnegative supermartingale having a
:qo
left limit. Therefore as before, we have P,(dt, 1 o, X;, <0/Q,)=0 for x30.
Thus the proof of (2) is completed.

Proof of (3). First we show P,(Q3/Q,)=0 or 1. Define fio)by flo)=
e MEZyw[e™70; Qf]. Let 7, beas in the proofof (1). Since {f;},zois a bounded
nonnegative &7 -martingale, it follows that there exists a fo(w)=lim f, () such
that e

frl@) = Ej[fu(w)/F2], nz0.
On the other hand, by the strong Markov property,
E3o [e70; Qf] = e Egle 0] (0)/F,] on t<a,.
So we have
lim Egs [e7; 0f] = Iz () -
Hence in view of Lemma 7.6, we have
e Mo, if wey,
=10 | it eear,

and in view of Lemma 7.6, we have fo(w)— e *9c,. This implies that
P (Q7F/Q,)=10r P,(Qi/Q,)=0. By the same way, we have P (Qi/Q;)=1o0r 0
and P,(Qf/Q,)=1lor 0. Finally we show that P,(Q7/Q,)=0 and P,(Q7/Q,)=0.
Let o_.=inf {t; X,=—&}. For any xe= R"\ {0},

0
Px < ZEx —)\a'_g; < =gk(x’ _8) .
(0-.<o)=E.[e o_.<oy) m)

It follows from Lemma 5.6 that lim P, (o_,<<o,) >0. Hence there exists a
g40
sequence {E,,} with &, 0 such that

Pmo_, <o)>0.

Set T,,:o_gn/\a' Neeym=1, 2, *++. Then T, is increasing in »n and

Tyl
lim g, A Ty=0,a.s. on {o,<<oo}. So we get
nyoo
lim {o_, <o)} — {T,<o, foranyn} .
Therefore

Px(Tn<0'o’ Tat ‘70) = Px(gl‘r_?: {0‘_3"<0'0}, T, T 0’0)>0 .
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It follows that P (Qy/Q,)=*=1. So P,(Qi/Q,)=0. Similarly we can show that
P(Q7/Q,)=0. Therefore we have P (Qf/Q,)=1. The proof of Theorem 2 is
completed.
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