ON NONEXISTENCE OF GLOBAL SOLUTIONS FOR SOME NONLINEAR INTEGRAL EQUATIONS

Sadao SUGITANI

(Received February 1, 1974)

1. Statement of the problem

Let $a(x)$ be a nonnegative continuous function defined on the m-dimensional Euclidean space R^{m} and let Δ be the Laplacian. Consider the following semilinear parabolic equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u+u^{1+\infty}, \tag{1.1}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
u(0, x)=a(x) \tag{1.1}
\end{equation*}
$$

and be concerned with non-negative solutions.
H. Fujita [1] has proved that equation (1.1) has a global solution $u(t, x)$ for sufficiently small $a(x)$ when $m \alpha>2$ but (1.1) has no global solution for any $a(x) \neq 0$ when $m \alpha<2$. Recently, K. Hayakawa [2] has proved that (1.1) has no global solution even in the critical case $m \alpha=2$ if the dimension m equals 1 or 2 (and hence $\alpha=2$ or 1, respectively).

In this paper we shall treat this kind of blowing-up problem for a more general equation as follows. Let $0<\beta \leqq 2$. Let $F(u)$ be a nonnegative continuous function with $F(0)=0$, defined on $[0, \infty)$, satisfying the following conditions:
(F.1) $\quad F$ is increasing and convex.
(F.2) There exists some $\alpha \in\left[0, \frac{\beta}{m}\right]$ and $c^{\prime} \in(0, \infty)$, such that

$$
\lim _{u \ngtr 0} \frac{F(u)}{u^{1+\infty}}=c^{\prime} .
$$

(F.3) $\int_{1}^{\infty} \frac{d u}{F(u)}<\infty$.

It is obvious that, for $0<m \alpha \leqq \beta, u^{1+\infty}$ satisfies the above conditions.
Here and hereafter, u denotes a single variable as well as function in obvious
contexts.
For $0<\beta \leqq 2$, let $\left(-\frac{\Delta}{2}\right)^{\beta / 2}$ denote the fractional power of the operator $-\frac{\Delta}{2}$. As a generalization of (1.1), we consider the equation

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=-\left(-\frac{\Delta}{2}\right)^{\beta / 2} u+F(u) \tag{1.2}\\
u(0, x)=a(x)
\end{array}\right.
$$

Let $p(t, x)$ be the fundamental solution of (1.2) for $F(u) \equiv 0$, i.e., the density of the semigroup of (m-dimensional) symmetric stable process with index β. It is well known that $p(t, x)$ is given by

$$
\begin{equation*}
\int_{R^{m}} e^{i z \cdot x} p(t, x) d x=e^{-t / 2|z|^{\beta}} \quad 0<\beta \leqq 2 \tag{1.3}
\end{equation*}
$$

Using this $p(t, x)$, we can transform (1.2) into the integral equation

$$
\begin{array}{r}
u(t, x)=\int_{R^{m}} p(t, x-y) a(y) d y+\int_{0}^{t} d s \int_{R^{m}} p(t-s, x-y) F[u(s, y)] d y \tag{A}\\
t>0, \quad x \in R^{m}
\end{array}
$$

What we are going to prove is the following.
Theorem. Let $0<\beta \leqq 2$. Suppose that $a(x)$ is a nontrivial ($\ddagger 0$), nonnegative, and continuous function on R^{m}, that $F(u)$ satisfies (F.1), (F.2), (F.3), and that $p(t, x)$ is defined by (1.3). Then the nonnegative solution $u(t, x)$ of the integral equation (A) blows up, i.e., there exists some $t_{0}>0$ such that $u(t, x)=\infty$ for every $t \geqq t_{0}$ and $x \in R^{m}$.

2. Some properties of $p(t, x)$

We here collect some properties of $p(t, x)$ which are required to show our Theorem. By (1.3), we have

$$
\begin{align*}
& p(t, x)=t^{-m / \beta} p\left(1, t^{-1 / \beta} x\right) \tag{2.1}\\
& p(t s, x)=t^{-m / \beta} p\left(s, t^{-1 / \beta} x\right) \tag{2.2}
\end{align*}
$$

Note that $p(t, 0)$ is a decreasing function of t. It is known (see [3; pp. 259268.]) that

$$
\begin{aligned}
p(t, x) & =\int_{0}^{\infty} f_{t, \beta / 2}(s) T(s, x) d s & & \text { for } 0<\beta<2 \\
& =T(t, x) & & \text { for } \beta=2
\end{aligned}
$$

where

$$
f_{t, \beta / 2}(s)=\frac{1}{2 \pi i} \int_{\sigma-i_{\infty}}^{\sigma+i_{\infty}} e^{z s-t z^{\beta / 2}} d z \geqq 0, \sigma>0, s>0,
$$

$$
T(s, x)=\left(\frac{1}{2 \pi s}\right)^{m / 2} \exp \left(-\frac{|x|^{2}}{2 s}\right)
$$

The above relation implies that $p(t, x)$ is a decreasing function of $|x|$, i.e.,

$$
\begin{equation*}
p(t, x) \leqq p(t, y) \quad \text { whenever } \quad|x| \geqq|y| . \tag{2.3}
\end{equation*}
$$

We sometimes write $p(t,|x|)$ for $p(t, x)$. Combining (2.1) and (2.3),

$$
\begin{equation*}
p(t, x) \geqq\left(\frac{s}{t}\right)^{m / \beta} p(s, x) \quad \text { for } t \geqq s \tag{2.4}
\end{equation*}
$$

Finally, it follows that
(2.5) if $p(t, 0) \leqq 1$ and $\tau \geqq 2$, then $p\left(t, \frac{1}{\tau}(x-y)\right) \geqq p(t, x) p(t, y)$.

Because $\frac{1}{\tau}|x-y| \leqq \frac{2}{\tau}|x| \vee \frac{2}{\tau}|y| \leqq|x| \vee|y|$, and hence $p\left(t, \frac{1}{\tau}(x-y)\right)$ $\geqq p(t,|x| \vee|y|) \geqq p(t,|x|) \wedge p(t,|y|) \geqq p(t, x) p(t, y)$.

3. Preliminary lemmas

Lemma 1. If F satisfies (F.1) and (F.3), then

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \frac{1}{u} F(u)=\infty \tag{3.1}
\end{equation*}
$$

Proof. Since F is convex, it is obvious that $\frac{1}{u}(F(u)-F(0))$ is a monotone increasing function. If $\lim _{u \rightarrow \infty} \frac{1}{u}(F(u)-F(0))=M<\infty$, then $\frac{1}{u}(F(u)-F(0)) \leqq M$ for all $u>0$, i.e., $\frac{1}{M u} \leqq \frac{1}{F(u)-F(0)}$. This contradicts assumption (F.3).

If $F(u)$ is increasing, $F(\infty)$ is defined by

$$
\begin{equation*}
F(\infty)=\lim _{u \rightarrow \infty} F(u) \leqq \infty \tag{3.2}
\end{equation*}
$$

Lemma 2. (Jensen's inequality) Let ρ be a probability measure on R^{m} and $u(x)$ a nonnegative function. Suppose that $F(u)$ satisfies (F.1). Then we have

$$
\begin{equation*}
F\left(\int_{R^{m}} u d \rho\right) \leqq \int_{R^{m}} F \circ u d \rho \tag{3.3}
\end{equation*}
$$

Note that this inequality is valid even when $\int_{R^{m}} u d \rho=\infty$.
Lemma 3. Suppose that $F(u)$ (丰0) satisfies (F.1). Let $u(t, x)$ be a nonnegative solution of (A) and let

$$
\begin{equation*}
f(t)=\int_{R^{m}} p(t, x) u(t, x) d x \tag{3.4}
\end{equation*}
$$

Then the following two conditions are equivalent:

(a) $u(t, x)$ blows $u p$.
(b) $f(t)$ blows up, i.e., there exists some $t_{1}>0$ such that $f(t)=\infty$ whenever $t \geqq t_{1}$.

Proof. It is enough to show that (b) implies (a). We may assume $p\left(t_{1}, 0\right)$ $\leqq 1$, so that $p(t, 0) \leqq 1$ for any $t \geqq t_{1}$. If $t_{1} \leqq t, t \leqq s \leqq \frac{8}{2^{\beta}+1} t$, then

$$
\begin{array}{rlrl}
p(8 t-s, x-y) & =p\left(s\left(\frac{8 t-s}{s}\right), x-y\right) & \\
& =\left(\frac{s}{8 t-s}\right)^{m / \beta} p\left(s,\left(\frac{s}{8 t-s}\right)^{1 / \beta}(x-y)\right) & & \text { by }(2.1) \\
& \geqq\left(\frac{s}{8 t-s}\right)^{m / \beta} p(s, x) p(s, y) & & \text { by }(2.5) .
\end{array}
$$

Therefore,

$$
\int_{R^{m}} p(8 t-s, x-y) u(s, y) d y \geqq\left(\frac{s}{8 t-s}\right)^{m / \beta} p(s, x) f(s)=\infty .
$$

Finally, applying Jensen's inequality to (A) and noting that $F(\infty)=\infty$, we have $u(8 t, x) \geqq \int_{t}^{\left(8 / 2 \beta_{+1} t\right.} d s F\left[\int_{R^{m}} p(8 t-s, x-y) u(s, y) d y\right]=\infty$, so that $u(t, x)=\infty$ for any $t \geqq 8 t_{1}$ and $x \in R^{m}$.

4. Proof of the theorem

Let $u(t, x)$ be a nonnegative solution of (A), then we can find $t_{0}>0, c>0$, $\gamma>0$ such that $u\left(t_{0}, x\right) \geqq c p(\gamma, x)$. In fact, if we choose $t_{0}>0$ such that $p\left(t_{0}, 0\right)$ $\leqq 1$, we have

$$
\begin{aligned}
p\left(t_{0}, x-y\right) & =p\left(t_{0}, \frac{1}{2}(2 x-2 y)\right) & & \\
& \geqq p\left(t_{0}, 2 x\right) p\left(t_{0}, 2 y\right) & & \text { by }(2.5) \\
& =2^{-m} p\left(\frac{t_{0}}{2^{\beta}}, x\right) p\left(t_{0}, 2 y\right) & & \text { by }(2.2)
\end{aligned}
$$

Therefore, $u\left(t_{0}, x\right) \geqq \int_{R^{m}} p\left(t_{0}, 2 y\right) a(y) d y \cdot 2^{-m} \cdot p\left(\frac{t_{0}}{2^{\beta}}, x\right)$. But $u\left(t+t_{0}, x\right)$ satisfies

$$
\begin{align*}
u\left(t+t_{0}, x\right) & =\int_{R^{m}} p(t, x-y) u\left(t_{0}, y\right) d y \tag{4.1}\\
& +\int_{0}^{t} d s \int_{R^{m}} p(t-s, x-y) F\left[u\left(s+t_{0}, y\right)\right] d y \\
& t>0, x \in R^{m},
\end{align*}
$$

so that

$$
\begin{equation*}
u\left(t+t_{0}, x\right) \geqq c p(t+\gamma, x)+\int_{0}^{t} d s \int_{R^{m}} p(t-s, x-y) F\left[u\left(s+t_{0}, y\right)\right] d y \tag{4.2}
\end{equation*}
$$

Hence, by the comparison theorem, it is enough to show that the solution $v(t, x)$ of the equation

$$
\begin{equation*}
v(t, x)=c p(t+\gamma, x)+\int_{0}^{t} d s \int_{R^{m}} p(t-s, x-y) F[v(s, y)] d y \tag{B}
\end{equation*}
$$

blows up, or by virtue of Lemma 3, that

$$
\begin{equation*}
f(t)=\int_{R^{m}} p(t, x) v(t, x) d x \tag{4.3}
\end{equation*}
$$

blows up. Multiplying both sides of (B) by $p(t, x)$, and integrating, we have

$$
\begin{align*}
f(t) & =c p(2 t+\gamma, 0)+\int_{0}^{t} d s \int_{R^{m}} p(2 t-s, y) F[v(s, y)] d y \tag{4.4}\\
& \geqq c p(1,0)(2 t+\gamma)^{-m / \beta}+\int_{0}^{t} d s\left(\frac{s}{2 t-s}\right)^{m / \beta} \int_{R^{m}} p(s, y) F[v(s, y)] d y \\
& \quad(\text { by }(2.1),(2.4)) \\
& \geqq c p(1,0)(2 t+\gamma)^{-m / \beta}+\int_{0}^{t} d s\left(\frac{s}{2 t-s}\right)^{m / \beta} F\left[\int_{R^{m}} p(s, y) v(s, y) d y\right] \\
\quad & \quad \text { (by Jensen's inequality) } \\
& \geqq c p(1,0)(2 t+\gamma)^{-m / \beta}+\int_{0}^{t} d s\left(\frac{s}{2 t}\right)^{m / \beta} F[f(s)] .
\end{align*}
$$

Let $\delta>0$ be a fixed positive constant. Hereafter we always assume $t \geqq \delta$. Put $f_{1}(t)=t^{m / \beta} f(t)$, then by (4.4),

$$
\begin{equation*}
f_{1}(t) \geqq c p(1,0)\left(\frac{\delta}{2 \delta+\gamma}\right)^{m / \beta}+\int_{\delta}^{t} d s\left(\frac{s}{2}\right)^{m / \beta} F\left[f_{1}(s) s^{-m / \beta}\right] \tag{4.5}
\end{equation*}
$$

Let $f_{2}(t)$ be the solution of

$$
\begin{equation*}
f_{2}(t)=c p(1,0)\left(\frac{\delta}{2 \delta+\gamma}\right)^{m / \beta}+\int_{\delta}^{t} d s\left(\frac{s}{2}\right)^{m / \beta} F\left[f_{2}(s) s^{-m / \beta}\right] \tag{4.6}
\end{equation*}
$$

By assumption (F.2) and Lemma 1, there exists $a>0$ such that $\max \left(\frac{F(u)}{u}, \frac{F(u)}{u^{1+\infty}}\right) \geqq a$ for all $u>0$. Since

$$
s^{m / \beta} F\left(f_{2}(s) s^{-m / \beta}\right)=\frac{F\left(f_{2}(s) s^{-m / \beta}\right)}{f_{2}(s) s^{-m / \beta}} \cdot f_{2}(s)=\frac{F\left(f_{2}(s) s^{-m / \beta}\right)}{\left(f_{2}(s) s^{-m / \beta}\right)^{1+\infty}} \cdot f_{2}(s)^{1+\infty} s^{-m / \beta \omega}
$$

it follows that

$$
s^{m / \beta} F\left(f_{2}(s) s^{-m / \beta}\right) \geqq a \cdot \min \left(f_{2}(s), f_{2}(s)^{1+\infty} s^{-m / \beta}\right)
$$

Therefore,

$$
f_{2}(t) \geqq c p(1,0)\left(\frac{\delta}{2 \delta+\gamma}\right)^{m / \beta}+\int_{\delta}^{t} d s\left(\frac{1}{2}\right)^{m / \beta} \cdot a \cdot \min \left(f_{2}(s), f_{2}(s)^{1+\infty} s^{-m / \beta \alpha}\right)
$$

Let $f_{3}(t)$ be the solution of the integral equation

$$
\begin{equation*}
f_{3}(t)=c p(1,0)\left(\frac{\delta}{2 \delta+\gamma}\right)^{m / \beta}+\int_{\delta}^{t} d s\left(\frac{1}{2}\right)^{m / \beta} a \cdot \min \left(f_{3}(s), f_{3}(s)^{1+\infty} s^{-m / \beta \infty}\right), \tag{4.7}
\end{equation*}
$$

or, equivalently, the ordinary differential equation

$$
\left\{\begin{align*}
\frac{d f_{3}(t)}{d t} & =\left(\frac{1}{2}\right)^{m / \beta} a \cdot \min \left(f_{3}(t), f_{3}(t)^{1+\infty} t^{-m / \beta \alpha}\right) \tag{4.8}\\
f_{3}(\delta) & =c p(1,0)\left(\frac{\delta}{2 \delta+\gamma}\right)^{m / \beta}
\end{align*}\right.
$$

We shall show that $f_{3}(t)$ increases exponentially fast. This is obvious if $\alpha=0$. Next we consider the case $\alpha>0$. By the comparison theorem, c can be chosen arbitrarily small. We choose c, if necessary, satisfying the following three conditions (4.9), (4.10) and (4.11).

$$
\begin{equation*}
f_{3}(\delta)<\delta^{m / \beta} \tag{49}
\end{equation*}
$$

Put $\theta(c)=\inf \left\{t \geqq \delta ; f_{3}(t)=t^{m / \beta}\right\}$. For $t \in[\delta, \theta(c)], \min \left\{f_{3}(t), f_{3}(t)^{1+\infty} t^{-m / \beta \omega}\right\}$ $=f_{3}(t)^{1+\infty} t^{-m / \beta \infty}$ by (4.9). Therefore, $f_{3}(t)$ satisfies the equation $\frac{d f_{3}(t)}{d t}=\left(\frac{1}{2}\right)^{m / \beta}$ $a f_{3}(t)^{1+\infty} t^{-(m / \beta) \infty}$, which implies that $\theta(c)<\infty$. (We here use the condition $m \alpha$ $\leqq \beta$ in (F.2)). On the other hand $\lim _{c \downarrow 0} \theta(c)=\infty$. Hence, if c is small enough, we have

$$
\begin{array}{ll}
\frac{\exp \left[\left(\frac{1}{2}\right)^{m / \beta} a t\right]}{t^{m / \beta}} \geqq \frac{\exp \left[\left(\frac{1}{2}\right)^{m / \beta} a \theta(c)\right]}{\theta(c)^{m / \beta}} & t \geqq \theta(c), \\
\theta(c)^{-m / \beta \omega} \leqq \alpha\left(\frac{1}{2}\right)^{m / \beta} a \int_{\theta(c)}^{t} s^{-m / \beta \omega} d s+t^{-m / \beta \omega} & t \geqq \theta(c) . \tag{4.11}
\end{array}
$$

For $t \geqq \theta(c)$,

$$
\left\{\begin{array}{l}
f_{3}(\theta(c))=\theta(c)^{m / \beta} \\
\frac{d f_{3}(t)}{d t}=\left(\frac{1}{2}\right)^{m / \beta} a \cdot \min \left(f_{3}(t), f_{3}(t)^{1+\infty} t^{-m / \beta \alpha}\right)
\end{array}\right.
$$

Let $x_{1}(t)$ and $x_{2}(t)$ be the solutions of the following equations;

$$
\left\{\begin{array}{l}
x_{1}(\theta(c))=\theta(c)^{m / \beta} \tag{4.12}\\
\frac{d x_{1}}{d t}=\left(\frac{1}{2}\right)^{m / \beta} a x_{1}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x_{2}(\theta(c))=\theta(c)^{m / \beta} \tag{4.13}\\
\frac{d x_{2}}{d t}=\left(\frac{1}{2}\right)^{m / \beta} a x_{2}^{1+\infty} t^{-m / \beta \omega}
\end{array}\right.
$$

Then it follows that, for $t \geqq \theta(c), x_{1}(t) \geqq t^{m / \beta}$ by (4.10) and $x_{2}(t) \geqq t^{m / \beta}$ by (4.11). From this, it is not difficult to see that $f_{3}(t)=x_{1}(t)$ for $t \geqq \theta(c)$. Thus $f_{3}(t)$ increases exponentially fast. Hence there exists $b>0$ such that

$$
\begin{equation*}
f_{3}(t) \geqq b e^{b t} . \tag{4.14}
\end{equation*}
$$

By the comparison theorem, $f_{1} \geqq f_{2} \geqq f_{3} \geqq b e^{b t}$. Put $h(t)=t^{-m / \beta} f_{2}(t)$. Then, since $f(t) \geqq h(t)$, it is sufficient to show that $h(t)=\infty$ if t is large enough. Suppose that $h(t)<\infty$ for every $t>\delta$. Noting that $h(t) \rightarrow \infty$ as $t \rightarrow \infty$ and using Lemma 1, we have

$$
\begin{equation*}
\sup _{t \geq t^{\prime}} \frac{m}{\beta t} \frac{h(t)}{F(h(t))} \leqq\left(\frac{1}{2}\right)^{m / \beta+1} \quad \text { for some } t^{\prime}>0 \tag{4.15}
\end{equation*}
$$

By (4.6), (4.15), we have for $t \geqq t^{\prime}$

$$
\begin{aligned}
\frac{d h(t)}{d t} & =-\frac{m}{\beta t} t^{-m / \beta} f_{2}(t)+t^{-m / \beta} \frac{d f_{2}(t)}{d t} \\
& =-\frac{m}{\beta t} t^{-m / \beta} f_{2}(t)+\left(\frac{1}{2}\right)^{m / \beta} F\left(f_{2}(t) t^{-m / \beta}\right) \\
& =\left(\frac{1}{2}\right)^{m / \beta} F(h(t))-\frac{m}{\beta t} h(t) \\
& \geqq\left(\frac{1}{2}\right)^{m / \beta+1} F(h(t)) .
\end{aligned}
$$

It then follows that

$$
\left(\frac{1}{2}\right)^{m / \beta+1}\left(t-t^{\prime}\right) \leqq \int_{h\left(t^{\prime}\right)}^{h(t)} \frac{d x}{F(x)} \leqq \int_{h\left(t^{\prime}\right)}^{\infty} \frac{d x}{F(x)}<\infty
$$

for any $t \geqq t^{\prime}$, which is a contradiction.

Osaka University

References

[1] H. Fujita: On the blowing up of solutions of the Cauchy problem for $u_{t}=\Delta u+u^{1+\infty}$, J. Fac. Sci. Univ. Tokyo Sect I, 13 (1966), 109-124.
[2] K. Hayakawa: On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Japan Acad. 49 (1973), 503-505.
[3] K. Yosida: Functional Analysis, Springer, 1966.

