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In [3], Chase and Sweedler introduced a notion of Galois object and ex-
tended, in this case, the fundamental theorem of Galois theory for fields. Fur-
thermore, they showed that it contains, as a special case, the fundamental theorem
of Galois theory on separable algebras developed by Chase, Harrison and Rosen-
berg. However they mentioned in [3] that they had, in general, no good char-
acterization of the subalgebras which arised in the Galois correspondence. A
purpose of this paper is to show what those subalgebras are in the case of strongly
radicial extensions. On the other hand, it is well-known that for a finite purely
inseparable extension K of a field %, there exists a chain of subfields of K: K=
K,DK,DK,D-.-DK,=Fk such that K, is of exponent one over K,,, for =0,
1,2,--,r—1. We shall study this analogy in the case of Galois objects over
a field which are strongly radicial over their basic field.

Let H be a finite cocommutative split® Hopf algebra over a commutative
ring 4 and C a Galois H*”-object over A which is strongly radicial over A.

In our first section, we shall study a coalgebra structure of H. Moreover
we shall show that there exists a bijection between the set of admissible® Hopf
subalgebras of H and the set of distinguished” intermediate rings between A
and C.

In our second section, we shall exhibit an existence of a sequence of subrings
of C

C=C>oC>DC>DDC, =4

satisfying the followings for each :=0, 1, ---, n—1:

(1) C#K,~Hom/(C,C)viaa canonical map where K is a Hopf subalgebra
of H.

(2) d(C)<C; for deH.

3) Ci2e(C,/C;1)]=Hom, (C;, C;) for i=0,1, -+, n—1.

i+1

1) For the definition, see §1.

2) H* denotes a dual Hopf algebra of H.

3) For the definition, see [3, Def. 7.1].

4) For the definition, see a following part of the proof of Proposition 3 below.
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(4) C; is finitely generated projective as a C,,,-module.

Throughout the following discussion, all rings are commutative with an
identity, and all homomorphisms are unitary. Unadorned @ will mean @ 4.
If A4 is a subring of a ring C, both 4 and C are assumed to have a common
identity. In this paper, 4 will denote a commutative ring such that A/p is of
characteristic non-zero for each peSpec(4). We will use the definitions and
terminology in [6] with respect to coalgebras and Hopf algebras, and in [4]
and [7] with respect to high order derivations and strongly radicial extensions,
respectively. The author likes to express his thanks to the referee for comments
on Proposition 4.

1. Galois correspondence theorem

Let C be a commutative algebra over a ring 4. Let H be a finite® commu-
tative Hopf-algebra over 4. Then C is called a Galois H-object if C is a finitely
generated and faithfull projective A-module and there is a map «a : H*QC—C
which measures C to C such that a map ¢ : C§H*—Hom,(C, C) by p(x#u)(y)
=xa(#Q y) is an algebra-isomorphism (c.f. 3].

Let (H, A, €) be a coalgebra over a commutative ring A where A is its
diagonal map and € is its augmentation map. For geH, g is called a grouplike
element in H if A(g)=gQg and &(g)=1. Let G(H) be denoted the set of group-

like elementsin H. H is called a split coalgebrain case H= @ U, as A-modules
g€ g(HE>

where each U, is a subcoalgebra of H in which g is an only grouplike element
and U,=Ag+(U,N Ker &).

Lemma 1. Let C be a strongly radicial extension of a ring A. Then so is
CcRC

Proof. It is obvious from the definition

Lemma 2. Let H be a finite commutative Hopf-algebra over a local ring
A such that there is a Galois H-object C over A which s strongly radicial over A.
Then H is a local ring.

Proof. From Lemma 1, CQC is a strongly radicial extension of a local
ring 4 and so is local [c.f., 7, Theorem 5]. On the other hand, we have CQC
=CQH as algebras [c.f., 3, Theorem 9.3]. So H is local.

Proposition 3. Let H be a finite commutative Hopf algebra over a com-
mutative ring A, whose dual coalgebra H* is split. Let C be a Galois H-object
over A. If C is strongly radicial over A, then H*=A 1P Ker(Ex) as A-module
where Ey is an augmentation map of H*.

5) For the definition, see [3, Def. 7.1].
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Proof. Since H* is split, H* has a decomposition H*=U,®( @ U,)
BGEDE G(D
where each U, is a subcoalgebra of H* in which g is an only grouplike element.

We need to show that U, vanishes if g#1. Put A=A(p)®, C=AR®C and
H=AQ®H for pcSpec(4). Then C is a Galois H-object. Since C is strongly
radicial over A. H is local. So (H)* is irreducible. Then we have AQ U,=0
for any pe Spec(A) and so U,=0.

For a coalgebra H, let H* denote Ker(€) where € is an augmentation map
of H. Moreover, assume H is a finite cocommutative split Hopf algebra over a
ring A and C a Galois H*-object over A which is strongly radicial over 4.
Then H may be considered to be a subalgebra of Hom,(C,C). For an intermediate
ring B between 4 and C over which C is projective, 2e2(C/B) is a C-module
direct summand of 2e:(C[A) [7, Prop. 12]. Now we shall say such intermediate
ring B is distinguished if there is a C-module direct summand M of 2ex(C/A4)
with 2ez(C|A)=2er(C/B)DM satisfying CQ Projy(H*)=C.Projyu(H*) for the
projection Projy: 2er(C|A)—M. In this case, Projy(H*) is A-projective,
because C.Projy(H*)(=M) is C-projective and A is a direct summand of C.

Proposition 4. Let A, C, H be as above. Let B be a distinguished inter-
mediate ring between A and C. Then there exists a subbialgebra U of H such
that U is an A-module direct summand of H and C Q@ U=Homg(C, C) via a canon-
ical map.

Proof. Set K,=Proju(H™) for a projection above Proj,. Then we have
a split exact sequence of 4-module 0—U*—H*—K,—0 where U*=Ker(Projy,
| H*) and the third arrow denotes Projy. So, H*=U*@®K where K is an A4-
submodule of H* which is isomorphic to K,. Now we shall show that CQU™*
can be identified with 2e2(C/B). Since U™ is obviously contained in 2e2(C/B),
CQ®U™ may be regarded to be contained in 2e(C/B). For any pe Spec(4),
put A=A(p) and C=AQC. Then we have dimz[CQU*|=dimz[CRQH*]—
dimz[CQ K |=dim z[ AQ Der(C|A)]— dim z[ AQ M]=dim z{ AQ Der(C|B)], becau-
se CQK=CRQK,~AQM. So CQU*=er(C|B), using Nakayama’s lemma.
Put U=A1+U"*. Then we shall show that A(d) belongs to UQ U for
deU*. We can assume, without loss of generality, that A is local. Let
{u,, u,, -+, u,} and {v,, v,, -+, v,,} be A-module bases for U+, K, respectively.
Since H*QH*=U*QU*+U*QK+KQU*+KQ®K, we have A(d)—1Q@d—
dQ1=X+2%a; u;Qv;+>; 0,Qu;+2¢; v;Qv; for XeU*QUH, a, ;, b, ;,
¢; ;€ 4. Since [D,x]” belongs to 2ez(C/B)C Homg(C, C) for D€ 2ex(C|B), x=C,
we obtain w(X(x®by))+ 1a; (@0, (by)+ 2, 0 (D (by)+ Ses, ox)o,(b)
=bu(X(x®y))+b2la; jux)o;(y) + b23b;, ox)u(y) +b2e; jvx)v,(y) for x,

6) A(p) denotes the residue field Ap/pAp.
7) C.., 4, chap. 1, §1.
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yeC, be B where p is a contraction map : CQC—C. Using the fact that any
element of U* commutes with each element of B, we have Xla; j(v;(by)—
bo (y))u;—23¢;, /(v (by)—bv;(y))v,~0and soEi]a,-,,-('v,-(by)—bv,-(y))zO,;c,.,j(v,-(by)
—bv;(y))=0. Hence >la; ;v; and >'¢; ;v; belong to 2e:(C/B)N K(=0), show-

777

ing a; ;=0 and ¢; ;=0 for all 7,j. Moreover, we have b, ;=0, because H is
cocommutative. This shows that U is a subcoalgebra of H. Since U is obviously
a subalgebra of H, U is a subbialgebra of H. This completes the proof.

ReMARK.® Let 4, C, H be as above. Let B be an intermediate ring
between A and C, over which C is projective. Then B is distinguished if and
only if C.(H* N De2(C|B))=2e2(C|B).

Proof. The “only if” part follows from the proof of Proposition 4. Since
C is B-projective, we can write 2e2(C|A)=2ex(C/B)PM for a submodule M
of 2er(C/A). Now, C.(H*N 2er(C|B))=2e2(C/B). Then we may regard
CQ(H™ N Dez(C|B))=ex(C|/B), by identification CQH*=ez(C/4). So we
have a canonical isomorphism : CQ Projy(H*)SM. This shows the “if” part.

Theorem 5. Let H be a cocommutative split Hopf algebra over a com-
mutative ring A. Let C be a Galois H*-object over A which is strongly radicial
over A. Then there exists a bijection between the set F of subbialgebras of H which
are A-module direct summands of H and the set G of distinguished intermediate
rings between A and C. Its correspondence is given by associating UcS with
Ker(UN)={x<=C|d(x)=0 for de U*}.

Proof. For Beg, take U as the proposition above. Then U belongs to
. Moreover, it is obvious that Ut={d e H |d(bx)=bd(x) for x=C, b= B}.
Conversely, put B=Ker(U*) for U€%¥. Then we have B=Ker(CQU™) and
s0 CQU*=2e(C|B) [c.f., 7, Theorem 15]. Hence B belongs to &, because
U* is an A-module direct summand of H*. So, using again [7, Theorem 15],
a correspondence : U—Ker(U™) gives a bijection between & and G.

2. Galois objects over a field which are strongly radicial over
their basic field

Throughout the following discussion, we shall assume that H is a cocom-
mutative pointed® Hopf algebra over a field 4 of characteristic p50 and C is
a strongly radicial extension of 4 which is a Galois H*-object over 4. In this
case, both H and C# H may be regarded to be contained in Hom,(C, C). Since
H measures C to C, we have d(1)=&(d)1 for d=H where & is an augmentation
map for H and 1 denotes an identity in C. So d(1)=0 for de H*=Ker(€).

8) This remark was advised by the referee.
9) For the definition, see [6].
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This shows CQH*=2e:(C[A), because C$H=9(C/A). Hence we obtain
Hom(2e:(C|A), C)=Hom(CQH*, C)=CQHom(H", A)=CQ(H*)* and so
CQ(H*)*=J,4 as left C-modules where /4 is a kernel of a contraction map:
CRC—C.

Lemma 6. J;,=~CQ(H")* as rings.

Proof. Hom (CQH*,C) forms a ring by a multiplication FxG: 1Qd—
N F(1Qd,,)G(1Qd,,) for F,GeHom(CQH™*, C) where 3 d,,Qd,=A(d)
@’ @

—1®d—d®1 for a diagonal map A of H. Then Hom(CQH™, C) is isomorphic
to CQ(H*)* as rings. Thus, in order to complete the proof, it suffices
to show that Jo,=~Hom (CQH™", C) as rings. A C-module map a: Jg1—
Hom(CRH*, C) by a(1@x—xQ1) (c®d)=cd(x) for ¢, x€C, de€ H* is
an isomorphism. We shall show that « is a ring-homomorphism. Since
(1Rx—x®1) (1Qy—yRN=1Qxy—xyQ1—x(1Qy—yR®1)—y(1Qx—xRQ 1),
we have a((1@x—x@1) (1Qy—y®1)) (1Q@d)=d(xy)—xd(y)—d(x)y=2] der()
de(¥).  On the other hand, we obtain {a(1Qx—x®1)*a(1RQy—yR1)} (1Q4d)
=§I(x(l®x—x®l) (1Qdw)a(1Ry—yR1) (1®d(2)):<42y do(x)de(y), showing
our requirement.

Since H is irreducible as a coalgebra, A1 is a coradical of H. Let P(H)
denote {deH|A(d)=1Qd+d®1}. Set H,= N*(A1)® for i=0, 1, 2, ---.
Then the set {H,}, gives a filtration for H satisfying the followings:

(1) H= UH;.

(2) H,=41.

(3) H{ =P(H).

4) AH)S 3 H®H,.,.

(5) NMH,)<H, for i=0, 1, 2, --- where A is an antipode of H[c.f., 6, Chap.
9].

Lemma 7. 2e,(C/A)=CQH; as left C-modules for i=0, 1, 2, ---.

Proof. Since (H*)*=(H*)*, we have J=C Q(H*)* as rings where J=],4,
and so J[Ji"'=CQ(H*)*/(H*)*)"**. Hence we obtain
Der; (ClA)=Homc(J[J*', C)=Homc(CQ(H*)*[(H*)*)*, C)
=CQHomu((H*)*[((H*)*)'™, 4) .

On the other hand, we have H;= A (A1)=[((41)*)*' ] =[((H*)*)'*']". This
completes the proof.

10) For the definition, see [6, §9].
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Theorem 8. Let C;=Ker (H}) for i=1,2,3, ---. Then the followings hold:

(1) C s a strongly radicial extension of C; .
(2) C;= Ker (%or,(CJA).

(3) C#A4[H,]= Homc(C,C).

(4) Ci+1 = Ker (%P/ZI(C,-/C,-.H)) .

Proof. By an identification 9(C/4)=C § H, we have 2er,(C[A)=CQRH}
from Lemma 8 and so C[2er,(C[A)]|=C[CQRH;]=C # A[H}]. Since {C #
A[H}1}Y is a C-module direct summand of C# H*, {C[2e,(C|A)]}* is a C-
module direct summand of 2e2(C[A4) where X* denotes a set {d= X |d(1)=0}
for a subset X of Hom,(C, C). Moreover, {C[2ez,(C[A)]}" is closed by the
the multiplication and the operator [D, x] for De{C[2e,,(C|A])}*, x=C. So
(1) and (3) follow easily from [7, Theorem 15]. (2) is obvious. It remains only
to show (4). It is trivial that C;,, is contained in Ker (2er,(C;/C;4,)). Assume
there is an element x in Ker (e, (C;/C;,,)) with x& C;,,. Then we have d(x)+0
for some deHy,,. Since C is a free C;-module, there is a projection p: C
—C; with (pd)(x)=%0. Since d is an ordinary C,,,-derivation: C;—C [c.f. 4,
Chap. I, §2, Prop. 7], pd can be regarded to belong to ez, (C;/C,,,), which is
absurd.

Lemma 9. Let J=]c/4 under the same situation as above. Then J|J* is
free over C.

Proof. Since C admits a p-basis over C, from [8, Theorem 10], Jc/c,/(Je/c,)
is free over C. So it suffices to show that J/J?= ]J,/J* as C-modules where
Ji=Jcic,» Now we have a C-split exact sequence of canonical maps

0—>L—J[J*=JilJiF—0

where L={(C®C)Jc a+J’}/J?. We have to prove L=0. Since Hom(]J|]? C)
= Der,(C|A)=2er,(C|C,)=Hom(],/] %, C), we obtain Hom(L, C)=0. This
shows L=0. In fact, assume L=+0. Let us write L/QL=(C/Q)?,®(C/Q)0,D
-+D(C/0)0,(v;€ L) for a unique maximal ideal Q in C. Then we have L=Cqv,
+Cv,+ ---+Cv,, because L is finitely generated as a C-module. Since C=F@HQ
as vector spaces over F where F is a subfield of C [c.f., 7], any element ¢ in C
can be written as ¢®+¢® for ¢ F, ¢ Q. Then {c®, 5, -+, ¢} are uni-
quely determined for ¢,v,+¢,0,+---+¢,v,€L. For let ¢,0,+¢,0,+ ++-+¢,v,=b,2,
~+b,0,+--+b,v,. Then we have (c{”—b")v,+ -+ (c;”—b")v,€QL. Since
vy, Uy, -+, O, are free mod Q, we obtain ¢{=5b{", =0, .-, <=b{". So we
define a map @: L — C by @(c,0,+¢,0,+ - +¢,0,)=(c{"+ ¢+ ---+¢)a where
a ias a non-zero element in Q°* for a positive integer e with Q°=0 and Q°~*=+0.
Then ¢ is a non-zero element in Hom¢(L, C), which is absurd.
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Lemma 10. Let {¢, ¢, ---, t,} be a system of generators for an A-algebra
C such that {%, £, -, ,} forms a system of p-generators for CQC=CR1-+]
[c.f., 9] where {,=1Qt,—t;,Q1(i=1,2, :+-,n). Then we have C,=A[(t,)?, (t,)?,
coey (20)?).

Proof. Since J/J* is free over C®Q1 and C/Q®c]/]zz]/(~]—|:Q)] as C/0-

spaces where Q is a unique maximal ideal of C, the images of Z,, £,, --+, Z, by a
canonical map: J— J[J? form a C ®1-module basis for J/J?[c.f., 2, Chap. II, §3,
Prop. 5]. So there are d,, d,, -+, d, in e, (C/A) with d(t;)=8; ; for i, j=1,
2, «--,m. Since C=A[t,t,, -+, t,], any element x in C, can be written as
(z‘)} acot, %21, Then let us write x:% Ceotiy ity ize o1, %is where p>e, (k=
1, 2, -, 5) and cy=acpt;,"ree+t;, %% with ple; (I=1, 2, .-+, t). Assume there is
a term cpt;"ieef; %is with £;,%0-f, %=1, Then (d, %s---d; ) (2,508, 5s) =

ljl{(e,-k)!} is a unit in C,. So, if ¢t;%1-++1; % is a non-zero term such that
;,.l—l— --+4-¢;, 1s maximal, we have (d, %s---d, *) (x)= k__Hl {(e;)}ecy*+0, which is a
contraction to x& C,=Ker (e»,(C[A)). This shows that x is equal to %c@
belonging to A[(t,)?, -+, (t)?].

Lemma 11. Let d, x be any element in H*, C, respectively. Then d(x?')
belongs to A-C?' for t=0, 1, 2, ---.

Proof. Let {d(=1), d,, -+, d,}) be an A-basis for H. Then we have A,(d)
=(z)] a»d;,®d;,Q--Qd; fora,c A where n=p', A,=(1Q---Q1QA)---(1QA)A

and (2)=(i,, %,, +*+, %) (0=1,=e¢). Since H is cocommutative, we have a, ;, ....;»
=4}, j,,....;,» fOr any permutation (f,, f,, -+, j) of (2, 2., -+, %,) and

") — n ! see
d(x ) _oéklgz“'éknm a(kl"'kn)dkl(x) dk”(x)

where a, B, -++, v are cardinal numbers of equal numbers in {k,, &, -+, Ry}.

2 0 mod p unless k—k—-—Fy.

This completes the proof, since
alBl..vyl

Theorem 12. Let H be a cocommutative pointed Hopf algebra over a field
A and C is a Galois H*-object over A which is strongly radicial over A. Then
there exists a sequence of subrings of C: C=C,DC,D..-DC,=A satisfying, for
each i=1,2, ---, n—1,

(1) C,; is finitely generated projective as a C,,-module.

(2) d(C)<C,; for all d= H.

3) A4 left Ci-module Hom,(C;, C;) is generated by the endomorphisms of
C; induced by each element in H.
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4) C2er,(C,/C;)}=Homc,, (C;, C)).

Proof. Let C;, H; be as above. Then (1) is obvious. (2) for =1 follows
from Lem. 10 and 11. Since C, is a C,-module direct summand of C, Hom,
(C,, C,) may be considered to be contained in Hom,(C, C). So any homomor-
phism in Hom 4(C,, C,) is induced by an element > ¢;Qd; in CQH for ¢;=C,
d;€H. Let us write C=C,PC/ for a C,-submodule C, of C. Let c,=c3+¢/
for f=C,, ¢/ =C/. Then we have 3 c,d(x)=>) ctd(x)+ 2] ¢/d(x) for x=C,
and so >} ¢/d(x)=C,N C/(=0). Hence > c!®d; induces the same homomor-
phism in Hom,(C,, C,). This shows the statement (3) for 7=1. It follows from
Theorem 8 that C®A[H,]=Hom,(C, C). Then, by the same argument above,
a C,-module Hom,(C,, C)) is generated by the endomorphisms of C, induced
by each element in A[H,]. Since each element of H, induces an ordinary deriva-
tion on C,, we obtain C,[2e,(C,/C,)]=Homc,(C,, C,) and C,=Ker(H,)=Ker
(2e(C,/C,)). Hence, using again Lemma 10, we have C,=A[#, #, ---, t7] for
t,cC,and so C,=A-C?". Repeating the argument above, we complete the
proof.

i+1

Corollary. Under the situation above, moreover, let K be a C-algebra which
is finitely genmerated projective as a C-module. Then H™(K|A)=H™K|C) for
n>2 and there is an exact sequence

0 — H*C|A) - H*(K|4) - H(K|C)— 0
where H"(K|A) denotes a Amitsur cohomology group for a extension ring K/[A.
Proof. By [5, Theorem 4.3], we have an exact sequnece
= H*Y(K|C) - H*C|A) - HYK|A) - H*K|C) —>--

So it suffices to show H(K/C)=0 and H"(C|A)=0 for n>>2. The first follows
from [1, Theorem 3.8]. It follows from [10, Theorem 6] that H*(C;/C,.,) vanish
for n>2 where the C/’s are as above. Hence, using again [4, Theorem 4.3], we
obtain H*(C|A)=0 for n>2.
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