Marubayashi, H. Osaka J. Math. 11 (1974), 547–558

MODULES OVER DEDEKIND PRIME RINGS III

HIDETOSHI MARUBAYASHI

(Received Novermber 9, 1973)

Let R be a Dedekind prime ring with the quotient ring Q. Let F be any right additive topology (cf. [11]). Then R is a topological ring with elements of F as the neighborhoods of zero. Let M be a topological right R-module with submodule neighborhoods of zero. M is called F-linearly compact if

(a) it is Hausdorff,

(b) if every finite subset of the set of congruences $x \equiv m_{\sigma} \pmod{N_{\sigma}}$, where N_{σ} are closed submodules of M, has a solution in M, then the entire set of the congruences has a solution in M.

The purpose of this paper is to study the algebraic and topological properties of *F*-linearly compact modules.

After discussing some properties on R which need in this paper, we show, in Section 2, that the Kaplansky's duality theorem holds for F-linearly compact modules (Theorem 2.12). By using the duality theorem we determine, in Section 3, the algebraic and topological structures of F-linearly compact modules when F is bounded. Moreover we define the concepts of F^{ω} -pure injective and F^{∞} -pure injective modules, and investigate the relations of between these concepts and F-linearly compact modules.

I wish to express my appreciation to the referee for his adequate advice.

1. Topologies on Dedekind prime rings

Throughout this paper, R will denote a Dedekind prime ring which is not artinian, and Q will denote the quotient ring of R. We will denote the (R, R)bimodule Q/R by K. A subring of Q containing R is called an *overring* of R. For any essential right ideal I, the *left order* of I is defined by $0_l(I) = \{q \in Q \mid qI \subseteq I\}$. We define the *inverse* of I to be $I^{-1} = \{q \in Q \mid IqI \subseteq I\}$. Then we obtain $II^{-1} = 0_l(I)$ and $I^{-1} I = R$. Let I be a right ideal of R. By Theorem 1.3 of [1], R/I is an artinian R-module if and only if I is an essential right ideal of R. For any right ideal I and any element a of R, we define $a^{-1}I = \{r \in R \mid ar \in I\}$. Let Mbe a (right R-) module. M is said to be *torsion* if, for every $m \in M$, mI = 0 for some essential right ideal I. We say that M is *divisible* if MJ = M for every essential left ideal J of R. Let F be any (right additive) topology (cf. [11]). We

say that $m \in M$ is an *F*-torsion element if $O(m) = \{r \in R \mid mr = 0\} \in F$, and denote the submodule of *F*-torsion elements by M_F . If $M_F = 0$, then we say that *M* is *F*-torsion-free. A topology *F* is trivial if all modules are *F*-torsion or *F*torsion-free. If $F = \{R\}$, then it is clear that all modules are *F*-torsion-free. Assume that *F* contains a non essential right ideal *I* of *R*, then *F*-torsion module R/I is a direct sum of a torsion module and a non-zero projective module *C* by Theorem 2.1 cf [1]. By Theorem 2.4 of [1], a finite copies of *C* contains *R* as right modules and so *R* is *F*-torsion. Hence all modules are *F*-torsion. So if *F* is a non-trivial topology, then *F* consists of essential right ideals. Conversely a topology *F* consists of essential right ideals, then it is non-trivial, because *R* is *F*-torsion-free and R/I is *F*-torsion $(I \in F)$.

From now on, F will denote a non-trivial topology. We define $Q_F = \varinjlim I^{-1}$, where I ranges over all elements of F. Clearly Q_F is an overring of R.

Proposition 1.1 (i) The mapping $F \rightarrow Q_F$ is one-to-one correspondence between all non-trivial topologies and all overrings of R properly containing R.

(ii) A module M is F-torsion if and only if $M \otimes Q_F = 0$.

(iii) For any module $M, M_F = \text{Tor}(M, Q_F/R)$.

Proof. By Corollary 13.4 of [11], F is perfect. Hence (ii) and (iii) follow from Exercise 2 of [11, p. 81].

(i) Let Q_0 be an overring of R properly containing R. Then it is well known that Q_0 is R-flat and that the inclusion map: $R \rightarrow Q_0$ is an epimorphism (cf. [11, p. 75]). Hence, by Theorem 13.10 of [11], $F_0 = \{I | IQ_0 = Q_0, I \text{ is a right} ideal\}$ is a topology. Since $Q_0 \otimes Q_0 \cong Q_0$ and Q_0 is R-flat, we have $Q_0/R \otimes Q_0 = 0$. Hence $0 \neq Q_0/R$ is F_0 -torsion. It is evident that R is not F_0 -torsion. Hence F_0 is non-trivial. Thus (i) follows from Theorem 13.10 of [11].

Let $\{S_{\sigma} | \alpha \in \Lambda\}$ be the representative class of simple modules which are non-isomorphic mutually. For any subset Γ of Λ , we denote the set of R and of essential right ideals I such that any composition factor of the module R/I is isomorphic to S_{γ} for some $\gamma \in \Gamma$ by $F(\Gamma)$.

Proposition 1.2. A non-empty family of right ideals of R is a non-trivial topology if and only if it is of the form $F(\Gamma)$ for some subset Γ of Λ .

Proof. First we shall prove that $F(\Gamma)$ is a non-trivial topology. (i) If $I \in F(\Gamma)$ and $a \in R$, then $a^{-1}I \in F(\Gamma)$, because $R/a^{-1}I \simeq (aR+I)/I$. (ii) Let I be a right ideal of R. Assume that there exists $J \in F(\Gamma)$ such that $a^{-1}I \in F(\Gamma)$ for every $a \in J$. Again, since $R/a^{-1}I \simeq (aR+I)/I$ for every $a \in J$, we obtain that (I+J)/I is a torsion module. Hence R/I is also torsion and so I is an essential right ideal. By Theorem 3.3 of [1], I+J=aR+I for some $a \in J$, and thus $R/a^{-1}I \simeq (I+J)/I$. Therefore $I \in F(\Gamma)$. Thus $F(\Gamma)$ is a topology. Since $F(\Gamma)$

consists of essential right ideals, it is non-trivial. Conversely let F be any topology and let $\Gamma = \{\gamma \in \Lambda \mid S_{\gamma} \cong R/I \text{ for some } I \in F\}$. From Lemma 3.1 of [11], we have $\Gamma \neq \phi$. We shall prove that $F = F(\Gamma)$. For an essential right ideal I of $R, I \in F$ if and only if $R/I \otimes Q_F = 0$ by Proposition 1.1 and so $F \supseteq F(\Gamma)$. Assume that $F \supseteq F(\Gamma)$. Then there is $I \in F$ such that some composition factor of R/I is isomorphic to S_{σ} for some $\alpha \in \Lambda - \Gamma$. So there are right ideals $J_1 \supseteq J_2 \supseteq I$ such that $J_1/J_2 \cong S_{\sigma}$. Take $a \in J_1$ with $a \notin J_2$. Then we get: $R/a^{-1}J_2 \cong J_1/J_2 \cong S_{\sigma}$. Hence, since $a^{-1}J_2 \in F$, we have $\alpha \in \Gamma$, which is a contradiction.

Corollary 1.3. The lattice of all overrings of R is a Boolean lattice.

The family F_i of left ideals J of R such that $Q_F J = Q_F$ is a left additive topology. We call it the *left additive topology corresponding* to F. F_i is also non-trivial by Proposition 1.1. Thus F_i consists of essential left ideals of R. We put $Q_{F_i} = \varinjlim J^{-1}(J \in F_i)$. A module M is said to be F_i -divisible if MJ = M for every $J \in F_i$. In a similar way, we define the concepts of F_i -torsion and F-divisible for any left module.

Proposition 1.4. (i) $Q_F = Q_{F_I}$ and so Q_F is (F, F_I) -divisible. (ii) $K_F = K_{F_I} = Q_F/R$, where K = Q/R. Thus K_F is also (F, F_I) -divisible. (iii) Let I be an essential right ideal of R. Then $I \in F$ if and only if I^{-1}/R is F_I -torsion.

Proof. (i) follows from Proposition 1.1 of [10] and the definitions. (ii) is clear.

(iii) Since Q_F is flat as *R*-modules, the sequence $0 \rightarrow Q_F \rightarrow Q_F \otimes I^{-1} \rightarrow Q_F \otimes I^{-1}/R \rightarrow 0$ is exact. Further, since $Q_F \otimes Q_F \cong Q_F$, we obtain that $I \in F$ if and only if $Q_F \otimes I^{-1}/R = 0$. So $I \in F$ if and only if I^{-1}/R is F_I -torsion.

2. Duality theorem for F-linearly compact modules

Let F be any non-trivial topology. We define $\hat{R}_F = \lim_{i \to \infty} R/I(I \in F)$ and $\hat{R}_{F_i} = \lim_{i \to \infty} R/J(J \in F_i)$. It is easy to see that both \hat{R}_F and \hat{R}_{F_i} are rings containing R (cf. §4 of [10]). Let M be an F-torsion module. Then M is an \hat{R}_F -module as follows: For $m \in M$, $\hat{r} = ([r_I + I]) \in \hat{R}_F$, we define $m\hat{r} = mr_J$, where $J \subseteq O(m)$. Similarly, an F_i -torsion left module is an \hat{R}_F -module.

Lemma 2.1. A module is F-linearly compact in the discrete topology if and only if it is F-torsion and artinian.

Proof. The sufficiency follows from Proposition 5 of [13]. Conversely assume that M is F-linearly compact in the discrete topology. Take $m \in M$. Then, by the continuity of multiplication, there exists $I \in F$ such that mI=0.

Thus M is F-torsion. By Lemma 2.3 of [9], M is finite dimensional in the sense of Goldie. So the socle S(M) of M is finitely generated and M is an essential extension of S(M). Let N be any submodule of M. Then, since N is an open and closed submodule, $\overline{M} = M/N$ is also F-linearly compact in the discrete topology by Proposition 2 of [13]. Thus the socle $S(\overline{M})$ of \overline{M} is also finitely generated and \overline{M} is an essential extension of $S(\overline{M})$. This implies that M is an artinian module by Proposition 2* of [12].

Corollary 2.2. Let M be F-linearly compact and let N be a submodule. Then N is a neighborhood of zero if and only if M|N is F-torsion and artinian.

Proof. If N is a neighborhood of zero, then M/N is F-linearly compact in the discrete topology. So the necessity follows from Lemma 2.1. Conversely, assume that M/N is F-torsion and artinian. Let $\{M_{\sigma}\}$ be the set of submodule neighborhoods of zero. Since the topology is Hausdorff, $\cap M_{\sigma}=0$, and so $\cap \overline{M}_{\sigma}=\overline{0}$ in $\overline{M}=M/N$. Therefore there are finite submodules $M_{\sigma_1}, \dots, M_{\sigma_n}$ such that $\bigcap_{i=1}^{n} \overline{M}_{\sigma} = \overline{0}$, i.e., $\bigcap_{i=1}^{n} M_{\sigma_i} \subseteq N$. Thus N is open.

Corollary 2.3. If a module is F-linearly compact in two topologies, then these topologies coincide.

Lemma 2.4. A module is F-linearly compact if and only if it is an inverse limit of F-torsion and artinian modules.

Proof. The sufficiency follows from Proposition 4 of [13] and Lemma 2.1. To prove the necessity let $\{N_{\alpha}\}$ be the set of submodule neighborhoods of zero. Then the modules M/N_{α} with the natural maps: $[m+N_{\alpha}] \rightarrow [m+N_{\beta}]$, where $N_{\alpha} \subseteq N_{\beta}$, form an inverse system. Write $\hat{M} = \lim_{i \to \infty} M/N_{\alpha}$. Then it is a topological module; each M/N_{α} has the discrete topology and the product topology on $\prod M/N_{\alpha}$ induces a subspace topology on \hat{M} . Since $\cap N_{\alpha} = 0$, the canonical map $f: M \rightarrow \hat{M}$ is a monomorphism. It is easy to see that f is a topological isomorphism from M onto f(M) and that f(M) is dense in \hat{M} . On the other hand, M is complete by Proposition 8 of [13] and so $f(M) = \hat{M}$. Further M/N_{α} is F-torsion and artinian by Corollary 2.2.

Following [11], a module D is *F*-injective if $\operatorname{Ext}(R/I, D)=0$ for every $I \in F$. By Proposition 6.2 of [11], D is *F*-injective if and only if $\operatorname{Ext}(T, D)=0$ for every *F*-torsion T. Further, since every *F*-torsion module T can be embedded in an exact sequence $0 \to T \to \Sigma \oplus K_F$ with sufficiently many copies of K_F , D is *F*-injective if and only if $\operatorname{Ext}(K_F, D)=0$. For any module M, we denote the injective hull of M by E(M) and denote the *F*-injective hull of it by $E_F(M)$ (cf. [11]).

Lemma 2.5. (i) A module is F-injective if and only if it is F_1 -divisible.

(ii) Let M be a module with $M_F = 0$. Then $E_F(M) = M \otimes Q_F$.

Proof. (i) Assume that D is F-injective. Let $J \in F_i$. Then J^{-1}/R is F-torsion by Proposition 1.4 and so the necessity follows from Proposition 3.2 of [10]. Conversely assume that D is F_i -divisible. Let I be any element of F. Then $I^{-1}/R = \sum_{i=1}^{n} \oplus R/J_i$ for $J_i \in F_i$. By Proposition 3.3 of [10], we have

 $R/I \cong \operatorname{Hom}(I^{-1}/R, K_F) \cong \sum_{i=1}^{n} \oplus \operatorname{Hom}(R/J_i, K_F) \cong \sum_{i=1}^{n} \oplus J_i^{-1}/R$, and so Ext $(R/I, D) \cong \sum_{i=1}^{n} \oplus \operatorname{Ext}(J_i^{-1}/R, D) \cong \sum_{i=1}^{n} \oplus D/DJ_i = 0$. Therefore D is F-injective. (ii) By Proposition 1.1, $M_F = \operatorname{Tor}(M, K_F)$. Hence from the exact sequence

 $0 \rightarrow R \rightarrow Q_F \rightarrow K_F \rightarrow 0$ we get an exact sequence $0 \rightarrow M \rightarrow M \otimes Q_F \rightarrow M \otimes K_F \rightarrow 0$. By Proposition 1.4 and (i), $M \otimes Q_F$ is F-injective and so $M \otimes Q_F = E_F(M)$.

Corollary 2.6. Let M be a module. Then $M \otimes Q_F$ and $M \otimes K_F$ are both F-injective.

For a module M, we define $\hat{M}_{F_i} = \lim_{K \to \infty} M/MJ(J \in F_i)$. \hat{M}_{F_i} is an \hat{R}_{F_i} -module (cf. §4 of [10]). Similarly, for a left module N, we can define a left \hat{R}_F -module \hat{N}_F .

Lemma 2.7. Let M be a module with $M_F = 0$. Then there are commutative diagrams:

$$\hat{M}_{F_{I}} \simeq \operatorname{Hom}(K_{F}, M \otimes K_{F}) \simeq \operatorname{Ext}(K_{F}, M)$$
 $\uparrow \qquad \qquad \uparrow lpha \qquad \qquad \uparrow eta$
 $M = M = M$

where $\alpha(m)(\bar{q}) = m \otimes \bar{q} \ (m \in M, \bar{q} \in K_F)$ and β is the connecting homomorphism.

Proof. From the exact sequence $0 \rightarrow R \rightarrow Q_F \rightarrow K_F \rightarrow 0$, we get an exact sequence:

(1)
$$0 = \operatorname{Tor}(M, K_F) \to M \to M \otimes Q_F \to M \otimes K_F \to 0.$$

Hence the assertion of the first diagram follows from the similar way as in Theorem 4.4 of [10]. Applying $Hom(K_F)$,) to the sequence (1), we obtain the exact sequence:

Hom $(K_F, M \otimes Q_F) \rightarrow$ Hom $(K_F, M \otimes K_F) \rightarrow$ Ext $(K_F, M) \rightarrow$ Ext $(K_F, M \otimes Q_F)$. The first and last terms are zero, because $M \otimes Q_F$ is *F*-torsion-free and *F*-injective. Hence Hom $(K_F, M \otimes K_F) \cong$ Ext (K_F, M) . We consider the following commutative diagram with exact rows and columns:

If [x+M]I=0, where $x \in E(M)$ and $I \in F$, then $xI \subseteq M$ and so $x \in M \otimes Q_F$ by Proposition 6.3 of [11] and Lemma 2.5. Hence $[x+M] \in M \otimes K_F$. This implies that $(E(M)/M)_F = M \otimes K_F$. It is evident that $E(M)_F = 0$. Thus we have Ext $(K_F, M) = \text{Hom}(K_F, E(M)/M) = \text{Hom}(K_F, M \otimes K_F)$. Now it is easy to see that $\alpha = \beta$.

Corollary 2.8. (i) \hat{R}_F/R is *F*-divisible. (ii) $R/I \simeq \hat{R}_F/I\hat{R}_F$ for every $I \in F$.

Proof. (i) Applying Lemma 2.7 to the left module R, we get an isomorphism: $\hat{R}_F/R \cong \text{Ext}(Q_F, R)$. Since $\text{Ext}(Q_F, R)$ is a left Q_F -module, it is F-divisible and so \hat{R}_F/R is also F-divisible.

(ii) It is evident that $I\hat{R}_F \cap R = I$. Hence (ii) follows from (i).

By Lemma 2.4, \hat{R}_F is an *F*-linearly compact module in the topology which is defined by taking as a subbase of neighborhoods of zero the set $\{\pi_I^{-1}(0) \cap \hat{R}_F | I \in F\}$, where $\pi_I \colon \prod R/I \to R/I$ is the projection. Further we have

Corollary 2.9. (i) $\pi_I^{-1}(0) \cap \hat{R}_F = I \hat{R}_F$ for every $I \in F$.

(ii) \hat{R}_F is a complete topological ring in the topology which has the set $\{I\hat{R}_F | I \in F\}$ as neighborhoods of zero.

Proof. (i) Clearly $\pi^{-1}(0) \cap \hat{R}_F \supseteq I \hat{R}_F$. By Corollary 2.8, there exists a right ideal $J \supseteq I$ such that $J/I \simeq [\pi_I^{-1}(0) \cap \hat{R}_F]/I \hat{R}_F$, i.e., $\pi_I^{-1}(0) \cap \hat{R}_F = I \hat{R} + J = J \hat{R}_F$, because $\pi_I^{-1}(0) \cap \hat{R}_F$ is an \hat{R}_F -module. From this fact we easily obtain that J = I and so $\pi_I^{-1}(0) \cap \hat{R}_F = I \hat{R}_F$.

(ii) For any $\hat{x} \in \hat{R}_F$, we define $\hat{x}^{-1}(I\hat{R}_F) = \{\hat{r} \in \hat{R}_F | \hat{x}\hat{r} \in I\hat{R}_F\}$, where $I \in F$.

Then we have the natural isomorphisms $\hat{R}_F/\hat{x}^{-1}(I\hat{R}_F) \stackrel{\theta}{\simeq} (\hat{x}\hat{R}_F + I\hat{R}_F)/I\hat{R}_F \stackrel{\varphi}{\simeq} J/I$ for some $J \supseteq I$. Define $\varphi \theta([1 + \hat{x}^{-1}(I\hat{R}_F)] = [a+I](a \in J)$. Then J = aR + I and

so $J/I \cong R/a^{-1}I$, where $\eta([a+I]) = [1+a^{-1}I]$. Therefore we get the natural isomorphisms $\hat{R}_F/\hat{x}^{-1}(I\hat{R}_F) \cong R/a^{-1}I \cong \hat{R}_F/(a^{-1}I)\hat{R}_F$. Thus we have $(a^{-1}I)\hat{R}_F = \hat{x}^{-1}(I\hat{R}_F)$. This implies that \hat{R}_F is a topological ring. The completeness of \hat{R}_F follows from Proposition 8 of [13].

Let $\hat{F} = \{I\hat{R}_F | I \in F\}$. For any \hat{R}_F -module, we can define the concept of \hat{F} -linearly compact modules.

Proposition 2.10. A module is F-linearly compact if and only if it is an \hat{R}_{F} -module and is \hat{F} -linearly compact.

Proof. Assume that M is F-linearly compact. By Lemma 2.4, M is an \hat{R}_{F} -module. Let N be a closed submodule of M. Then N is F-linearly compact by Proposition 3 of [13], and so it is an \hat{R}_{F} -submodule. Hence it is enough to

prove that M is a topological \hat{R}_{F} -module. Take $m \in M$, $\hat{r} \in \hat{R}_{F}$. Then we define $m^{-1}N = \{\hat{s} \in \hat{R}_{F} | m\hat{s} \in N\}$ for any submodule neighborhood N of zero. Since M/N is F-torsion, we have $m^{-1}N \in \hat{F}$. Further we have $(m+N)(\hat{r}+m^{-1}N) \subseteq m\hat{r}$ + N and so M is a topological \hat{R}_{F} -module. Conversely assume that M is \hat{F} -linearly compact as an \hat{R}_{F} -module. Let $\{N_{\sigma}\}$ be the set of submodule neighborhoods of zero. Then, by a similar way as in Lemmas 2.1, 2.4 and Corollaries 2.2, 2.8, we have $M = \varprojlim M/N_{\sigma}$ and M/N_{σ} is F-torsion and artinian. Thus M is F-linearly compact.

Let M be F-linearly compact. M^* will mean the module of all continuous homomorphisms from M into K_F , where K_F has been awarded the discrete topology. It is evident that an element $f \in \text{Hom}(M, K_F)$ is continuous if and only if Ker f is open.

Lemma 2.11. Let M be F-linearly compact. Then

(i) M^* is an \hat{R}_F ,-module.

(ii) Let N^* be a finitely generated left \hat{R}_{F_i} -submodule of M^* and let $g \in Hom_{\hat{R}_{F_i}}(M^*, K_F)$. Then there exists an element $m \in M$ such that (f)g = f(m) for every $f \in N^*$.

Proof. (i) For $f \in M^*$ and $\hat{r} \in \hat{R}_{F_i}$, we have $\operatorname{Ker}(\hat{r}f) \supseteq \operatorname{Ker} f$ and so $\hat{r}f \in M^*$. We shall prove (ii) by Müller's method (cf. Lemma 1 of [8]). Write $N^* = \hat{R}_{F_i}f_1 + \dots + \hat{R}_{F_i}f_n$, where $f_i \in N^*$, and let $W = \{(f_1(m), \dots, f_n(m)) | m \in M\} \subseteq \sum^n \oplus K_F$. Assume that $x = ((f_1)g, \dots, (f_n)g) \in W$. Then $O(\bar{x}) = \{r \in R \mid \bar{x}r = 0\} \in F$, where $\bar{x} = [x+W]$ in $\sum \oplus K_F/W$. Hence there exists a map $\theta : \bar{x}R \to K_F$ with $\theta(\bar{x}) \neq 0$. Since K_F is F-injective, the map θ is extended to the map $\tilde{\theta}$: $\sum \oplus K_F/W \to K_F$. Hence there exists a map $\varphi : \sum^n \oplus K_F \to K_F$ with $\varphi(x) \neq 0$. From Lemma 2.7 we have $\operatorname{Hom}(\sum \oplus K_F, K_F) = \sum \oplus \hat{R}_{F_i}$ and so $\varphi = (\hat{r}_1, \dots, \hat{r}_n)$ for some $\hat{r}_i \in \hat{R}_{F_i}$. Thus we get: $0 \neq \varphi(x) = \sum_{i=1}^n \hat{r}_i [(f_i)g] = \sum_{i=1}^n (\hat{r}_i f_i)g$ and so $\sum_{i=1}^n \hat{r}_i f_i \neq 0$. On the other hand, $0 = \varphi(w) = \sum_{i=1}^n \hat{r}_i f_i(m)$ for every $w = (f_1(m), \dots, f_n(m))$, where $m \in M$. Hence $\sum_{i=1}^n \hat{r}_i f_i = 0$, a contradiction.

Let G be a left $\hat{R}_{F_{l}}$ -module. We denote the right module $\operatorname{Hom}_{\hat{R}_{F_{l}}}(G, K_{F})$ by G^{\sharp} , and define its finite topology by taking the submodules $\operatorname{Ann}_{G^{\sharp}}(N) = \{f \in G^{\sharp}| (N)f=0\}$ as a fundamental system of neighborhoods of zero, where N ranges over all finitely generated $\hat{R}_{F_{l}}$ -submodules of G. The following theorem was proved by I. Kaplansky [4] for modules over commutative, complete discrete valuation rings.

Theorem 2.12. Let M be an F-linearly compact module. Then M is isomorphic to M^{**} as topological modules.

Proof. Let α be the canonical homomorphism from M into M^{**} which is

defined by $\alpha(m)(f) = f(m)$, where $m \in M$ and $f \in M^*$.

(i) First we shall prove that α is a monomorphism. To prove this, we assume that $\alpha(m)=0$ and $0 \neq m \in M$. Then there exists an open submodule N with $N \not\ni m$. Let $\overline{m}=[m+N]$ in M/N. Then $O(\overline{m})\in F$ by Lemma 2.1. So we can define a homomorphism $f: \overline{m}R \to K_F$ with $f(\overline{m}) \neq 0$. This map can be extended to a homomorphism g from M/N into K_F . Let $h: M \to M/N$ be the natural homomorphism. Then $g \cdot h \in M^*$ and $(g \cdot h)(m) \neq 0$. This implies that $\alpha(m) \neq 0$, a contradiction, and so α is a monomorphism.

(ii) Secondly, we shall prove that α is an epimorphism. Let x be any element of M^{**} . Then, for every $f \in M^*$, there exists an element $m_f \in M$ such that $(f)x=f(m_f)$ by Lemma 2.11. We consider the congruences

$$(1) x \equiv m_f(\operatorname{Ker} f).$$

Again, by Lemma 2.11, any finite number of congruences (1) have a solution. Further Ker f is open and so it is closed. By *F*-linearly compactness of M, there exists a solution $m \in M$. Hence $(f)x=f(m_f)=f(m)$ for every $f \in M^*$ and so $x=\alpha(m)$.

(iii) Finally we shall prove that α is a topological isomorphism. Let S be any submodule neighborhood of zero in the finite topology. Then $S = \operatorname{Ann}_{M^{*i}}(f_1)$ $\cap \cdots \cap \operatorname{Ann}_{M^{*i}}(f_n)$, where $f_i \in M^*$. It is evident that $S = \operatorname{Ker} f_1 \cap \cdots \cap \operatorname{Ker} f_n$ in M and so it is open in the orginal topology. Conversely, let N be any open submodule in the orginal topology. Then M/N is F-torsion and artinian. So M/N can be embedded in an exact sequence $0 \to M/N \xrightarrow{\theta} \sum^n \bigoplus K_F$ with finite copies of K_F . Let $\pi_i \colon \sum^n \bigoplus K_F \to K_F$ be the projection $(1 \le i \le n)$ and let $\eta \colon M$ $\to M/N$ be the natural map. Then we have $N = \bigcap_{i=1}^n \operatorname{Ker} g_i$, where $g_i = \pi_i \cdot \theta \cdot \eta$ $\in M^*$ and so N is open in the finite topology.

3. In case F is bounded.

A topology F is said to be *bounded* if, for every $I \in F$, there is an nonzero ideal A such that $I \supseteq A$. When F is bounded, we shall determine, in this section, the algebraic and topological structures of F-linearly compact modules. Let P be a prime ideal of R and let $F_P = \{I \mid I \supseteq P^n \text{ for some } n, I \text{ is a right ideal of } R\}$. Then F_P is a bounded atom in the lattice of all topologies. F_P -linearly compact modules is called *P*-linearly compact. Write $\hat{R}_P = \lim_{\leftarrow \to \infty} R/P^n$. Then it is evident that $\hat{R}_{F_P} = \hat{R}_P = \hat{R}_{(F_P)_I}$ as rings. It is well-known that \hat{R}_P is a prime, principal ideal ring and that $\hat{P} = P\hat{R} = \hat{R}_P P$, where \hat{P} is the unique maximal ideal of \hat{R}_P . In this section, we shall use the following notations: $Q_P = Q_{F_P}; K_P = K_{F_P}; R(P^n) = e\hat{R}_P/e\hat{P}^n e; R(P^\infty) = \lim_{\leftarrow \to \infty} e\hat{R}_P/e\hat{P}^n; R(P^\infty)_I = \lim_{\leftarrow \to \infty} \hat{R}_P e \hat{P}^n e$, where e is a uniform idempotent in \hat{R}_P . First we shall study P-linearly compact modules.

Lemma 3.1. $Q \otimes \hat{R}_P$ is the quotient ring of \hat{R}_P .

Proof. From the exact sequence $0 \rightarrow R \rightarrow \hat{R}_P \rightarrow \hat{R}_P / R \rightarrow 0$, we get the exact sequence: $0=\operatorname{Tor}(K_P, \hat{R}_P / R) \rightarrow K_P \rightarrow K_P \otimes \hat{R}_P \rightarrow K_P \otimes \hat{R}_P / R = 0$, since \hat{R}_P / R is *P*-divisible and has no *P*-primary submodules, and so $K_P \simeq K_P \otimes \hat{R}_P$. Hence we have the exact sequence $0 \rightarrow \hat{R}_P \rightarrow Q \otimes \hat{R}_P \rightarrow K_P \rightarrow 0$. Thus $Q \otimes \hat{R}_P$ is an essential extension of \hat{R}_P as a right \hat{R}_P -module. Since $\hat{P}^n = P^n \hat{R}_P = \hat{R}_P P^n$ and \hat{R}_P is bounded, local, we obtain that $Q \otimes \hat{R}_P$ is divisible as an \hat{R}_P -module. Hence $Q \otimes \hat{R}_P$ is an \hat{R}_P -injective hull of \hat{R}_P . By Theorem of [2, p 69], it is the maximal quotient ring of \hat{R}_P in the sense of [2] and so it is the quotient ring of \hat{R}_P .

For an \hat{R}_P -module M, we let $M^{\ddagger} = \operatorname{Hom}_{\hat{R}_P}(M, K_P)$.

Lemma 3.2. (i) $R(P^n)^{\sharp} \simeq R(P^n)_{I}$. (ii) $R(P^{\infty})^{\sharp} \simeq \hat{R}_{P}e$. (iii) $(e\hat{R}_{P})^{\sharp} \simeq R(P^{\infty})_{I}$. (iv) $[e(Q \otimes \hat{R}_{P})]^{\sharp} \simeq (Q \otimes \hat{R}_{P})e$. These modules are all P-linearly compact.

Proof. (i) is evident. (ii) $R(P^{\infty})^{\sharp} = [\lim R(P^{n})]^{\sharp} \simeq \lim R(P^{n})_{l} \simeq \hat{R}_{P}e.$

(iii) $R(P^{\infty})_{l}$ is F_{P} -torsion and artinian. Hence it is P-linearly compact and so $R(P^{\infty})_{l} \cong [R(P^{\infty})_{l}]^{**} = (\lim_{k \to \infty} R(P^{n})_{l})^{**} \cong (\lim_{k \to \infty} R(P^{n}))^{**} \cong (e\hat{R}_{P})^{*}$.

(iv) From the exact sequence $0 \rightarrow e\hat{R}_P \rightarrow e(Q \otimes \hat{R}_P) \rightarrow R(P^{\infty}) \rightarrow 0$, we get the exact sequence $0 \rightarrow \hat{R}_P e \rightarrow [e(Q \otimes R_P)]^{\sharp} \rightarrow R(P^{\infty})_l \rightarrow 0$ as left \hat{R}_P -modules. Let f be any element of $[e(Q \otimes \hat{R}_P)]^{\sharp}$. Assume that $P^n f = 0$ for some n. Then $P^n f(e(Q \otimes \hat{R}_P)) = 0$ implies that $0 = f(e(Q \otimes \hat{R}_P))P^n = f(e(Q \otimes \hat{R}_P))$ and so f = 0. Hence $[e(Q \otimes \hat{R}_P))]^{\sharp}$ is torsion-free as a left \hat{R}_P -module. Thus $[e(Q \otimes \hat{R}_P)]^{\sharp}$ is an essential extension of $\hat{R}_P e$. Hence we may assume that $\hat{R}_P e \subseteq [e(Q \otimes \hat{R}_P)]^{\sharp} \subseteq (Q \otimes \hat{R}_P)e$. From Lemma 3.2 of [6], we easily obtain that $[e(Q \otimes \hat{R}_P)]^{\sharp} = (Q \otimes \hat{R}_P)e$.

By Lemma 2.1, $R(P^n)$ and $R(P^{\infty})$ are *P*-linearly compact in the discrete topology. By Lemma 2.4 and Corollary 2.9, $e\hat{R}_P$ is *P*-linearly compact in the *P*-adic topology. $e(Q \otimes \hat{R}_P)$ is a topological module by taking as neighborhoods of zero the submodules $\{e\hat{P}^n | n=0, \pm 1, \pm 2, \cdots\}$. Further the exact sequence $0 \rightarrow e\hat{R}_P \rightarrow e(Q \otimes \hat{R}_P) \rightarrow R(P^{\infty}) \rightarrow 0$ satisfies the assumption of Proposition 9 of [13] and so $e(Q \otimes \hat{R}_P)$ is *P*-linearly compact in the above topology.

Lemma 3.3. Let $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ be an exact sequence of \hat{R}_P -modules. If the sequence is P^{ω} -pure in the sense of [7], then the exact sequence $0 \rightarrow N^{\ddagger} \rightarrow M^{\ddagger} \rightarrow L^{\ddagger} \rightarrow 0$ is also P^{ω} -pure.

Proof. Since \hat{R}_P is a principal ideal ring, the proof of the lemma is similar to the one of Proposition 44.7 of [3] (see, also Lemma 1.1 of [7]).

Theorem 3.4. (i) A module is P-linearly compact if and only if it is isomorphic, as topological modules to a direct product of modules of the following types: $R(P^n)$, $R(P^{\infty})$, $e\hat{R}_P$, $e(Q \otimes \hat{R}_P)$, where e is a uniform idempotents in \hat{R}_P and the topologies of these modules are defined in the proof of Lemma 3.2.

(ii) A module M is P-linearly compact, then M^* is isomorphic to a direct sum of modules of the following types: $R(P^n)_i$, $R(P^\infty)_i$, $\hat{R}_P e$, $(Q \otimes \hat{R}_P)e$, where e is a uniform idempotent in \hat{R}_P .

Proof. (i) Since each of these modules does admit a *P*-linearly compact topology, the sufficiency is evident from Proposition 1 of [13]. Conversely, let *M* be *P*-linearly compact. Then M^* is a left \hat{R}_P -module and \hat{R}_P is a complete g-discrete valuation ring in the sense of [6] (cf. p. 432 of [6]). So M^* possesses a basic submodule *B* by Theorem 3.6 of [6]. Further any finitely generated module and any injective module over a Dedekind prime ring are both a direct sum of indecomposable modules. Hence, from the definition of basic submodules, Corollary 4.4 of [6] and Lemma 3.1 we have $B = \sum_n \oplus \sum \oplus R(P^n)_l \oplus \sum \oplus \hat{R}_P e$ and $M^*/B = \sum \oplus R(P^{\infty})_l \oplus \sum \oplus (Q \otimes \hat{R}_P) e$. By Theorem 1.5 of [7] and Lemmas 3.2, 3.3, the exact sequence $0 \rightarrow (M^*/B)^* \rightarrow M^{**} \rightarrow B^* \rightarrow 0$ splits and so, from Theorem 2.12 and Lemma 3.2, we get:

(1)
$$M \cong \prod_n \prod R(P^n) \oplus \prod R(P^\infty) \oplus \prod e\hat{R}_P \oplus \prod e(Q \otimes \hat{R}_P) .$$

The right sided module is *P*-linearly compact and so, by Corollary 2.3, φ is an isomorphism as topological modules.

Since the topology of the left sided of (1) is the product topology, (ii) follows easily from Lemma 3.2.

From Theorem 1.5 of [7], Theorem 3.4 and definitions, we have the following chain of implications;

(*P*^{*n*}-pure injective) (*P*-linearly compact) \checkmark (*P*^{∞}-pure injective) \Rightarrow (*P*^{∞}-pure injective).

Let F be a bounded topology and let M be F-linearly compact. Then we know from Lemma 2.4 that $M = \lim_{i \to \infty} M_i$, where M_i is F-torsion and artinian. By the same way as in Theorem 3.2 of [5], we have $M_i = \sum \bigoplus M_{iP}$, where $M_{iP} = \{x \in M_i | xP^n = 0 \text{ for some } n\}$ and P ranges over all prime ideals contained in F. Write $M_P = \lim_{i \to \infty} M_{iP}$. Then M_P is P-linearly compact and M is isomorphic naturally to $\prod M_P$ as topological modules, where $\prod M_P$ will carry the product topology. It is evident that $K_F = \sum \bigoplus K_P$, where P ranges over all prime ideals in F. Further we can easily prove that $M^* = \sum \bigoplus M_P^*$ and that $M^{**} = \prod M_P^{**}$, where M_P^* consists of all continuous maps of M_P into K_P . Thus, from Theorem 3.4, we have

Theorem 3.5. Let F be a bounded topology. Then

(i) A module is F-linearly compact if and only if it is isomorphic as topological modules to a direct product of modules of the following types: $R(P^n)$, $R(P^{\infty})$, $e_P\hat{R}_P$, $e_P(Q \otimes \hat{R}_P)$, where P ranges over all prime ideals in F and e_P is a uniform idempotent in \hat{R}_P .

(ii) If M is F-linearly compact, then M^* is isomorphic to a direct sum of modules of the following types: $R(P^n)_l$, $R(P^{\infty})_l$, $\hat{R}_P e_P$, $(Q \otimes \hat{R}_P) e_P$.

Let F be any topology. A short exact sequence

$$(E): 0 \to L \to M \to N \to 0$$

is said to be F^{ω} -pure if $MJ \cap L = LJ$ for every $J \in F_i$. (E) is said to be F^{∞} -pure if the induced sequence $0 \to L_F \to M_F \to N_F \to 0$ is splitting exact. A module is called $F^{\omega}(F^{\infty})$ -pure injective if it has the injective property relative to the class of $F^{\omega}(F^{\infty})$ -pure exact sequences. The structure of F^{∞} -pure injective modules is investigated in the forthcoming paper.

Lemma 3.6. Let F be a bounded topology. Then (E) is F^{ω} -pure if and only if (E) is P^{ω} -pure for every prime ideal $P \in F$.

Proof. For any prime ideal P, it is clear that $P \in F$ if and only if $P \in F_i$. So the necessity is evident. Conversely assume that (E) is P^{ω} -pure for $P \in F$. Let J be any element of F_i . Then there is a nonzero ideal A with $J \supseteq A$. Write $A = P_1^{\omega_1} \cdots P_n^{\omega_n}$, where P_i are prime ideals. Then $P_i \in F$ and $X/XA \cong X/XP_1^{\omega_1} \oplus \cdots \oplus X/XP_n^{\omega_n}$ for every module X. Hence by Lemma 1.1 of [7] the sequence $0 \rightarrow L/LA \rightarrow M/MA \rightarrow N/NA \rightarrow 0$ is splitting exact. Hence $MJ \cap L = LJ$ and so (E) is F^{ω} -pure.

From the same ways as (1.2), (1.4), (1.5) of [7] and Lemma 3.6 we have

Proposition 3.7. Let F be a bounded topology. Then a module G is F^{ω} -pure injective if and only if it is isomorphic to the module $E(GF^{\omega}) \oplus \prod_{P} \hat{G}_{P}$, where P ranges over all prime ideals in F, $GF^{\omega} = \cap GJ(J \in F_{l})$ and $\hat{G}_{P} = \lim G/GP^{n}$.

Let F be a bounded topology. Then from Theorem 3.5, Proposition 3.7 and definitions, we get the following chain of implications;

(*F*-linarly compact) \Rightarrow (*F*^{ω}-pure injective) \Rightarrow (*F*^{∞}-pure injective).

OSAKA UNIVERSITY

References

 D. Eisenbud and J.C. Robson: Modules over Dedekind prime rings, J. Algebra 16 (1970), 67-85.

- [2] C. Faith: Lectures on Injective Modules and Quotient Rings, Springer Lecture Notes 49, 1967.
- [3] L. Fuchs: Infinite Abelian Groups, Academic Press, New York, 1970.
- [4] I. Kaplansky: Dual modules over a valuation ring I, Proc. Amer. Math. Soc. 4 (1953), 212–219.
- [5] H. Marubayashi: Modules over bounded Dedekind prime ring, Osaka J. Math. 9 (1972), 95-110.
- [6] H. Marubayashi: Modules over bounded Dedekind prime rings II, Osaka J. Math. 9 (1972), 427–445.
- [7] H. Marubayashi: Modules over Dedekind prime rings II, Osaka J. Math. 11 (1974), 517–545.
- [8] B.J. Müller: Linear compactness and Morita Duality, J. Algebra 16 (1970), 60-66.
- [9] F.L. Sandomierski: Linearly compact modules and local Morita duality, In "Ring Theory" (R. Gordon, Ed.), Academic Press, New York, 1972.
- [10] B. Stenstöm: On the completion of modules in an additive topology, J. Algebra 16 (1970), 523-540.
- [11] B. Stenström: Rings and Modules of Quotients,, Springer, Heidelberg, 1971.
- [12] P. Vamos: The dual of the notion "finitely generated", J. London Math. Soc. 43 (1968), 643-646.
- [13] D. Zelinsky: Linearly compact modules and rings, Amer. J. Math. 75 (1953), 79-90.