LINEAR SU(n)-ACTIONS ON COMPLEX PROJECTIVE SPACES

Fuichi UCHIDA

(Received December 19, 1973)

0. Introduction

Let U_{*} be the bordism ring of weakly complex manifolds and let G be a compact Lie group. Denote by $S F(G)$, an ideal in U_{*} of those bordism classes represented by a weakly complex manifold on which the group G acts smoothly without stationary points and the action preserves a weakly complex structure.

For a compact abelian Lie group G the ideal $S F(G)$ was computed by tom Dieck [8]. Such ideals are similarly defined in the bordism ring Ω_{*} of oriented manifolds and those were computed for certain abelian groups by Floyd [3] and Stong [7]. But it seems that there is no useful method to compute the ideal $S F(G)$ for a non-abelian Lie group G.

First we give an upper bound and a lower bound of $S F(G)$ for any compact Lie group G. To state our result precisely we introduce some notations as follows. Denote by $I(G)$, a set of positive integers such that $n \in I(G)$ if and only if there is an n-dimensional complex G-vector space without G-invariant onedimensional subspaces, by $m(G)$ the maximum dimension of proper closed subgroups of G, and put

$$
n(G)=\operatorname{dim} G-m(G)
$$

It is known that the bordism ring $U_{*}=\sum_{k \geqslant 0} U_{2 k}$ is generated by a set of bordism classes

$$
\left\{\left[P_{n}(\boldsymbol{C})\right],\left[H_{p, q}(\boldsymbol{C})\right] ; n \geqslant 0, p \geqslant q>0\right\}
$$

as a ring. Now we define ideals $L(G), M(G)$ in U_{*} as follows. Let $L(G)$ be an ideal in U_{*} generated by a set

$$
\left\{\left[P_{n}(\boldsymbol{C})\right],\left[H_{m+n, n}(\boldsymbol{C})\right] ; n+1 \in I(G), m \geqslant 0\right\}
$$

and let

$$
M(G)=\sum_{2 k \geqslant n(G)} U_{2 k}
$$

Then we have following results,

Theorem 0.1. For any compact Lie group G,

$$
L(G) \subset S F(G) \subset M(G)
$$

Corollary. $\quad S F(S U(2))=S F(U(2))=\sum_{n>0} U_{2 n}$.
For each positive integer $n, P_{n}(\boldsymbol{C})$ admits a linear $S U(2)$-action without stationary points, but for example $P_{3}(\boldsymbol{C})$ does not admit a linear $S U(3)$-action without stationary points. Thus we next consider $S U(3)$-actions on $P_{3}(\boldsymbol{C})$ and we have a following result. Denote by $h P_{3}(\boldsymbol{C})$, a compact smooth 6-dimensional manifold homotopy equivalent to $P_{3}(C)$.

Theorem 0.2. (a) Any smooth $S U(3)$-action on $h P_{3}(\boldsymbol{C})$ has at least one stationary point. (b) Any non-trivial smooth $S U(3)$-action on $h P_{3}(\boldsymbol{C})$ is equivariantly diffeomorphic to a linear $S U(3)$-action on $P_{3}(\boldsymbol{C})$.

1. Weakly complex G-manifolds without stationary points

Let G be a Lie group and V be an n-dimensional complex G-vector space. Denote by $P(V)$ the complex projective space $P_{n-1}(\boldsymbol{C})$ with an induced G-action. We call such a G-action on $P_{n-1}(\boldsymbol{C})$ a linear G-action. Then $P(V)$ is a weakly complex G-manifold in the sense of Conner-Floyd [1]. Denote by [v] a point of $P(V)$ represented by a non-zero vector v of V. Then

Lemma 1.1. A point $[v]$ of G-manifold $P(V)$ is a stationary point if and only if the vector v spans a G-invariant one-dimensional subspace of V.

Lemma 1.2. Any smooth G-action on a manifold M is trivial, if dim $M<n(G)=\operatorname{dim} G-m(G)$. Here $m(G)$ is the maximum dimension of proper closed subgroups of G.

Proof. If $x \in M$ is not a stationary point, then the isotropy subgroup G_{x} at x is a proper closed subgroup of G, the orbit $G \cdot x$ is a submanifold of M, and $G \cdot x$ is diffeomorphic to the homogeneous space G / G_{x}. Then

$$
\operatorname{dim} M \geqslant \operatorname{dim}(G \cdot x)=\operatorname{dim} G-\operatorname{dim} G_{x} \geqslant \operatorname{dim} G-m(G) .
$$

Remark. The integer $m(G)$ was calculated by Mann [5] for compact connected simple Lie groups G, by making use of Dynkin's work [2].

Proof of Theorem 0.1 . Let V be an n-dimensional complex G-vector space and W be an m-dimensional complex G-vector space. The canonical G-action on the dual space $V^{*}=\operatorname{Hom}_{C}(V, C)$ is defined by

$$
(g \cdot u)(v)=u\left(g^{-1} \cdot v\right) ; g \in G, u \in V^{*}, v \in V
$$

Define

$$
H\left(V \oplus W, V^{*}\right)=\left\{([v+w],[u]) \in P(V \oplus W) \times P\left(V^{*}\right): u(v)=0\right\}
$$

then $H\left(V \oplus W, V^{*}\right)$ is a manifold $H_{m+n-1, n-1}(\boldsymbol{C})$ with a weakly complex G-action. If V has no G-invariant one-dimensional subspaces, then the G-action on $H\left(V \oplus W, V^{*}\right)$ has no stationary points by Lemma 1.1. Therefore the inclusion $L(G) \subset S F(G)$ is proved. Next the inclusion $S F(G) \subset M(G)$ follows from Lemma 1.2. This completes the proof of Theorem 0.1.

Next we consider the case for $G=S U(n)$, the special unitary group. Let $I(G)$ be the set of positive integers defined in the introduction. Then by definition

$$
\begin{equation*}
n_{1}, n_{2} \in I(G) \text { implies } n_{1}+n_{2} \in I(G) . \tag{1.3}
\end{equation*}
$$

Lemma 1.4. Any binomial coefficient $\binom{n+k-1}{k}$ is contained in $I(S U(n))$ for $n \geqslant 2$ and $k \geqslant 1$.

Proof. Denote by V_{n} the complex vector space $\boldsymbol{C}^{\boldsymbol{n}}$ with the standard $S U(n)$-action. Then the k-th symmetric product $S_{k}\left(V_{n}\right)$ is irreducible as a complex $S U(n)$-vector space for each $k \geqslant 1$ and

$$
\operatorname{dim}_{c} S_{k}\left(V_{n}\right)=\binom{n+k-1}{k}
$$

Corollary 1.5. $\quad S F(S U(2))=S F(U(2))=\sum_{n>0} U_{2 n}$.
Proof. Since $I(S U(2))=I(U(2))$ consists all positive integers $n \geqslant 2$ by Lemma 1.4,

$$
L(S U(2))=L(U(2))=\sum_{n>0} U_{2 n}
$$

On the other hand,

$$
M(S U(2))=M(U(2))=\sum_{n>0} U_{2 n}
$$

by the connectivity of $S U(2)$ and $U(2)$.

2. $\boldsymbol{S U}(3)$-actions on $\boldsymbol{P}_{3}(\boldsymbol{C})$

Let us first recall some basic facts in differentiable transformation groups.
(i) Let G be a compact Lie group acting on a manifold M. Then by averaging an arbitrary given Riemannian metric on M, we may have a G-invariant Riemannian metric on M.
(ii) Let $x \in M$, then the isotropy subgroup G_{x} acts on a normal vector space N_{x} of the orbit $G \cdot x$ at x orthogonally; we call it the normal representation of G_{x} at x and denote by ρ_{x}.
(iii) (The differentiable slice theorem) Let $E(\nu)$ be the normal bundle of the orbit $G \cdot x=G / G_{x}$. Then

$$
E(\nu)=G \times_{G_{x}} N_{x}
$$

where G_{x} acts on N_{x} via ρ_{x}. We note that G acts naturally on $E(\nu)$ as bundle mappings and we may choose small positive real number ε such that the exponential mapping gives an equivariant diffeomorphism of the ε-disk bundle of $E(\nu)$ onto an invariant tubular neighborhood of $G \cdot x$. ([6], Lemma 3.1)
(iv) Let $H \subset G$ be a closed subgroup. Denote by (H), the set of all subgroups of G which are conjugate to H in G. We introduce the following partial ordering relation " $<$ " by defining $\left(H_{1}\right)<\left(H_{2}\right)$ if and only if there exist $H_{1} \in\left(H_{1}\right)$ and $H_{2} \in\left(H_{2}\right)$ such that $H_{1} \subset H_{2}$. If M is connected, then there exists an absolute minimal (H) among the conjugate classes in $\left\{G_{x} \mid x \in M\right\}$, moreover the set

$$
M_{(H)}=\left\{x \in M \mid G_{x} \in(H)\right\}
$$

is a dense open submanifold. The conjugate class (H) is called the type of principal isotropy subgroups. ([6], (2.2) and (2.4))

Combining (iii) and (iv), we have a following lemma.
Lemma 2.1. If M is connected, then the normal representation of G_{x} at $x \in M$ is trivial if and only if G_{x} is a principal isotropy subgroup.

Now we consider $S U(3)$-actions. Let H be a closed subgroup of $S U(3)$. Denote by $N(H)$ the normalizer of H in $S U(3)$.

Lemma 2.2. (a) Let H be a closed connected proper subgroup of $S U(3)$ with $\operatorname{dim} H \geqslant 3$, then H is conjugate to $S U(2), S O(3)$ or $N(S U(2))$. (b) There are isomorphisms, $N(S U(2)) / S U(2) \cong S^{1}$, the circle group; $N(S O(3)) / S O(3) \cong Z_{3}$, the cyclic group of order 3 ; $N(N(S U(2)))=N(S U(2))$, as the subgroups of $S U(3)$. (c) $N(S U(2))$ does not contain any subgroup which is conjugate to $S O(3)$.

Proof. (a) is proved by considering the structure of Lie algebra of $S U(3)$ and the 3 -dimensional unitary representations of $S U(2)$. (b) is proved by direct calculation. (c) is true since $N(S U(2)) \subset S U(3)$ is not irreducible but $S O(3) \subset$ $S U(3)$ is irreducible.

Remark. $\operatorname{dim} S U(3)=8$ and $\operatorname{dim} S U(2)=\operatorname{dim} S O(3)=3$.
Lemma 2.3. Let M be an orientable connected 6 -dimensional manifold with smooth $S U(3)$-action. If an isotropy subgroup $S U(3)_{x}$ is of 3-dimensional, then $S U(3)_{x}$ is a principal isotropy subgroup.

Proof. First we may prove that the homogeneous space $S U(3) / S U(3)_{x}$ is an orientable 5 -manifold by Lemma 2.2. Thus the normal bundle $E(\nu)$ of
$S U(3) / S U(3)_{x}$ is a trivial line bundle, since M and $S U(3) / S U(3)_{x}$ are orientable. But if the normal representation of $S U(3)_{x}$ at $x \in M$ is non-trivial, then the normal bundle $E(\nu)$ is non-orientable. This is a contradiction. Therefore the result follows from Lemma 2.1.

Now we consider non-trivial smooth $S U(3)$-actions on $h P_{3}(C)$, a compact 6-dimensional manifold with the homotopy type of $P_{3}(\boldsymbol{C})$.

Lemma 2.4. (a) Any isotropy subgroup is of dimension $\geqslant 3$. (b) $h P_{3}(C)$ does not admit only one type (H) of isotropy subgroups for any proper subgroup H of $S U(3)$.

Proof. If $\operatorname{dim} S U(3)_{x} \leqslant 1$, then the 6 -dimensional manifold $h P_{3}(C)$ contains a submanifold $S U(3) / S U(3)_{x}$ of dimension $\geqslant 7$. This is a contradiction. Next if $\operatorname{dim} S U(3)_{x}=2$, then $S U(3) / S U(3)_{x}$ is an open and closed submanifold of $h P_{3}(\boldsymbol{C})$. Therefore

$$
h P_{3}(\boldsymbol{C})=S U(3) / S U(3)_{x} .
$$

By an exact sequence of homotopy groups

$$
\pi_{2}(S U(3)) \rightarrow \pi_{2}\left(S U(3) / S U(3)_{x}\right) \rightarrow \pi_{1}\left(S U(3)_{x}\right) \rightarrow \pi_{1}(S U(3)),
$$

we obtain $\pi_{1}\left(S U(3)_{x}\right)=Z$, an infinite cyclic group, since $S U(3)$ is 2 -connected. On the other hand, since $\operatorname{dim} S U(3)_{x}=2$, the identity component of $S U(3)_{x}$ is isomorphic to a 2-dimensional toral group, and hence $\pi_{1}\left(S U(3)_{x}\right)=Z \oplus Z$. This is a contradiction. Next we prove (b). It is sufficient to consider the case

$$
\operatorname{dim} H=3 \text { or } 4
$$

by (a) and Lemma 2.2. If $h P_{3}(\boldsymbol{C})$ admits only one type (H) of isotropy subgroups, then there is a differentiable fibering

$$
S U(3) / H \rightarrow h_{3} P(\boldsymbol{C}) \xrightarrow{p} h_{3} P(\boldsymbol{C}) / S U(3),
$$

and the orbit space $h P_{3}(\boldsymbol{C}) / S U(3)$ is a compact manifold without boundary, by the differentiable slice theorem (iii). First if $\operatorname{dim} H=3$, then the orbit space is of one-dimensional and hence

$$
h P_{3}(\boldsymbol{C}) / S U(3)=S^{\mathrm{L}}
$$

By exact sequences

$$
\begin{aligned}
& \pi_{3}\left(S^{1}\right) \rightarrow \pi_{2}(S U(3) / H) \rightarrow \pi_{2}\left(h P_{3}(\boldsymbol{C})\right) \xrightarrow{p_{*}} \pi_{2}\left(S^{1}\right), \\
& \pi_{2}(S U(3)) \rightarrow \pi_{2}(S U(3) / H) \rightarrow \pi_{1}(H) \rightarrow \pi_{1}(S U(3)),
\end{aligned}
$$

we obtain $\pi_{1}(H)=Z$. On the other hand $\pi_{1}(H)=0$ or Z_{2}, since $\pi_{1}(S U(2))=0$
and $\pi_{1}(S O(3))=Z_{2}$. This is a contradiction. Next if $\operatorname{dim} H=4$, then H is conjugate to $N(S U(2))$ and the orbit space $h P_{3}(C) / S U(3)$ is of 2-dimensional. Since

$$
S U(3) / N(S U(2))=P_{2}(\boldsymbol{C})
$$

there is an exact sequence

$$
\pi_{1}\left(h P_{3}(\boldsymbol{C})\right) \rightarrow \pi_{1}\left(h P_{3}(\boldsymbol{C}) / S U(3)\right) \rightarrow \pi_{0}\left(P_{2}(\boldsymbol{C})\right) .
$$

Thus the orbit space is a simply connected 2-dimensional compact manifold without boundary. Therefore

$$
h P_{3}(\boldsymbol{C}) / S U(3)=S^{2} .
$$

Then there is a contradiction in the following exact sequence

$$
\pi_{4}\left(h P_{3}(\boldsymbol{C})\right) \rightarrow \pi_{4}\left(h P_{3}(\boldsymbol{C}) / S U(3)\right) \rightarrow \pi_{3}\left(P_{2}(\boldsymbol{C})\right),
$$

since $\pi_{4}\left(S^{2}\right)=Z_{2}$.
Remark 2.5. By the above consideration, if there is a smooth $S U(3)$-action on $h P_{3}(\boldsymbol{C})$ without stationary points, then $h P_{3}(\boldsymbol{C})$ admits just two types (H) and $(N(S U(2)))$ of isotropy subgroups, where the identity component of H is $S U(2)$.

Proof of Theorem 0.2 (a). If there is a smooth $S U(3)$-action on $h P_{3}(\boldsymbol{C})$ with just two types (H) and $(N(S U(2)))$ of isotropy subgroups, where the identity component of H is $S U(2)$, then $h P_{3}(\boldsymbol{C})$ is a special $S U(3)$-manifold in the sense of Hirzebruch-Mayer [4]. Therefore the orbit space $h P_{3}(\boldsymbol{C}) / S U(3)$ is a compact smooth manifold with boundary, and hence

$$
h P_{3}(\boldsymbol{C}) / S U(3)=[0,1]
$$

Let $p: h P_{3}(\boldsymbol{C}) \rightarrow[0,1]$ be a projection and

$$
X_{0}=p^{-1}\left(\left[0, \frac{1}{2}\right]\right), X_{1}=p^{-1}\left(\left[\frac{1}{2}, 1\right]\right)
$$

Then X_{0} and X_{1} are diffeomorphic to the disk bundle of n-fold tensor product of the canonical complex line bundle over $P_{2}(\boldsymbol{C})$ for certain positive integer n, by the differentiable slice theorem (iii). Therefore $X_{0} \cap X_{1}$ is a 5-dimensional rational homology sphere. Then there is a contradiction in the following exact sequence of cohomology groups with rational coefficients,

$$
H^{1}\left(X_{0} \cap X_{1}\right) \rightarrow H^{2}\left(h P_{3}(\boldsymbol{C})\right) \rightarrow H^{2}\left(X_{0}\right) \oplus H^{2}\left(X_{1}\right) \rightarrow H^{2}\left(X_{0} \cap X_{\mathrm{t}}\right) .
$$

Therefore any smooth $S U(3)$-action on $h P_{3}(\boldsymbol{C})$ has at least one stationary point, by Remark 2.5 .

Lemma 2.6. Consider a non-trivial smooth $S U(3)$-action on a connected 6-dimensional manifold M. Let $x \in M$ be a stationary point. Then the normal representation $S U(3) \rightarrow O(6)$ is equivalent to the standard inclusion $S U(3) \subset O(6)$, and $S U(2)$ is a principal isotropy subgroup.

Proof. This follows from the fact that non-trivial 6-dimensional real representation of $S U(3)$ is isomorphic to the real restriction of the standard 3-dimensional complex representation.

Remark 2.7. Denote by V_{3}, the 3-dimensional complex vector space \boldsymbol{C}^{3} with the standard $S U(3)$-action. Then $P\left(\boldsymbol{C}^{1} \oplus V_{3}\right)$ is the complex projective space $P_{3}(C)$ with a non-trivial linear $S U(3)$-action, where the $S U(3)$-action on \boldsymbol{C}^{1} is trivial. Denote by D^{6} the unit disk in V_{3}. Then there is an equivariant decomposition

$$
P\left(\boldsymbol{C}^{1} \oplus V_{3}\right)=\left(S U(3) \underset{N(S U(2))}{\times} D^{2}\right) \underset{h}{\cup} D^{6},
$$

where the $N(S U(2))$-action on D^{2} is induced from the standard action of $N(S U(2)) / S U(2)=S^{1}$ on D^{2} and h is an equivariant diffeomorphism on boundaries.

Lemma 2.8. Any equivariant diffeomorphism on ∂D^{6} is extendable to an equivariant diffeomorphism on D^{6}.

Proof. Since the $S U(3)$-action on ∂D^{6} is transitive, it is easy to prove that any equivariant diffeomorphism on ∂D^{6} is given by a scalar multiplication

$$
\left(z_{1}, z_{2}, z_{3}\right) \rightarrow\left(u z_{1}, u z_{2}, u z_{3}\right)
$$

where $\left(z_{1}, z_{2}, z_{3}\right) \in \partial D^{6}, u \in \boldsymbol{C}$ and $|u|=1$. Such a diffeomorphism is canonically extended to an equivariant diffeomorphism on D^{6}.

Proof of Theorem $0.2(\mathrm{~b})$. Let $h P_{3}(\boldsymbol{C})$ admit a non-trivial smooth $S U(3)-$ action. Then we can use Lemma 2.6, via Theorem 0.2 (a). Thus $S U(2)$ is a principal isotropy subgroup, and hence the possible types of isotropy subgroups are

$$
(S U(2)),(N(S U(2))) \text { and }(S U(3))
$$

by Lemma 2.2 and Lemma 2.3. In any case, $h P_{3}(\boldsymbol{C})$ becomes a special $S U(3)$ mainfold with the orbit space [0,1]. If the type $(N(S U(2)))$ does not appear, then $h P_{3}(C)$ is diffeomorphic to $D^{6} \cup D^{6}$. This is a contradiction. Therefore $h P_{3}(\boldsymbol{C})$ has isotropy subgroups of type $(N(S U(2)))$ and of type $(S U(3))$. Hence, by the differentiable slice theorem (iii), there is an equivariant decomposition

$$
h P_{3}(C)=\left(S U(3) \underset{N(S U(2))}{\times} D^{2}\right) \cup_{k} D^{6},
$$

where k is an equivariant diffeomorphism on boundaries. Moreover there is an equivariant diffeomorphism from $h P_{3}(\boldsymbol{C})$ to $P\left(\boldsymbol{C}^{1} \oplus V_{3}\right)$, by making use of Lemma 2.8 and Remark 2.7.

3. Concluding remarks

3.1. If $G=T^{n}$, the n-dimensional toral group, then it is known that for any smooth G-action on an oriented compact manifold M without boundary, each connected component of the stationary point set M^{G} is canonically oriented and the index formula

$$
I(M)=I\left(M^{G}\right)
$$

holds. Thus we ask whether the above is true or not when G is a compact connected Lie group. The answer is no as follows. Denote by $S_{k}\left(V_{n}\right)$ the k-th symmetric product of V_{n} which is \boldsymbol{C}^{n} with the standard $S U(n)$-action. If $n \geqslant 2$ and $n-1<2^{a}$, then

$$
t=\operatorname{dim}_{c^{\prime}} S_{2^{a}}\left(V_{n}\right)
$$

is odd, and there is a linear $S U(n)$-action on $P_{s+t}(\boldsymbol{C})$ with $P_{s}(\boldsymbol{C})$ as the stationary point set for each integer s. This example shows that the index formula is false for $S U(n)$-actions in general. Similarly we can construct linear $S O(n)$-actions on $P_{s+t}(\boldsymbol{R})$ with $P_{s}(\boldsymbol{R})$ as the stationary point set. This example shows that there are smooth $S O(n)$-actions for which the stationary point sets are not orientable.
3.2. Let V_{n} be as above, then $S U(n)$-manifold $P\left(\boldsymbol{C}^{1} \oplus V_{n}\right)$ has only one stationary point for each $n \geqslant 2$. Such a phenomenon does not appear for compact G-manifold without boundary when G is an abelian group such as a toral group or a finite cyclic group of prime order.
3.3. Let G be a compact Lie group. Denote by F_{A} the family of all closed subgroups of G, and by F_{P} the family of all closed proper subgroups of G. Then there is an exact sequence of bordism modules of weakly complex G-manifolds,

$$
\cdots \rightarrow U_{*}\left(G ; F_{P}\right) \xrightarrow{i_{*}} U_{*}\left(G ; F_{A}\right) \xrightarrow{j_{*}} U_{*}\left(G ; F_{A}, F_{P}\right) \xrightarrow{\partial_{*}} U_{*}\left(G ; F_{P}\right) \rightarrow \cdots .
$$

It is known that i_{*} is trivial for $G=T^{n}$ and almost trivial for G a finite cyclic group of prime order. On the other hand, we can prove that i_{*} is injective when G is a compact connected semi-simple Lie group, by making use of projective space bundles associated to complex G-vector bundles.

Osaka University

References

[1] P.E. Conner and E.E. Floyd: Periodic maps which preserve a complex structure, Bull. Amer. Math. Soc. 70 (1964), 574-579.
[2] E.B. Dynkin: The maximal subgroups of the classical groups, Amer. Math. Soc. Transl. 6 (1957), 245-378.
[3] E.E. Floyd: Actions of $\left(Z_{p}\right)^{k}$ without stationary points, Topology 10 (1971), 327336.
[4] F. Hirzebruch and K.H. Mayer: $O(n)$-Mannigfaltigkeiten, Exotische Sphären und Singularitäten, Lecture Notes in Math. no. 57, Springer-Verlag, 1968.
[5] L.N. Mann: Gaps in the dimensions of transformation groups, Illinois J. Math. 10 (1966), 532-546.
[6] D. Montgomery, H. Samelson and C.T. Yang: Exceptional orbits of highest dimension, Ann. of Math. 64 (1956), 131-141.
[7] R.E. Stong: Stationary point free group actions, Proc. Amer. Math. Soc. 18 (1967), 1089-1092.
[8] T. tom Dieck: Kobordismentheorie klassifizierender Räume und Transformationsgruppen, Math. Z. 126 (1972), 31-39.

