ON THE BASIC G-SPACE IN EQUIVARIANT K-THEORY

Haruo MINAMI

(Received November 5, 1973)

1. Introduction

Let G be a compact, connected Lie group such that $\pi_{1}(G)$ is torsion free and let \mathcal{A}_{G} denote the category of compact, locally contractible G-spaces of finite covering dimension and G-maps. Throughout this paper all spaces will be supposed to be in \mathcal{A}_{G} and K_{G}^{*} will denote the equivariant K-theory defined in [5]. We use the following definition by Hodgkin [1].

Definition. A G-space Z is called a basic G-space if the following conditions are satisfied.
(i) $K_{G}^{*}(Z)$ is projective as an $R(G)\left(=K_{G}^{*}\right.$ (point))-module.
(ii) For any $X \in \mathcal{A}_{G}$ the external product homomorphism

$$
K_{G}^{*}\left(\underset{R}{2}(G) K_{G}^{*}(X) \rightarrow K_{G}^{*}(Z \times X)\right.
$$

is an isomorphism.
Using the notation of [1], Snaith [6] proved that if G is a torus then $\Gamma_{G}^{*}(-,-)$ vanishes.

In this paper we give a simple proof of Snaith's theorem ([6], Theorem 2.11) and show that if G is $S U(n), U(n), S p(n)$ or G_{2} then $\Gamma_{G}^{*}(-,-)$ vanishes.

Consider the construction of the Künneth formula spectral sequence [1], then we see that the above statements are equivalent to the following

Theorem 1.1 (Snaith [6]). Let T be a torus and Z a T-space. If $K_{T}^{*}(Z)$ is projective as an $R(T)$-module then the T-space Z is a basic T-space.

Theorem 1.2. Let G denote the (special) unitary group $(S U(n)) U(n)$, the sympletic group $S p(n)$ or the exceptional group G_{2}, and let Z be a G-space. If $K_{G}^{*}(Z)$ is projective as an $R(G)$-module then the G-space Z is a basic G-space.

In the following sections we denote by μ the external product homomor$\operatorname{phism} K_{G}^{*}(X) \underset{R(G)}{\otimes} K_{G}^{*}(Y) \rightarrow K_{G}^{*}(X \times Y)$.

2. Proof of (1.1)

Lemma 2.1. Let T be the n-dimensional torus and S a closed subgroup of T. If $K_{T}^{*}(Z)$ is projective as an $R(T)$-module for a T-space Z then

$$
\mu: R(S) \underset{R(T)}{ } K_{T}^{*}(Z) \rightarrow K_{S}^{*}(Z)
$$

is isomorphic.
Proof. First we consider the following situation: Let $T=Z_{m_{1}} \times \cdots \times Z_{m_{r-1}}$ $\times S_{r}^{1} \times S_{r+1}^{1} \times \cdots \times S_{n}^{1}, S=Z_{m_{1}} \times \cdots \times Z_{m_{r-1}} \times Z_{m_{r}} \times S_{r+1}^{1} \times \cdots \times S_{n}^{1}$ where $Z_{m_{j}}$ is a cyclic group of order m_{j} and S_{k}^{1} is the circle group, $(1 \leq j \leq r, r \leq k \leq n)$, such that $Z_{m_{r}} \subset S_{r}^{1}$, and let Z be a T-space such that $K_{T}^{*}(Z)$ is $R(T)$-projective.

Let $C(T / S)$ be the cone on T / S. Then $C(T / S)-T / S$ is isomorphic to the representation space V of the m_{r}-fold tensor product of the canonical 1-dimensional, non-trivial representation t_{r} of S_{r}^{1} since $T / S=S_{r}^{1} / Z_{m_{r}}$ is isomorphic to S^{1}.

Consider the exact sequence for the pair $(C(T / S) \times Z, T / S \times Z)$ then we get the diagram

$$
\begin{aligned}
& \rightarrow K_{T}^{*}(V \times Z) \xrightarrow{j^{*}} K_{T}^{*}(Z) \rightarrow K_{S}^{*}(Z) \rightarrow \\
& \quad \varphi_{*} \uparrow \\
& K_{T}^{*}(Z)
\end{aligned}
$$

where the row is an exact sequence, φ_{*} is the Thom isomorphism and $j^{*} \varphi_{*}(1)=1-t_{r}^{m_{r}}$. Since $K_{T}^{*}(Z)$ is $R(T)$-projective and $R\left(S_{r}^{1}\right)$ has no zero divisors we get a short exact sequence

$$
0 \rightarrow K_{T}^{*}(Z) \xrightarrow{\left(1-t_{r}^{m_{r}}\right) \cdot} K_{T}^{*}(Z) \rightarrow K_{S}^{*}(Z) \rightarrow 0
$$

from the above diagram.
Apply the functor $\underset{R(T)}{\otimes} K_{T}^{*}(Z)$ to the exact sequence obtained by putting $Z=a$ point in the above short exact sequence then we also have an exact sequence

$$
0 \rightarrow K_{T}^{*}(Z) \xrightarrow{\left(1-t_{r}^{\left.m_{r}\right)}\right)} K_{T}^{*}(Z) \rightarrow R(S) \otimes_{R(T)} K_{T}^{*}(Z) \rightarrow 0
$$

Here consider the commutative diagram

$$
\begin{aligned}
& 0 \rightarrow K_{T}^{*}(Z) \xrightarrow{f} K_{T}^{*}(Z) \longrightarrow K_{\|}^{\longrightarrow}(Z) \longrightarrow 0 \\
& 0 \rightarrow K_{T}^{*}(Z) \xrightarrow{f} K_{T}^{*}(Z) \rightarrow R(S) \underset{R(T)}{\otimes} K_{T}^{*}(Z) \rightarrow 0
\end{aligned}
$$

where the rows are exact and $f=\left(1-t_{r}^{m_{r}}\right)$. . Then we see that $\mu: R(S) \underset{R(T)}{\otimes} K_{T}^{*}(Z)$ $\rightarrow K_{S}^{*}(Z)$ is an isomorphism by the five lemma.

In the general case we may consider that $T=S_{1}^{1} \times \cdots \times S_{l}^{1} \times H, S=Z_{m_{1}} \times \cdots$ $\times Z_{m_{l}} \times H$ and $Z_{m_{j}} \subset S_{j}^{1},(1 \leq j \leq l)$, where H is a torus, by Proof of [1], Lemma 7.1 or [6], Lemma 2.3.

Put $S_{k}=Z_{m_{1}} \times \cdots \times Z_{m_{k}} \times S_{k+1}^{1} \times \cdots \times S_{l}^{1} \times H$ for $0 \leq k \leq l$. By the preceding discussion we have an isomorphism

$$
R\left(S_{k}\right) \otimes_{R\left(S_{k-1}\right)}^{\otimes} K_{S_{k-1}}^{*}(Z) \rightarrow K_{S_{k}}^{*}(Z)
$$

for $1 \leq k \leq l$ inductively. This completes the proof of Lemma 2.1.
Proof of (1.1). $\quad K_{T}^{*}(Z) \underset{R(T)}{\otimes} K_{T}^{*}(-)$ is a cohomology theory since $K_{T}^{*}(Z)$ is $R(T)$-projective and $K_{T}^{*}\left(Z \times_{-}\right)$is so. Using the Segal's spectral sequence [5] and the natural transformation $\mu: K_{T}^{*}(Z){\underset{R}{R}(T)}^{\otimes} K_{T}^{*}(-) \rightarrow K_{T}^{*}\left(Z \times_{-}\right)$, compare these cohomology theories. Then Lemma 2.1 shows that μ induces an isomorphism of the E_{2}-terms of these spectral sequences. Therefore this concludes (1.1).

3. Proof of (1.2)

Let T be a maximal torus of G. According to [6], §3 it suffices to show that

$$
\begin{equation*}
\mu_{G}=\mu: R(T) \underset{R(G)}{\otimes} R(T) \rightarrow K_{T}^{*}(G / T) \text { is an isomorphism } \tag{3.1}
\end{equation*}
$$

for a proof of (1.2). However, from Proof of [6], Theorem 3.6 we see that
(3.2) μ_{G} is a monomorphism for any compact, connected Lie group G such that $\pi_{1}(G)$ is free.

Therefore it suffices to prove that μ_{G} is an epimorphism.
Now, since $R(T)$ is a projective $R(G)$-module [4], we see by (1.1) that

(3.3) If (3.1) is true then the T-space G / T is a basic T-space.

(1) Proof for $U(n)$. This follows from [5], Proposition (3.9) (See [6], Corollary 3.7).
(2) Proof for $S U(n)$. Let T be a maximal torus of $U(n)$ and put $S T=$ $T \cap S U(n)$. Then $S T$ is a maximal torus of $S U(n)$ and $S U(n) / S T \cong U(n) / T$ as T-spaces.

By (1) and (3.3), $U(n) / T$ is a basic T-space and so

$$
\begin{aligned}
K_{S T}^{*}(U(n) / T) & \cong K_{T}^{*}(T / S T \times U(n) / T) \\
& \cong R(S T) \otimes_{R(T)} K_{T}^{*}(U(n) / T) \\
& \cong R(S T)_{R(U(n))} R(T) .
\end{aligned}
$$

Hence we get the following commutative diagram

where $i: S U(n) \rightarrow U(n)$ is the inclusion of $S U(n)$, and this shows that μ is surjective for $G=S U(n)$.
(3) Proof for $S p(n)$. We regard $S p(n)$ as a closed subgroup of $U(2 n)$ by the canonical embedding. Then $S p(1)=S U(2)$ and so the proof for $S p(1)$ follows from (2). We shall prove the case of (3) by induction on n.

Suppose $S p(k)$ satisfies (3.1) for $1 \leq k \leq n-1$. Then (3.1) is true for $S p(n-1) \times S p(1)$. Because

$$
\begin{aligned}
K_{T_{1} \times T_{2}}^{*}\left(S p(n-1) \times S p(1) / T_{1} \times T_{2}\right) & \cong K_{T_{1}}^{*}\left(S p(n-1) / T_{1}\right) \otimes K_{T_{2}}^{*}\left(S p(1) / T_{2}\right) \\
& \cong R\left(T_{1} \times T_{2}\right)_{R(S p p(n-1) \times S p(1))} R\left(T_{1} \times T_{2}\right)
\end{aligned}
$$

where T_{1} and T_{2} are maximal tori of $S p(n-1)$ and $S p(1)$ respectively, by the inductive hypothesis and [3]. Therefore, by [6], Theorem 3.6 $S p(n-1) \times S p(1) / T$ is a basic $S p(n-1) \times S p(1)$-space and so
where T is the standard maximal torus of $S p(n)$. Hence it suffices to show that

$$
R(T) \underset{R(S p p(n))}{\otimes} R(S p(n-1) \times S p(1)) \rightarrow K_{T}^{*}(S p(n) / S p(n-1) \times S p(1))
$$

is an isomorphism, because of $K_{T}^{*}(S p(n) / S p(n-1) \times S p(1)) \cong K_{S_{p(n-1)}^{*} \times S_{p(1)}}^{*}$ $(S p(n) / T)$.

Put $R(T)=Z\left[t_{1}, \cdots, t_{n} ; t_{1}^{-1}, \cdots, t_{n}^{-1}\right]$, then $R(S p(n))=Z\left[\sigma_{1}, \cdots, \sigma_{n}\right]$ as a subring where σ_{k} is the k-th elementary symmetric function in the n variables $t_{1}+t_{1}^{-1}, \cdots, t_{n}+t_{n}^{-1}$ ([2], §13, Theorem 6.1).

Define the ring homomorphism $\phi: R(S p(n))[\theta] \rightarrow R(S p(n-1) \times S p(1))$ by the restriction $R(S p(n)) \rightarrow R(S p(n-1) \times S p(1))$ and the correspondence $\theta \mapsto t_{n}+t_{n}^{-1}$. Then we have

Lemma 3.1. $R(S p(n))[\theta] /\left(\sum_{j=0}^{n}(-1)^{j} \sigma_{j} \theta^{n-j}\right) \cong R(S p(n-1) \times S p(1))$.
Proof. By the definition of ϕ, ϕ is surjective obviously.
If $\phi(f(\theta))=0$ for $f(\theta) \in R(S p(n))$ then $\left(\theta-\left(t_{n}+t_{n}^{-1}\right)\right)$ divides $f(\theta)$. By symmetry, $\left(\theta-\left(t_{j}+t_{j}^{-1}\right)\right.$) divides $f(\theta)$ for $1 \leq j \leq n$. Hence $\sum_{j=0}^{n}(-1)^{j} \sigma_{j} \theta^{n-j}$ divides $f(\theta)$. This shows Lemma 3.1.

The following lemma completes the proof for $S p(n)$ by the preceding discussion.

Lemma 3.2. $\quad \mu: R(T) \underset{R(S p(n))}{\otimes} R(S p(n-1) \times S p(1)) \rightarrow K_{T}^{*}(S p(n) / S p(n-1) \times$ $S(1))$ is an isomorphism for any $n \geq 2$.

Proof. $S p(n) / S p(n-1) \times S p(1)$ is homeomorphic to the projective space of dimension $n-1$ over the quaternion number field. By the canonical embed$\operatorname{ding} P^{n-2}(\boldsymbol{Q}) \subset P^{n-1}(\boldsymbol{Q})$ we have an equivariant embedding $i: S p(n-1) / S p(n-2)$ $\times S p(1) \subset S p(n) / S p(n-1) \times S p(1)$.

For simplicity we write $P^{n-1}(\mathbb{Q})$ for $S p(n) / S p(n-1) \times S p(1)$. Then we have
(a) $\quad \mu^{\prime}: R(T) \underset{R(S P)(n-1))}{\otimes} R(S p(n-2) \times S p(1)) \xrightarrow{\cong} K_{T}^{*}\left(P^{n-2}(\boldsymbol{Q})\right)$
by the inductive hypothesis and
(b) $\quad \mu: R(T) \underset{R(S p(n))}{\otimes} R(S p(n-1) \times S p(1)) \rightarrow K_{T}^{*}\left(P^{n-1}(\mathbb{Q})\right) \quad$ is a monomorphism by the analogous argument to the proof for (3.2). Moreover the T-space $P^{n-1}(\boldsymbol{Q})$ $-P^{n-2}(\boldsymbol{Q})$ is isomorphic to the representation space W of $t_{1} t_{n}^{-1} \oplus \cdots \oplus t_{n-1} t_{n}^{-1} \oplus$ $t_{1}^{-1} t_{n}^{-1} \oplus \cdots \oplus t_{n-1}^{-1} t_{n}^{-1}$.

Consider the exact sequence for the pair $\left(P^{n_{-1}}(\boldsymbol{Q}), P^{n_{-2}}(\boldsymbol{Q})\right)$, then by Lemma 3.1, (a) and (b) we obtain the diagram

where the row is an exact sequence, φ_{*} is the Thom isomorphism and the definition of θ^{\prime} and $\sigma_{j}^{\prime},(0 \leq j \leq n-1)$, are similar to that of θ and σ_{j}. In this diagram we see that i^{*} is surjective from the fact that $i^{*}(\mu(\theta))=\mu^{\prime}\left(\theta^{\prime}\right)$, and furthermore we can easily check that $j^{*} \varphi_{*}(1)=\left(t_{n}^{-1}\right)^{n-1} \sum_{j=0}^{n=1}(-1)^{j} \sigma_{j}^{\prime} \mu(\theta)^{n-j-1}$. Therefore we see that μ is surjective. q.e.d.

This completes the induction.
(4) Proof for G_{2}. $\quad G_{2}$ contains $S U(3)$ as a closed subgroup of maximal rank and the homogeneous space $G_{2} / S U(3)$ is homeomorphic to the unit sphere S^{6}.

Let T denote a maximal torus of $S U(3)$ and put $R(T)=Z\left[t_{1}, t_{2}, t_{3} ; t_{1}^{-1}, t_{2}^{-1}\right.$, $\left.t_{3}^{-1}\right] /\left(t_{1} t_{2} t_{3}-1\right)$. Moreover we denote the representation space of $t_{1} \oplus t_{2} \oplus t_{3}$ by W and the unit sphere in $\boldsymbol{R} \oplus W$ by $S(\boldsymbol{R} \oplus W)$ where \boldsymbol{R} is the real number field.

Then we see easily that
Lemma 3.3. $\quad G_{2} / S U(3)$ is homeomorphic to $S(R \oplus W)$ as T-spaces.
The following lemma completes the proof for G_{2} by the same reason as for $S p(n)$.

Lemma 3.4. $\quad \mu: R(T) \underset{R\left(\sigma_{2}\right)}{ } R(S U(3)) \rightarrow K_{T}^{*}\left(G_{2} / S U(3)\right)$ is an epimorphism.
Proof. Consider the exact sequence for the pair consisting of the unit ball $D(W)$ and the unit sphere $S(W)$ in W, then we have the diagram

$$
\begin{gathered}
0 \rightarrow K_{T}^{*}(W) \xrightarrow{\varphi_{*} \prod_{T}^{*}} K_{T}^{*}(D(W)) \xrightarrow{i^{*}} K_{T}^{*}(S(W)) \rightarrow 0 \\
R(T)
\end{gathered}
$$

where the row is exact and φ_{*} is the Thom isomorphism, and then we get

$$
K_{T}^{*}(S(W))=R(T) /\left(\lambda_{2}-\lambda_{1}\right)
$$

since $j^{*} \varphi_{*}(1)=\lambda_{2}-\lambda_{1}$ where λ_{1} and λ_{2} are the ring generators of $R(S U(3))$ as in [2], §13, Theorem 3.1.

Next we divide $S(\boldsymbol{R} \oplus W)$ into two closed T-subspaces $D^{ \pm}$as follows: Put $D^{ \pm}=\left\{\left(r, z_{1}, z_{2}, z_{3}\right) \in S(\boldsymbol{R} \oplus W) ; r \geq 0\right.$ or $\left.r \leq 0\right\}$ and then $D^{+} \cup D^{-}=S(\boldsymbol{R} \oplus W)$ and $D^{+} \cap D^{-}=S(W)$. Consider the diagram obtained by the Mayer-Vietoris exact sequence for the triple $\left(S(\boldsymbol{R} \oplus W) ; D^{+}, D^{-}\right)$then we obtain the diagram

where the row is exact and $j_{ \pm}: D^{ \pm} \rightarrow S(\boldsymbol{R} \oplus W)$ and $i_{ \pm}: S(W) \rightarrow D^{ \pm}$are the inclusion maps. Then we see that $K_{T}^{*}(S(\boldsymbol{R} \oplus W))$ is isomorphic to the submodule of $R(T) \oplus R(T)$ over $R(T)$ generated by (1,1) and ($\left.\lambda_{2}-\lambda_{1}, 0\right)$, and μ satisfies $\left(j_{+}^{*}, j_{-}^{*}\right) \mu(1 \otimes 1)=(1,1)$ and $\left(j_{*}^{*}, j^{*}\right) \mu\left(1 \otimes \lambda_{1}\right)=\left(\lambda_{1}, \lambda_{2}\right)$. This shows that μ is surjective.

Osaka City University

References

[1] L. Hodgkin: An equivariant Künneth formula in K-theory, Universty of Warwick preprint, 1968.
[2] D. Husemoller: Fibre Bundles, McGraw-Hill, Inc., 1966.
[3] H. Minami: A Künneth formula for equivariant K-theory, Osaka J. Math. 6 (1969), 143-146.
[4] H. Pittie: Homogeneous vector bundles on homogeneous spaces, Topology 11 (1972), 199-204.
[5] G. Segal: Equivariant K-theory, Inst. Hautes Etudes Sci. Publ. Math. (Paris) 34 (1968), 129-151.
[6] V.P. Snaith: On the Künneth formula spectral sequence in equivariant K-theory, Proc. Cambridge Philos. Soc. 72 (1972), 167-177.

