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Let MUy( ) be the (reduced) complex bordism theory defined on the
Boardman’s stable category [4] of CW-spectra. Recall that MU, (=MU«(S°))
=Z[x,, %,, ---], deg x;=2¢. In [3] Baas has constructed a tower of homology
theories

such that MU{n>y (=MUn)«(S%))=Z[x,, -++, x,], which factorizes the Thom
homomorphism p: MUy( )—>Hx( ). When Td(x,)=1 and Td(x;)=0 for all
j=2 (it is possible to choose ring generators x; of MUy with such properties),
we shall write MU r;{n>«( ) instead of MU<{n>4( ) for emphasis. MU r,<1D4( )
can be identified with the connective homology K-theory k4( ). Then the
tower of homology theories

MU,( ) == MUznpa( ) -+ MUz C14( ) = k()

factorizes the homomorphism §: MUy( )—k«( ) lifting the Thom homomor-
phism uo: MU( )—>Kx( ).

Under the assumption that X is a finite CWW-complex, Conner, Smith and
Johnson ([6] and [9]) investigated conditions that the Thom homomorphism g :
MU4(X)— H4(X) is an epimorphism, and that the homomorphism §: MU4(X)
—>ky(X) is an epimorphism. In the present paper we try to extend these results
to a CW-spectrum.

In §1 we study some basic properties of CW-spectra and homology theories
MU<n)4( ) for the sake of our later references.

Landweber [10] indicated that there exists a M U -resolution for a CW-spec-
trum as well as a finite CW-complex (Theorem 1). In §2 we construct two
spectral sequences
0) B o(X)=TorlP(MUny, MUx(X))= MU<nd4(X)

and
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i) EPI[X]=Extz(K«(X), Z2)= K*(X),
using a connective MUy-resolution for a connective CW-spectrum X. The
second spectral sequence yields the following universal coefficient sequence

0 — Ext (K 4_,(X), Z) - K*(X) - Hom (K 4(X), Z) = 0

(Theorem 3).
In §3 we give necessary and sufficient conditions that p: MU(X)— H «(X)

is an epimorphism (Theorems 4 and 5) and that §: MUy(X)— k«(X) is an
epimorphism (Theorem 7). Finally we give a new proof of Johnson’s theorem

[8] (Theorem 8).
In a subsequent paper with the same title we will discuss conditions under

which uln>: MU«(X)—> MU{n>4«(X) is an epimorphism for a general #=>0.

1. Homology theories MU{n>,( ) of C W-spectra

1.1. Let C be the category of based CW-complexes and S the stable
category of CW-spectra defined by Boardman [4] (and also see [11]). We may
regard a based CW-complex as a CW-spectrum via the canonical inclusion
functor J: C—S. A CW-spectrum X is said to be l-connected if

7{(X) = {=°, X}, = {3/, X}, =0  foralli<L

When a CW-spectrum X is /-connected for some /, we say X is connective. Notice
that a based CTW-complex is (—1)-connected.

Let X be a I-connected CW-spectrum. We define an additive cohomology
theory on C by

h*(B) = {JB, X}*.

According to Brown’s theorem [5] there exists an Q-spectrum {Y,} such that
{/B, X}*=[B,Y,]. Remark that Y, is a (/4p)-connected CW-complex. Any
n-connected CW-complex is homotopy equivalent to a certain CW-complex
having no cells in dimensions <7--1 (except the base point). So we can assume
that Y, hasno cells in dimensions </4-p+41. Let Y=U J,Y, be the CW-
spectrum associated with the prespectrum {Y,}. Since J,Y,is a CW-spectrum
without cells in dimensions </-+1, Y has no cells in dimensions <I+41.
Furthermore the associated spectrum Y is homotopy equivalent to X [11,
Theorem 14.4]. Thus we obtain the following proposition [4].

Proposition 1. Let X be a l-connected CW-spectrum. Then there exists a
CW-spectrum Y such that
1) Y has no cells in dimensions less than 141 (except the base point), and
it) Y is homotopy equivalent to X.
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Let X be a finite CW-spectrum and {X?} the skeleton filtration of X. By
an induction process on p we shall construct the function dual D(X?) of X? such
that the number of z-cells in X? coincides with that of (—#)-cells in D(X?).
Assume that D(X?7") satisfies the required property. X?/X?#7'is a finite wedge
of p-spheres, ie., X?/X?'=V3?. We can take VX7?as D(X?/X? )=
D(VZ?), because {Z, VE ?}=P{Z,2 ? ={VZ?Z, 3} ={Z,F(\V=*, 2} for
arbitrary CW-spectra Z. So D(X?/X*#7") satisfies the required property. Let
8: 3T'D(X*)=D(ZX?")—>D(X?/X*?*)= V37 be the induced morphism of
the boundary X?/X?"*—>3X?"'. We define the function dual D(X?) of X? as
the mapping cone of 3. As is easily seen, there is a one to one correspondence
between the set of n-cells in X? and that of (—=n)-cells in D(X?). By choosing
a large enough skeleton of X we get

Lemma 2. Let X be a finite CW-spectrum. The function dual DX of X
can be taken as a finite CW-spectrum such that the number of n-cells in X coincides
with that of (—mn)-cells in DX.

1.2, Let MU denote the unitary Thom spectrum. We recall that
mx (MU) = Z[x,, x,, -]
where x;En,;,(MU). Baas [3] has constructed a tower of CW-spectra
(1.1) MU = MU0 —-++—> MUn) —---— MU0>
such that
wx(MUBY) == Z[x,, -+, x,] .

Denote by p,, », 0=n<m=co, the canonical morphism MU{m>—MUn). -

Let us denote by MUy( ) (=MU{0>4( )) and MU{n)«( ) the (reduced)
homology theories represented by the spectra MU and MU<n) respectively.
Proposition 1 implies that

(1.2) MU{m) (X) =0 for j=! and 0=Em= oo,

when X is I-connected. We have the following basic relation between MU<n)4( )
and MU{n—1>4( ) [3]: There is a natural exact sequence
Xy T<n>

(1.3) o> MU (X) —> MULBD ;1,(X) —> MUn—15,,,(X) ==+
for any CW-spectrum X where 7<{n>=(p, »-,)+ and -x, denotes the multiplica-
tion by «,,.

Let K(Z) denote the Eilenberg-MacLane spectrum. The Thom map
p: MU— K(Z) admits a factorization
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/‘L“’,O Vo
MU —5 MU{0> — K(Z).

v, induces an isomorphism (v,)«: 7«(MU0>)— z4(K(Z)), and hence », is a homo-
topy equivalence. Therefore MU<0>4«( ) becomes the ordinary (reduced)
homology theory, i.e.,

(1.4) MU>«( ) == Hx( ).

So we may regard (g o)« as the Thom homomorphism p. Let us denote by
u<ny and v{n> the homomorphisms (. »)x and (u. )« respectively.
Now we shall prove two lemmas using the exact sequenence (1.3).

Lemma 3. Let X be a CW-spectrum such that MU<n),(X) is a torsion free
abelian group for i<k. Then 7<n>: MU<ny (X)—>MUn—1>,(X) is an epimor-
phism for j<k-+2n-+1.

Proof. In the following commutative diagrain

MU 1K) 5 MU~ 111301 X) = MUBX) 25 MU 10 X)

MU (X)®0 5 MU X)@0

for i<k, the upper row is exact and -x,: MUnDx(X)RQR0 - MUn>+(X)Q0
is a monomorphism by virtue of Dold’s theorem [7]. Hence we get the required
result immediately. ’

Lemma 4. Let X be a connective CW-spectrum. If uln>: MUy(X)—
MU<ny(X) are epimorphisms for all i <k, then uin+1>: MU (X)—>MU<n+1>;(X)

are also so for the same i.

Proof. By an induction on i, i<k, we shall prove the lemma. For
sufficiently small 7, u{n+ 1), is an epimorphism because of (1.2). Next, assume
that u{n-+ 1), are epimorphisms for all 7, < j—1 and j<k. Consider the follow-
ing commutative diagram

MU j—2n- z(X) dk MU;(X) “<n>
ll"<n+1>1 ~an-2 Jvll/<n+l>\‘1
MUGH1; 10 s(X) — MUG15,(X) 3 MU, (X)

*Xntg ”+1>,

in which the bottom row is exact. uln+41>,_,,-, and uln>; are epimorphisms
by the assumptions. By chasing the above diagram we see easily that u{n+-1>;
is an epimorphism.
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1.3. Let X be a connective CW-spectrum and 0<n<m=<oco. We observe
the Atiyah-Hirzebruch spectral sequences {E<{m)"(X)} for MU{m>«(X). Let
{F ,MU{m>4«(X)} be the usual increasing filtration of MU{m>«(X) defined by
skeletons. Note that F,MU{m>4«(X)=0 for sufficiently small j. As is well
known, we have isomorphisms

ECmdE o(X) = H (X)@MUmy
and
EXm)% +(X) = F,MUm)+(X)[F,- .MU 4(X)

of MU(m>4-modules. Since the Atiyah-Hirzebruch spectral sequences for
MU{m>(X)RQ collapse, the differentials of {E{m>"(X)} are torsion valued.

As an elementary result we have that

E{m)} o(X) = E<m>3o(X)  for j=<k+3, and

(15) E(m} o(X) = E<myy (X)  for p=k,

provided X is a connective CW-spectrum such that H,(X) is torsion free abelian
for i<k.

Proposition 5. Let X be a connective CW-spectium and 0=n<m=<oco. If
the Atiyah-Hirzebruch spectral sequence for MU (X) collapses, then (., »)x induces
an isomorphism

(s, m)x: M U<”>*MU(§Z> MULmD+(X) = MUn>«(X) .

Proof. Since the spectral sequence {E"(X)=E{)"(X)} for MU«(X)
collapses, {E<n>"(X)} collapse for all z=0. On the other hand,

TorMV<m>s(MUnpy, H (X)Q@MU{m>y) = TorfZ(MU{n>x, H (X)) =0
for 0=n<m=oco. Here we have the commutative diagram

0= MUG, @ F, MUm(X) > MU @ F MUm«(X)

V V
0 —— F, . MU<nD«(X) > F,MU{ny4(X)
~ MUy, @ (H(X)@MUSm)s) 0
!
> H (X)QMU{ny——> 0

with exact rows. By an induction on p we can show that

MUy, @ F ,MUGM(X) — F MUm+(X)
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are isomorphisms for all p. Passing to the direct limit, it follows that
(B )s: MU ®  MUGmW(X) - MUCH>4(X)
is an isomorphism.

Proposition 6. Let X be a connective CW-spectrum and 1 =m= o,
I) The following conditions are equivalent:
0) Hy(X) is a free abelian group;
1) MUm>(X) is a free MUmy-module;
ii),, MU{m>«(X) is a projective MU {m)-module.
IT) The following conditions are equivalent:
0) Hy(X) is a torsion free abelian group;
ii),, MUm>(X) is a flat MUm>y-module.

Proof. 0)—1i),, and 0) —iii),: Since the spectral sequences {E{m>"(X)}
for MU{m>+(X) collapse, there exist exact sequences

0— F, ,MUCm>4(X) = F,MUm>4(X) — H (XYDMUmdy — 0
of MU{m>-modules for all p. On the other hand, we note that
Tor!U<m>+(H (X)QMU{m>+, C) = Torf(H ,(X), C), k=0,

for any MU{m>4 -module C. Then 0)—1i),, and 0) —iii),, follow immediately.

iii),,—0)": By an induction on p we shall show that H ,(X) is torsion free
abelian. Assume that H (X) is torsion free abelian for j<p—1. Because of
(L.5) v<{m>: MU<m>(X)—>H(X) is an epimorphism for /< p+42. Consider

the following commutative square

(2, ® MUm>«(X)),~(©Q, @ MUm(X),

y v
H (X) > H,(X)QQ .

The upper horizontal map is a monomorphism and the right vertical one is an
isomorphism (Proposition 5). So we find that the bottom horizontal map is a
monomorphism, i.e., H ,(X) is torsion free abelian.

1), —ii),, is obvious.

ii),, > 0): Hy(X) is torsion free abelian because a projective MUm>y-
module is flat. Making use of Proposition 5 we get an isomorphism

Wmy: 2, @ MUCmy(X) > Hy(X).

Then the projectivity of MU{m>4(X) implies that H,(X) is free abelian.
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2. Spectral sequences arising from MU,-resolutions

2.1. First we introduce (connective) MU{m>-resolutions, 0=<m= oo, for
a (connective) CW-spectrum X.

I) A partial (connective) MU{my-resolution of X of length 1 is a cofibration
of (connective) CW-spectra

W—l-»XcY

such that
1) MUm>4(W) is a projective MU{m)>4-module, and
i) fa: MUmD>(W)— MUm)4(X) is an epimorphism.
II) A MU<{m>y-resolution of X is a diagram consisting of CW-spectra
and morphisms

X=X cXcCc-cCcX,CX; ,C-
N

NN
Wo W1 Wk

such that W,— X,C X,,, is a partial MU<{m)-resolution of X, (of length 1)
for each £=0.

It is said to be connective if Wy, X, and the union X.= U X, of X, are all
connective.

ITII) We say that a (connective) MU<{m)y -resolution {Xg, W;} of X has
length | when MU{m>.(X,) is a projective MU{m),-module.

Note that a MU<{m)4-resolution {X,, W;} of X yields a projective M U{m> -
resolution

(2.1) = MU b(Wi) =+ — MU 4 (W) = MU (W)
— MU{m>«(X) — 0

of MU{m>+(X).
Let X be a connective CW-spectrum and W(X)= {X,, W,} a connective

MU y-resolution of X. The union X (=X ¥*®)of X, has the following property.
Lemma 7. X, is contractible.

Proof. Let X be l-connected. First we shall show by an induction on k
that

p: MU/X,) — H (X,)

is an epimorphism for each j</4-3k. Assume that p: MU (X,)— H;(X}) is an
epimorphism for j<I+4-3k. Then H;(X,,,) is free abelian for the same j. (1.5)
implies that p: MU(Xg.,)—H;(Xs,) is an epimorphism for 7= /43 (k+1).
This means that H ;(X,)— H (X.,) is a zero map for j </43k. Therefore we
get
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Hy(X.) = lim Hy(X,) = 0.
—_—

Consider the Atiyah-Hirzebruch spectral sequence {E’} for z4(X.). Since
E*=H(X..; #+)=0 and X., is connective, we can easily see that z4(X.)=0 and
hence X.. is contractible.

Next we discuss the existence of (connective) MUy-resolutions. The
following result was given by Landweber [10] (and also see [1]).

Proposition 8. Let X be a (I-connected) CW-spectrum. Then there exists a
partial (I-connected) MU y-resolution

W-XcY

of X of length 1. In particular, W can be taken as a wedge sum of finite CW-
spectra.

Proof. Assume that X is /-connected. By Proposition 1 we may assume
that X has no cells in dimensions </+1. Take any element x& MU ,(X)==
{2, XAMU}, p>1. Then there exists finite CW-subspectra X’ and E, of X
and MU respectively and x is factorized in the form

/
st X L X'ANE,CXAMU.

In virtue of Lemma 2 we may insist that the function dual DX’ of X’ has no cells
in dimensions > —(/+1). So S?ADX’is a finite CW-spectrum of dimension
<p—I—1. Since MU?"*"'=U J,,MU(n)?~*-***" we can choose E, to be in
the form J,,MU(n)?~*7****. Putting W,=3? ADE,, it is a finite CW-spectrum
having no cells in dimensions < /41, and hence I-connected. Since H (M U(n))
is free abelian, Proposition 6 implies that MU,(W,) is a free MU,-module. Let
fz: W,=3? ADE,— X’C X be the dual morphism of x’. By construction we
see that

xeIm {(f.)x: MUL(W.)>MU(X)} .

Put W=VW, and f=Vf,: W=VW,—X where x runs over a set of
generators for MUy(X). As is easily seen,
i) Wisal-connected CW-spectrum such that MUy (W) is a free MUx-module,

and
i) fx: MU(W)— MU4(X) is an epimorphism. Consequently, the cofibration

W-—>XC Y forms a partial /-connected MUy -resolution of X.

By an iterated application of Proposition 8 we have the following result
which is the extension of Conner-Smith’s theorem [6].

Theorem 1. Let X be a (connective) CW-spectrum. Then there exists a
(connective) MU y-resolution of X.
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2.2. Let X be a connective CW-spectrum and W(X)= {X, Wi} s, a con-

nective MUj-resolution of X. By setting X,=X,.,/X, and X.=X_/X, we
define an increasing filtration {X,} of X.. Fix n, 0<n<co, and observe the
spectral sequence {E<n)"(W(X))} of MU<n)>4«(X) associated with the filtration
{X4} (see [1] and [6]). Making use of Lemma 7 we define an increasing filtra-

tion

of MU<{n>«(X) by

FYMUn,(X)

= Im ‘[MU<”>I=+1(‘Xp+x/}fo)_> MU (X[ X)) == MUn>(X)} .

By definition of the spectral sequence we have

(2.2)

and
(2.3)

D<”>11:.u = MU<n>p+q+l(Xp+1/X0)
Enyy,, = MU<n>p+ﬂ+1(Xp+1/Xp) = MU<'”>1>+<I( Wp)

lim ECnyy. = Endyq = FY MU 1o X)FEMUM 51 f X)

r>p

The differential operator d<{n)' is defined as the composition E<{n); ,—

D<ndy_y,q— E<(nD}_1,4. Since the following diagram

E<”>}:.a _> D<n>11:—1. ¢ > E<n>zl:—1.v

~ ~

MU o W,) — MU 1o X ) —> MU 1o i(W,-)

is commutative, the E*-term is the homology of the complex

- MU<n>*+p(Wp) —oo> MUy (W) = MUn«(W,) = 0.

By proposition 5 u<z) induces an isomorphism

for e

Kn>: MU @ MUL(W,) — MUGn»(W,)
ach p=0. On the other hand, we recall that

— MUy, (W,) == MU(W,) > MU(X) = 0

is a free MUy-resolution of MU(X). At present it follows immediately that

En);.q = Torg!7(MUnYy, MUx(X)) .

Considering the commutative square

MUn>, x?i MU (W,) - MU<{n>y ggM Ux(X,)

) |
MUnp(W,) ——> MU<np«(X,),



554 Z. YOSIMURA

it is trivial that
F¥MUnY(X) == Im {&Kn): MU<n>*‘(§) MUW(X) >MU<n>(X)} .

And the edge map of the spectral sequence coincides with the reduced map
WKny: MUnw @ MU(X)— MUCn4(X).

Next we shall show that the spectral sequence {E<n)"(W(X))} is indepen-
dent of the choice of a connective M Uj-resolution W(X) of X.

Let W(X)= {Xy, Wi} and V(Y)={Y,, V,} be connective MU -resolutions
of X and Y respectively, and f: X—Y be a morphism of CW-spectra. Then
there exist a connective MUy-resolution U(Y)= {Z;, U} of Y and morphisms
¢: W(X)— U(Y) and +r: V(Y)— U(Y) of connective MUy-resolutions which
lift f and 1y respectively. Moreover we can take as U, CW-spectra of the
form W,V V,V U}, Thus we have a family {Z,, U}, ¢x, Vre} s, of connective
CW-spectra and morphisms such that
1) Up=W,VVVU,—>Z,CZ,,, is a partial connective M Uy-resolution of Z,
of length 1, and
ii) the following diagram

Wk — Xk c Xk+1
ld’k l¢k+1

WiNV NUt=Up— Z, C Zpy,
I T‘l’k T‘I’k+1

Ve—> Y, C Yk+1

is commutative where Z,= Y, ¢,=f and Jr;=1y.

In fact, we shall construct the desired family {Z;, U}, ¢, ¥} by an induc-
tion process. Assume that there is a family {Z;, Uj_,, ¢;, ¥;}osjse With the
required properties. By Proposition 8 there exists a partial connective MUx-
resolution

0/
Ul—>ZCZin
of Z,. Letf,: U=W,VV,\VU),— Z, be the morphism induced by ¢, J; and
0i. We define a CW-spectrum Z,, as the mapping cone of §,. Clearly

O
Up— Z,CZ4y,

is a partial connective M Uy-resolution of Z,. Besides we see that ¢, and
induce the desired morphisms ¢,,, and V., respectively.

The morphisms ¢: W(X)— U(Y) and +r: V(Y)—>U(Y) of connective
MU -resolutions yield morphisms
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{b%} Wi}
{EnYy (W(X))} — {E<n)"(U(Y))} «— {E<n)"(V(Y))}
of spectral sequences and
Fpds Fpry

FYMU4(X) 225 FIMU (V) <255 FYMUn)(Y)

of the increasing filtrations. Note that F,¢$4 and F,\Jr4 coincide with fy and id
respectively. From the identification of the E*-terms we find that

¢2 = TorMP(MU{nds, fx) and W& = TorMU(MU<ndy, id) .

So +rj are isomorphisms for all , 2<7r=<co. From the bijectivity of § it
follows immediately that FYMU n)(Y)=FIMU<{n>«(Y).
Putting X=Y and f=1, we obtain that

E{ny"(W(X)) = E<n)"(V(X)) forall 7, 2<r=<oo
and

FYMUn>«(X)= FYMU<n>«(X)  for each p=0.
Thus the spectral sequence {E<n>"(W(X))} is independent of the choice of a
connective M Uj-resolution W(X).

In addition the above discussion shows the naturality of our spectral
sequence.

Theorem 2. Let X be a connective CW-spectrum and 0=n<oo. Then
there exists a natural spectral sequence {E{n)>"(X)} associated with MU<{n)+(X)
such that

E<n);.(X) = Torld{(MU<ny+, MUx(X)) .
As an immediate corollary of Theorem 2 we have

Corollary 9. Let X be a connective CW-spectrum and 0 =n<oo. If
TorYUs(MU{n)y, MUw(X))=0 for all p=1, then

Blny: MU<n>*‘(§ MU (X) = MU<n>«(X)
is an isomorphism.

2.3. Let K, and K* denote the complex homology and cohomology
K-theories, i.e., the Z,-graded (reduced) homology and cohomology theories
represented by the BU-spectrum. Now we discuss the duality between K (X)
and K*(X) for a connective CW-spectrum X. The Kronecker index gives a
natural homomorphism

(2.4) k: K*(X) — Hom(Kx(X), Z) .
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First we shall need the following special case [1].

Lemma 10. Let X be a connective CW-spectrum with H(X) free abelian.
Then k: K¥(X)—Hom(K«(X), Z) is an isomorphism.

Proof. Let {E’(X)} and {E,(X)} be the Atiyah-Hirzebruch spectral
sequences for K,(X) and K*(X) respectively. The duality homomorphism
k: K*(X)—Hom (K(X), Z) yields morphisms

' x,: E(X) - Hom(E"(X), Z)
for 2<r=<oo. Since Hy(X) is free abelian, the spectral sequence {E"(X)}
collapses and moreover

#,: H¥(X) - Hom (H«(X), Z)

is an isomorphism. This implies that the spectral sequence {E,(X)} collapses,
and then it is strongly convergent [2, Proposition 9]. Thus

E3*(X) = F’K*(X)/F** K *(X) and NF?’K*X)= {0},
where {F?K*(X)} is the usual decreasing filtration of K*(X) defined by
skeletons. Consider the following commutative diagram
0 > HY(X; Z) > KX(X)[F#*K*(X) - K*(X)[F*K*X) — 0
v V
0 — Hom(H (X; Z), Z) - Hom(F ,K+(X), Z) - Hom(F,-,K«(X), Z) = 0
with exact rows. We can show by an induction on p that
KH*X)[F?7 K¥(X) - Hom(F ,K«(X), Z)
are isomorphisms for all p. Remark that K*(X)=lim K*(X)/F?*'K*(X)
[2, (3.5) and (3.6)] and Hom (K«(X), Z)=lim Hom(F,K«(X), Z). We pass to
inverse limits and get that
x: K*(X) - Hom(K«(X), Z)

is an isomorphism.

By MUq4( ) we mean that MU,( ) is treated as Z,-graded by its even and
odd components. The homomorphism of coefficients

pe: MUyy — Z

induced by the Thom map uc: MU — BU may be identified (up to sign) with
the classical Todd genus. uc=7d makes Z into a Z,-graded MUy4-module,
and then denote it by Z,.

There exist a CW-spectrum of the form A=YV 4, and a morphism f: A—X
such that
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i) A, is a finite CW-spectrum with Hy(A4,) free abelian, and

i) fy: Kx(4)— K4(X) is an epimorphism.

(Cf., Proposition 8). On the other hand, a similar discussion to Proposition 5
shows that y. induces an isomorphism

(2.5) IEC: Zrdx@ MU**(B) d K*(B)

for any connective CW-spectrum B with H(B) free abelian. Therefore we find
immediately that

(2.6) pe: MUy(X) > K4(X)

is an epimorphism.

Let X be a connective CW-spectrum and W(X)= {X, Wy} s>, a connective
MU y-resolution of X. Since pc: MUy(X,)— K«(X,) is an epimorphism and
K (W) is free abelian, the sequence

(2.7) - K*+k(Wk) > K*+1(W1) g K*(Wo) g K*(X) -0

becomes a free Z-resolution of K(X). Associated with the increasing filtration
{X,=X,.,/X,} we have the spectral sequence {E,[X]} of K*(X) such that

D[] = K**(X,,,/X.)
E?[X] = K**"*(X 4,/ X,) = K**(W,) .
The E,-term is the homology of the complex
0 — K*(W,) = K**(W,) —+++— K**2(W,) —- .
By virtue of Lemma 10 the E,-term is the homology of the complex
0 — Hom(Ky(W,), Z) - Hom (K (W)), Z) —>-+- .
Hence it follows that
E3[X] = Ext(K4(X), Z).

The usual argument (cf., Theorem 2) shows that our spectral sequence is inde-
pendent of the choice of a connective M U,-resolution and it is natural.

Since E%'*[X]=0 for p=+0, 1, our spectral sequence {E,[X]} collapses, and
it is strongly convergent [2]. From an elementary discussion about spectral
sequences we obtain a universal coefficient sequence relating K and K*.

Theorem 3. Let X be a connective CW-spectrum. Then there exists a
natural exact sequence

0 — Ext(Ky_,(X), Z) > K*(X) - Hom (K (X), Z) - 0.
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3. CW-spectra with low MU,-projective dimension

3.1. Let X be a CW-spectrum and 0=n<m=co. Making use of Dold’s
theorem we have

Torp <" «(MUmp+QQ, MUm>«(X))
== Torf4sm> (MU (ndx, MUm)(X)Q0)
o= TorMy<m>(MU<nys, Hy(X; Q)QMU my)
== TopfsW(MU<n>+, Hy(X; Q)) = 0

for all p=1. This yields that

(3.1) TorZ<m>*(MU<{npy, MU<myy(X))
= Torpl{ 5" (MU<n>4QQ|Z, MU<mp+(X))

for all p=>1.

We denote by hom dimasy<,», MUm>«(X) the projective demension of
MU{m>«(X) as a MU{m>4-module. Now Conner-Smith’s theorem [6] is
extended to a connective CW-spectrum as follows (cf., [10]).

Theorem 4. Let X be a connective CW-spectrum. Then the following
conditions are equivalent:
0) hom dimpy MUH(X)<1;
I) the Thom homomorphism p: MU(X)— Hy«(X) is an epimorphism;
II) the Thom homomorphism p induces an isomorphism : ZM(? MU (X)—H(X);

IIT) TorMI(Z, MU, (X))=0 for all p=1.

Proof. We prove in the order: III)—II)—1I)—0)—III). “II)—>1I)” is
trivial. “IIT)—1II)” and “0)—III)” follow immediately from Corollary 9 and
(3.1).

I)>0): Let W—XcCY be a partial connective M U,-resolution of X.
By the surjectivity of p: MUw(X)— Hy(X), W—X CY forms a (partial) con-
nective Hy-resolution of X of length 1. Therefore MUx(Y) is a free MUy~
module by Proposition 6, so

hom dimy,, MU(X)<1 .

Let X be a connective CW-spectrum with hom dimyy, MU(X)=<1. Then,
by Theorem 4 and Lemma 4, u<n): MU(X)— MU<{n>«(X) is an epimorphism
for each n=0. This implies that a connective MU -resolution of X of length 1
forms a connective MU {n)4-resolution of X of length 1. Thus

(3.2) X admits a connective MU {n)y-resolution of length 1,

and hence
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(3.3) hom dimuy <us, MU {mp+(X) =1,
provided hom dimyy, MU«(X)<1.
The exact sequence 0—MU{nDy S MUn>y—>MUn—1>,—0 of
MU <{n>y-modules, 1 =n< oo, yields an exact sequence
0 — TorMg<m>+(MU<n— 154, MUn4(X)) - MU<ny4(X)
2 MUyw(X) — MUG—1>s, @  MUm(X)—0.
Combining this with (1.3) we get a natural exact sequence

(B4) 0> MUn—1x, @ MUZx(X) " MUGki— 154(X)

— TorMZ<r> (MU {n—1>x, MU<n>4(X)) — 0

[3, Theorem 5.3].

Let M be a MU<n>x-module and N and L - MU{n—1)4-modules. Every
MU{n—1>4-module may be treated as a MU<n)4-module via the map 7<{n):
MU<ny>y— MU<n—1>,. We have two strongly convergent spectral sequences
{E,}and {E,} associated with the same graded MU<{n—1>4-module such that

E%t = Ext‘,”wu<,,>.(M, EXt?wU<n—1>.(N» L))
and

E%? = Extyycprs,(TordV<»>*(M, N), L)

(cf., [12, (1.7)]). Replacing M and N by MU<{n>4«(X) and MU{n—1>, respec-
tively, we find that

(3.5) there exists a strongly convergent spectral sequence {E,} associated with
Ext¥ycns (MUn>(X), L) such that

720 = Extycp-15(Torg!V <" (MU {mp4(X), MU<n—1)y), L).

Proposition 11. Let X be a CW-spectrum and 1=n<oo. If
hom dimyry<,s MULnD>(X) =1, then
i) #n>: MU{n— 1>*‘w(<® MULn(X) —>MU<n—1>4(X) is an isomorphism,
>

and

ii) hom dimuyyc, 5 MU—1D4(X)<1.
Proof. Using (3.1) we get that

TorMy<r>s(MUn— 154, MU<np4(X)
= TorlgSe> (MU<n—154®0/Z, MUny4(X)) = 0

for all p=>1, and by means of (3.4) that
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7 MU= @ MU5(X) > MU<n—1>4(X)
is an isomorphism. In the spectral sequence {E,} of (3.5) we have
E2° = Extlycp—1>(MUn—1D4(X), L) and E2*=0
for ¢==0. This implies that
ExtdFcn_15>,(MUn—1>4(X), L) = Extif<,> (MU<n>4(X), L) = 0
for all p=2. So hom dimMu<n_1>.MU.<n— D(X)<1,

3.2. Let bu denote the connective BU-spectrum. The Thom map
we: MU — BU is lifted to a morphism

&: MU — bu
of ring spectra. The usual morphism w: MU — K(Z) coincides with the com-

position MU -—g—>bu—7~>K(Z) Let us denote by k4 the connective homology
K-theory represented by bu.
Using the Stong-Hattori theorem we obtain

Proposition 12. Let X be a connective CW-spectrum. p: MU (X)—Hy(X)
is an epimorphism if and only if v : ky(X)— Hy(X) is an epimorphism. -

ReMARK. Looking carefully at the proof given in [9] we can show that
p: MU {(X)—H j(X) are epimorphisms for all j <% if and only if 7: 2;(X)—H ;(X)

are so for the same j. (Or use Lemma 13).
As generators of the polynomial algebra MU, we can choose y;Em,,(MU)

such that
Tiy,)=1 and Tu(y;)=0 for j=2.

Whenever we restrict our interest to the CW-spectra MU<n)> with MU<{n) ==
Z[ ¥y ***,¥s), we denote them by MUy,{n>. The morphism {: MU — bu lifting
pe: MU — BU admits a factorization

- .
MUE MU 25 b

Since A, induces an isomorphism in the homotopy groups, A, is a homotopy
equivalence. Hence

(3.6) MUzLIDx( ) == k()

Then (p..,,)x may be regarded as the homomorphism .
Making use of Theorem 4, Propositions 11 and 12 and (3.3) we obtain
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Theorem 5. Let X be a connective CW-spectrum and 1=n<oo. The
following conditions are equivalent:
0) hom dimpy, MUx(X)=1;
0)a  hom dimrgrg,<uss MUraCns(X)<1;
0) hom dim,,k«(X)=1;
I) . p: MU(X)— H,(X) is an epimorphism,
IY  7: k(X)—> Hy(X) is an epimorphism.
Conner-Smith [6, Theorem 9.1 and Proposition 9.5] proved the following
theorem for a finite CWW-complex. Therefore we can show by taking the direct

limits that it is also true for any CW-spectrum. Neverthless we shall directly
prove it along the line of [6].

Theorem 6. Let X be a CW-spectrum. Then uc induces an isomorphism
e Zrg O MUyi(X) — K4(X)

and

Torf,‘,’,l{*‘(ZTd, MU**(X)) =0 fOf all Pgl.

Proof. Take a partial MU,-resolution W—-XCY of X. By Proposition 8
we may assume that W is a wedge sum of finite ClW-spectra. Consider the
following commutative diagram

0 — Tor{ ™ (Z 14, MUxx(X)) — ZTdM@ MUyx4(Y) —

!
0— K*+1(Y) -

v y
K«(W) - K«(X) - 0.

The vertical maps are all epimorphisms by (2.6), and in particular the center is
an isomorphism because of (2.5). Hence the bottom row becomes exact. Of
course the upper row is exact. With an application of “four lemma’’ we see that
the right vertical map is an isomorphism. Thus

Pc: Zrd‘@ MU**(X) - K*(X)

is an isomorphism for any CW-spectrum X. Since this means that the left
vertical map is also an isomorphism, we get

Tor¥{*™(Z 14, MU44(X))=0.

And a routine discussion involving an induction shows that

Tor)d*(Zrq, MU44(X))=0 for all p=1.



562 Z. YOSIMURA

The following theorem is the extension of [9, Theorem 2] to a connective
CW-spectrum.

Theorem 7. Let X be a connective CW-spectrum. The following conditions
are equivalent:
0)  hom dimpy, MU(X)<2;
I) §: MUW(X)— k«(X) is an epimorphism;
II) ¢ induces an isomorphism §: ky 1(1217) MU(X)— ki(X);
III) TorMy x *(kyy MU(X))=0 for all p=1;
IV) TorMY*(Z, MU«(X))=0 for all p=1.

Proof. We prove in the order: IV)—III)—II)—»I)—0)—IV). “II)-I)”
is trivial, and “IIT)—II)” and “0)—IV)” follow from Corollary 9 and (3.1).

I)>0): Let W—XCY be a partial connective MUy-resolution of X.
The surjectivity of &: MU4(X)— ky(X) implies that W—X CY is a partial
connective Ry-resolution of X. Remark that k,(Y) is free abelian. By the aid
of Lemma 3, Proposition 12 and Theorem 4 we see that hom dimy,;,, MUL(Y) =1,

and hence
hom dimpy, MU(X)=2 .
IV)—1III): The proof is due to [6]. From the exact sequence 0— &y
.(—1:—x>')k** — Z14—>0 and Theorem 6 we obtain an isomorphism
- (1—2,): TorgG3 (Ras» MUx(X)) — ToryEi(kss, MUxs(X))

for each p=1. Take any a&TorMI*(ky, MU4(X)), p=1. Then there exists
B=1{Bqss:} EE TorMﬁ'z, (Rsy MU«(X)) such that (1—x,)-B=a. Since B, ,»

=LBion=0 for large N, ,Gq+2 y=xY-a=0. However our assumption yields that
Torg+(ky, MU(X)) > Tor}tZs ok, MU,(X))
is a monomorphism for each p=1. So a¢=0, i.e.,
TorMZ*(ky, MU4(X)) =0 for all p=1.

3.3. Let X be a connective CW-spectrum and {X #} the skeleton filtration
of X. As is easily seen, we have that

37 MUmy(X?) = MU<m);i(X) for j<p—1 and 0=m=co, and
(3.7) Hj(X* =0 for j = p+1.

Moreover we get that

(3.8) MU, (X?) = MU ,1p54o(X?) for j=0 and =0 or —1,
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making use of the exact sequence

-x
Hp+z+2i+3(Xﬁ) - MU<1>p+e+2i(Xp) — MU<1>p+e+zi+2(Xp) -> Hp+e+2i+2(Xp)'
Under the condition that n=0 or 1,

(3.9) MUn)«(X) is a (torsion) free abelian group if and only if MU (n>(X?)
are so for all p.

Proof. Assume that MU<1>4(X) is (torsion) free abelian. By means of
(3.7) MU1> {X?) is (torsion) free abelian for j < p—1. In the exact sequence
0—>MULL (X271 > MUL) (X?) > MU (X?/X?7Y),

MU (X771 = MU, (X?™) = MU, (X)

and MU<1>,(X?/X?7*) is free abelian. So MU<1>,(X?) is (torsion) free
abelian. Making use of (3.8) again we find that MU{1),(X?) is (torsion) free
abelian.

The other cases are evident.

Lemma 13. Let X be a connective CW-spectrum, n=0 or 1, and n<m= co.
Then (php, u)5: MU {X)—> MU<n> ;(X) is an epimorphism for each j< p if and
MY Tf (L )i : MU D4 (XP) —> MU o (X ?) is an epimorphism.

Proof. The “if”’ part is immediate.

The “only if” part: Because of (3.7) (s u)x: MUm) (X?)—>MU<n) (X?)
is an epimorphism for j < p—1. Consider the following commutative diagram

MUZm,, (X]X?) > MUCm (X?) — MUCm) (X) — 0

MULn 1 (X[ X?) - MUn>,(X?) - MU<n,(X) -0

with exact rows. The right vertical map is an epimorphism by the assumption.
And the left one is so as is easily seen. With an application of “four lemma”
we see that the central map is an epimorphism.

In the =0 case we recall that H;(X?)=0 for = p+1. Consequently we
obtain that MU{m>4(X?)— H,(X?) is an epimorphism. In the n=1 case we
have the commutative square

oxd
MU o (XP) —> MU 53544 X?)

MU{1>,.,(X?) A mu LD praina(X?)

where €&=0 or —1 and j=1. The left vertical map is an epimorphism and the
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bottom horizontal map is an isomorphism by (3.6). Therefore we get that
MULm(X?)— MU{1>4(X?) is an epimorphism.

Combining (3.9) with Proposition 6 and Lemma 13 with Theorems 4 and 7
we obtain the following theorem (cf., [8]).

Theorem 8. Let X be a connective CW-spectrum and n=0, 1 or 2. Then
hom dimyy, MU(X)=n if and only if hom dimsy, MU (X?)<n for all p.
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