NON-CONTRACTIBLE ACYCLIC NORMAL SPINES

Hiroshi IKEDA

(Received July 24, 1972)

1. Introduction

In [3], we have defined fake surfaces to study 3-manifolds with boundary from their spines. We use the notations in [3] and [4], for example, $\mathscr{F}(s, t)$ denotes the set of all the acyclic closed fake surfaces P with $\# \mathbb{S}_{2}(P)=s$ and $\# \mathbb{S}_{3}(P)=t$, where $\mathfrak{S}_{i}(P)$ means the i-th singularity of P and \# denotes the number of the connected components. And, $\mathcal{E}(s, t)$ is the subset of $\mathscr{F}(s, t)$ each of whose elements is a noraml spine, that is, for any element P of $\mathcal{E}(s, t)$, there exists a 3 -manifold in which P can be embedded as a spine. The following theorems are proved in [3] and [4].

Theorem. $\mathscr{F}(s, t)=\phi$, if and only if $t=0$.
Theorem. $\mathcal{E}(s, t)=\phi$, if and only if $s \geqq 2 t$.
Then, when $t \geqq 1$, it is known that the difference $\mathscr{F}(s, t)-\mathcal{E}(s, t)$ is nonempty.

Let $\mathcal{C}(s, t)$ denote the subset of $\mathcal{E}(s, t)$ each of whose elements is contractible and $\mathscr{B}(s, t)$ the subset of $\mathcal{C}(s, t)$ each of whose elements is a normal spine of a 3-ball. Define the two difference sets $\mathscr{D}(s, t)$ and $\mathcal{A}(s, t)$ by

$$
\begin{aligned}
\mathscr{D}(s, t) & =\mathcal{E}(s, t)-\mathcal{C}(s, t) \\
\mathscr{A}(s, t) & =\mathcal{C}(s, t)-\mathscr{B}(s, t)
\end{aligned}
$$

Then, Poincaré conjecture asks "Is the set $\bigcup_{s, t} \mathcal{A}(s, t)$ empty?". On the other hand, the following theorem is well-known.

Theorem. $\quad \bigcup(s, t)(s, t) \neq \phi$.
And, in [3] and [4], we proved the following.
Theorem. $\mathscr{D}(s, t)=\phi=\mathcal{A}(s, t)$ for the cases $s=2 t-1$ and $s=2 t-2$, and $\mathscr{D}(1,2)=\phi=\mathcal{A}(1,2)$.

In this paper, we show the following.

Theorem 1. For the case $1 \leqq s \leqq 2 t-11$ and $t \geqq 6$, the set $\mathscr{D}(s, t)$ is nonempty.

In §2, we construct a non-contractible acyclic mormal spine P_{k} with $\# \mathscr{S}_{2}\left(P_{k}\right)=1$ and $\# \mathscr{S}_{3}\left(P_{k}\right)=8 k-1$ for any integer $k \geqq 1$. And, in § 3 , we can prove that a 3 -manifold W_{1} has a normal spine P^{\prime} with $\# \mathscr{S}_{2}\left(P^{\prime}\right)=1$ and $\# \mathscr{S}_{3}\left(P^{\prime}\right)=6$, where W_{k} is the 3-manifold containing P_{k} as its normal spine. And, the proof of Theorem 1 is obtained. It is known, by the uniqueness theorem of [1], that W_{k} is uniquely determined. In §4, we define the Dehn space of type k and show, in Theorem 2, that W_{k} is the Dehn space of type k.

The author thanks Mr. Y. Tsukui for pointing out the existence of P^{\prime} and to all the membres of All Japan Combinatorial Topology Study Group for many useful discussions.
2. The construction of non-contractible acyclic normal spines $\mathbf{P}_{\boldsymbol{k}}$

It has been proved in Theorem 4 [3] that $\mathcal{E}(1,1)$ contains a unique element $F_{1,1}^{1}$, called an abalone. Let the set $\left\{M_{1}, M_{2}, f\right\}$ be the polygonal representation of the abalone, that is, M_{i} is a 2 -ball for $i=1,2$, and f means the identification map from $M_{1} \cup M_{2}$ to $F_{1,1}^{1}$ (for M_{1}, M_{2} and the identification by f, see Theorem 2 [3]).

Through out this paper, the subpolyhedron $f\left(M_{2}\right)$ of the abalone is denoted by F, which is written in Fig. 1. Then, F is a closed fake surface with $\# \mathscr{S}_{2}(F)=1$ and $\# \mathscr{S}_{3}(F)=0$, more precisely, $U(F)=S \times{ }_{\sigma} T$. And, by a little geometrical consideration, it is seen that F is a normal spine of the exterior of the clover-leaf knot in 3-sphere. The fundamental group of F is as follows.

$$
\pi_{1}(F)=\left(S_{1}, S_{2} ; S_{1} S_{2}^{-1} S_{1} S_{2}^{2}=1\right)
$$

(for the generators S_{1} and S_{2}, see Fig. 1).

Lemma 1. For any integer $k \geqq 0$, there exists an embedding h_{k} from 1 -sphere S into F which represents the homotopy class $S_{2}^{3 k} S_{1}^{6 k-1}$ and the intersection $h_{k}(S) \cap S_{2}$ consists of $|8 k-1|$ points.

Proof. When $k=0$, we can take h_{0} to be the homeomorphism from S onto S_{1} which reverses the orientation. Then, clearly, h_{0} represents the homotopy class S_{1}^{-1} and we have $\#\left(h_{0}(S) \cap S_{2}\right)=1$. Let us construct the required embedding h_{k} for the cases $k \geqq 1$.

Step 1. Suppose $k=1$. For the point $a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, d$ and $x_{i}, i=1,2,3$, see Fig. 2. Now, starting from the point a, go to b along the orientation of S_{2}. From b^{\prime}, go to c along S_{2}. Intersecting with S_{2} at the point x_{1}, go to c^{\prime} as shown in Fig.2. From c^{\prime}, go to d along S_{2}. And, intersecting with S_{2} at x_{2}, go to x_{3}.

Fig. 1

Fig. 2

Finally, going along S_{1} five times from x_{3}, we come back to the starting point a. Thus, we obtain an embedding h_{1} representing the homotopy class $S_{2}^{3} S_{1}^{5}$ and $\#\left(h_{1}(S) \cap S_{2}\right)=7$.

Step 2. Because S_{2}^{3} lies in the center of $\pi_{1}(F)$, we obtain the following.

$$
S_{2}^{3 k} S_{1}^{6 k-1}=\left(S_{2}^{3} S_{1}^{5}\right) \prod_{p=2}^{k}\left(S_{2}^{3} S_{1}^{6}\right)_{p}, k \geqq 2
$$

So, we try to construct the required embedding h_{k} to represent the homotopy class $\left(S_{2}^{3} S_{1}^{5}\right) \prod_{p=2}^{k}\left(S_{2}^{3} S_{1}^{6}\right)_{p}$, as follows. Let a_{2}, \cdots, a_{k} be the points between a and S_{1} as shown in Fig. 3. And formally, set $a_{1}=a$. Then, by the same way as in Step 1, we obtain an embedding $h_{p}{ }^{\prime}$ from S into F which represents the homotopy class $\left(S_{2}^{3} S_{1}^{6}\right)_{p}$ and whose initial point and end point is a_{p}. And set $h_{1}{ }^{\prime}=h_{1}$. More strictly, we can choose $h_{p}{ }^{\prime}$ to satisfy the following conditions.

Fig. 3
(1) $\quad h_{p}{ }^{\prime}(S) \cap h_{q}{ }^{\prime}(S)=\phi$, if $p \neq q$ and $p, q \geqq 2$.
(2) $h_{p}{ }^{\prime}(S) \cap h_{1}(S)$ is one point in the small neighborhood of a_{1} (see Fig. 3).
(3) $\#\left(h_{p}{ }^{\prime}(S) \cap S_{2}\right)=8$.

Fig. 4

Now, changing the end point a_{p} of h_{p}^{\prime} to the initial point a_{p+1} of h_{p+1}^{\prime}, for $1 \leqq p \leqq k-1$, and the end point a_{k} to a_{1} (see Fig. 4), we obtain the required embedding h_{k} from S into F.

Definition 1. Let P_{k} be the closed fake surface obtained from F by attaching a 2 -ball B by the homeomorphism h_{k} from B to F.

Remark. From the construction, it is clear that P_{0} is homeomorphic to an abalone $F_{1,1}^{1}$.

Lemma 2. If $k \geqq 1$, then P_{k} is a non-contractible element of $\mathcal{E}(1,8 k-1)$.
Proof. We can prove that P_{k} is acyclic, because

$$
\begin{aligned}
H_{1}\left(P_{k}\right) & =\left(S_{1}, S_{2} ; 2 S_{1}+S_{2}=0 \quad(6 k-1) S_{1}+3 k S_{2}=0\right) \\
& =0
\end{aligned}
$$

and $H_{2}\left(P_{k}\right)$ is trivially trivial. And the fact that $\pi_{1}\left(P_{k}\right)$ is non-trivial follows from the calculation in [2]. Hence, P_{k} is a non-contractible acyclic closed fake surface. It follows from the construction of P_{k} that $U\left(P_{k}\right)$ can be embedded in the euclidean 3 -space R^{3}. Then, by Lemma 2 [4], P_{k} is a normal spine. And, again from the construction, we see $\# \mathscr{S}_{2}\left(P_{k}\right)=1$ and $\# \mathscr{S}_{3}\left(P_{k}\right)=8 k-1$, more precisely, $\mathfrak{S}_{2}\left(P_{k}\right)=S_{2} \cup h_{k}(S)$ and $\mathfrak{S}_{3}\left(P_{k}\right)=S_{2} \cap h_{k}(S)$ is the union $\bigcup_{p=1}^{k}\left(S_{2} \cap h_{p}{ }^{\prime}(S)\right)$, and we obtain $\# \mathscr{S}_{3}\left(P_{k}\right)=8 k-1$.

3. The element P^{\prime} of $\mathscr{D}(1,6)$ and the proof of Theorem 1

Let W_{k} denote the 3-manifold containing P_{k} as its normal spine, $k=1,2, \ldots$. In this section, we consider P_{1} in W_{1} and consturct another normal spine P^{\prime} of W_{1} from P_{1} in $\mathscr{D}(1,6)$. For the polygonal representation of P_{1}, see Fig. 5.

Proposition 1. $\quad W_{1}$ has a normal spine P^{\prime} in $\mathscr{D}(1,6)$.
Proof. Let us consider M_{1} of the polygonal representation of P_{1}, and let N be the regular neighborhood of $M_{1} \bmod \dot{M}_{1}$ in W_{1} chosen to satisfy

$$
N \cap\left(P_{1}-\dot{M}_{1}\right)=\dot{N} \cap P_{1}=\dot{M}_{1} \times I,
$$

as shown in Fig. 6, where I is the closed unit interval $[0,1]$ and $M_{1}=M_{1} \times 1 / 2$. Put $A=\dot{N} \cap P_{1}$. Then, $A=\left(A \cap \Im_{2}\left(P_{1}\right)\right)$ has three connected components each of whose closures is a 2-ball. Take such a 2-ball B. Regarding B as a free face of $P_{1} \cup N$, we can collapse $P_{1} \cup N$ to $\left(\mathrm{P}_{1}-\left(N \cap P_{1}\right)\right) \cup(\dot{N}-\dot{B})$ (see Fig. 7). Put $P^{\prime}=\left(P_{1}-\left(N \cap P_{1}\right)\right) \cup(\dot{N}-\dot{B})$. Then, it is clear that P^{\prime} is a closed fake surface embedded in the 3-manifold W_{1}. Since P_{1} expands to $P_{1} \cup N$ and $P_{1} \cup N$ col-

Polygonal representation of P_{1}

Fig. 5

Fig. 6
lapses to P^{\prime} in W_{1}, P_{1} and P^{\prime} belong to the same simple homotopy type in W_{1}, that is P^{\prime} is also a spine of W_{1}. By the above construction, the conditions $\# \mathscr{S}_{2}\left(P^{\prime}\right)=1$ and $\# \mathscr{S}_{3}\left(P^{\prime}\right)=6$ are easily seen. Thus, W_{1} has a normal spine P^{\prime} in $\mathscr{D}(1.6)$.

Remark. The polygonal representation of P^{\prime} is shown in Fig. 8.
Now, we can prove Theorem 1.
Theorem 1. For the case $1 \leqq s \leqq 2 t-11$ and $t \geqq 6$. the set $\mathscr{D}(s, t)$ is nonempty.

Proof. First, it is shown that $\mathscr{D}(1, t)$ is non-empty for $t \geqq 6$ by the same argument as that of the proof of Lemma 12 [4], because P^{\prime} and P_{1} belong to

Fig. 7
$\mathscr{D}(1,6)$ and $\mathscr{D} 1,7)$, respectively. And, we obtain an element of $\mathscr{D}(s, t)$ with $1 \leqq s \leqq 2 t-11$ as in the proof of Theorem 6 [4].

4. The Dehn spaces

Let E denote the exterior of a clover knot k in a 3 -sphere Σ, that is, $E=\Sigma-\stackrel{N}{N}(k, \Sigma)$ where $N(k, \Sigma)$ means the interior of a regular neighborhood $N(k, \Sigma)$ of k in Σ. Then, there exists a subpolyhedron F_{0} in E which is homeomorphic to F. Of course, F_{0} is a spine of E. Regarding the generators S_{1} and S_{2} of $\pi_{1}(F)$ as those of $\pi_{1}\left(F_{0}\right)$, we can write

$$
\pi_{1}(E)=\left(S_{1}, S_{2}: S_{1} S_{2}^{-1} S_{1} S_{2}^{2}=1\right)
$$

Take S_{1} and $S_{1}^{-1} S_{2}$ as the generators of $\pi_{1}(E)$, and let i_{*} denote the homomorphism from $\pi_{1}(\dot{E})$ to $\pi_{1}(E)$ induced by the inclusion map. Since E is an exterior

Polygonal representation of P^{\prime}

Fig. 8
of a knot, i_{*} is a monomorphism and we have $i_{*}^{-1}\left(S_{2}^{3 k} S_{1}^{6 k-1}\right)=\left(S_{1}^{-1} S_{2}\right)^{2 k} S_{1}^{6 k-1}$. Let C_{k} denote the 1 -sphere in \dot{E} representing the homotopy class $\left(S_{1}^{-1} S_{2}\right)^{2 k} S_{1}^{2 k-1}$. Note that C_{k} exists because $2 k$ and $6 k-1$ are relatively prime.

Definition 2. Define the Dehn space V_{k} of type k to be the 3-manifold obtained from E by attaching a 2-handle along C_{k}. (Cf. [2])

Theorem 2. Let W_{k} be the 3-manifold containing P_{k} as its spine. Then, W_{k} is the Dehn space of type k.

Proof. By the uniqueness theorem of [1], it is sufficient to prove that the Dehn space V_{k} contains P_{k} as its spine, because P_{k} clearly satisfies the conditions of standard spine of [1]. Let N_{0} be the 3-rd derived neighborhood of $U\left(F_{0}\right)$ in $E \bmod \dot{U}\left(F_{0}\right)$. We can embed a cylinder $S \times I$ in N_{0} in order to satisfy $(S \times I) \cap U\left(F_{0}\right)=S \times 0=h_{k}(S)$ and $(S \times I) \cap \dot{N}_{0}=S \times 1$ as shown in Fig. 2. Now, let $F_{1}=F \cup(S \times I)$ and N_{1} the regular neighborhood of F_{1} in $E \bmod \dot{F}_{1}=S \times 1$. Then, N_{1} is homeomorphic to E keeping F_{0} fixed, because F_{1} collapses to F_{0} by collapsing $S \times I$ to $S \times 0$ from $S \times 1$. And hence $S \times 1$ represents the homotopy class $\left(S_{1}^{-1} S_{2}\right)^{2 k} S_{2}^{6 k-1}$ in $\pi_{1}\left(N_{1}\right)$. Thus, V_{k} may be regarded as the 3-manifold obtained from N_{1} by attaching a 2 -handle along $S \times 1$. Then, the 2 -handle $B^{2} \times I$ collapses to $\left(\dot{B}^{2} \times I\right) \cup\left(B^{2} \times 1 / 2\right)$, where B^{2} is a 2 -ball and $\dot{B}^{2} \times 1 / 2=S \times 1$. Thus, V_{k} collapses to $N_{1} \cup\left(B^{2} \times 1 / 2\right)$. Since N_{1} is a regular neighborhood of $F_{1}, N_{1} \cup\left(B^{2} \times 1 / 2\right)$ collapses to $F_{1} \cup\left(B^{2} \times 1 / 2\right)$ which is clearly homeomorphic to P_{k}. Thus, V_{k} has a spine homeomorphic to P_{k}. This completes the proof of Theorem 2.

Kobe University

References

[1] B.G. Casler: An embedding theorem for a connected 3-manifold with boundary, Proc. Amer. Math. Soc. 16 (1965), 559-566.
[2] M. Dehn: Über die Topologie des dreidimensionalen Raumes, Math. Ann. 69 (1910), 137-168.
[3] H. Ikeda: Acyclic fake surfaces, Topology 10 (1971), 9-36.
[4] -: Acyclic fake surfaces which are spines of 3-manifolds, Osaka. J Math. 9 (1972), 391-408.

