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Let R be a commutative ring with unit element 1. A quadratic exten-
sion of R is an R-algebra which is a finitely generated projective R-module of rank
2. Let O(R) be the set of all R-algebra isomorphism classes of quadratic exten-
sions of R, and Q,(R) the set of all R-algebra isomorphism classes of separable
quadratic extensions of R. In [2], it was shown that the product in Q,(R), in the
sense of [1], [4] and [5], is extended to O(R), and OQ(R) is an abelian semigroup
with unit element. In this note, we study the quadratic extensions of R which
are free R-modules. We shall call them the free quadratic extensions of R. Let
Q/(R) and Q,(R) be the sets of all classes which are free R-modules in Q(R)
and Qy(R), respectively. We shall show that Q (R) is an abelian semigroup
with unit element, and Q ,(R) is an abelian group consisting of all invertible
elements in Q (R). For some special rings, we shall determine the structures
of Q (R) and Q ,(R). We remark that Q .(R), Oy(R) and Pic(R),; the group of
isomorphism classes [U] of R-module U such that UQ pU=R, are closely related
by the exact sequence 0 — Q (R) — Q,(R) — Pic(R),.

Let R be any commutative ring with unit element 1. For a free quadratic
extension S of R, we can write S=R@PRx and x’=ax-+b for some a, b in R,
then we denote it by S=(R, 4, b), and by [R, a, b] the R-algebra isomorphism
class containing (R, a, b).

Lemma 1. The following two conditions a) and b) are equivalent ;
a) (R, a,b)=(R, ¢, d) as R-algebras,
b) there exist an invertible element o in R and an element B in R such that c=«
(a—2RB) and d=o’(Ba+b— ).
If (R, a, b) and (R, ¢, d) satisfy a) or b), then we have
¢) E+4d=a’(a’+4b) for some invertible element o in R.
Moreover, if 2 is invertible in R, then we have the converse.

Proof. a) —b): Leto: (R, a,b)=RDPRx — (R, ¢, d)=RPRy be an R-al-
gebra isomorphism, and set o(x)=ay+ B and ¢ 7(y)=a’x+B’. Sinec y=c-c"
(v)=a'ay+a’B+B’, we have a’a=1, that is, @ and a’ are invertible. The
equalities (o(x))’=(ay+RB)'=a(ac+2B)y+a’d+* and o(x*)=o(ax-+b)=aay
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+b+Ba imply that ac+2B8=a and a’d+[B°=b+Ba. Then we have c=a'(a—
28) and d=a’*(Ba-+b— 3.

b) — a): Define a mapping o: (R, a, ))=RPRx — (R, ¢, d)=RPRy by
o(x)=a 'y+0, then o is an R-algebra isomophism.

b) — ¢) is obvious. If 2 is invertible, setting B:%(a~a"c), we see that
c) implies b).

The following lemma is well known.

Lemma 2. (R, a, b) is R-separable if and only if a’+4b is invertible in R.

We shall define a product in Q (R) by [R, a, b]+[R, ¢, d1=[R, ac, a’d+bc’
+4bd]. From the following Lemma 3, it is easily seen that Q (R) is an abelian
semigroup with unit element [R, 1, 0].

Lemma 3. (Lemma 3 in [2]). If (R, a, b)=(R, a',b") and (R, ¢, d)=(R,
¢',d') are isomorphisms as R-algebras, then so is (R, ac, a’d+bc’+4bd)=(R, a'c’,
a’*d’+b'c"*4+-4b'd").

A separable quadratic extension S of R has a unique automorphism oc=o
(S) of S such that S={x&S; o(x)=x}=R. In [1], [4] and [5], the product
S, %S, of separable quadratic extension S, and S, of R was defined as the fixed
subalgebra (S,® S,)"1®%, where o;=ac(S,).

Lemma 4 (Proposition 4 in [2]). Let (R, a, b) and (R, ¢, d) be separable
quadratic extensions of R. Then we have [R, a, b]-[R, ¢, d|=[(R,a, b)%(R, ¢, d)].

Theorem 1. An element [R, a, 0] of Q, (R) is invertible if and only if [R,
a, b] is contained in Q ;(R). Therefore, Q .(R) is the set of all invertible elements
in QAR). It is an abelian group of exponent 2.

Proof. Let [R, a, b] be any element of Q,(R). By Lemma 2, a’4-4b is
invertible in R. Set a=(a*+4b)"' and B=—2b, then we have a(a’—28)=1
and o*(Ba’+(2a’b+4b")— B%)=0, hence we have (R, &%, 2a°b+4b*)=(R, 1, 0) by
Lemma 1. Since [R, a, b]’=[R, &’, 2a°b+4b*], we have [R, a,b]’=[R, 1, 0], so
[R, a, b] is invertible in Q,(R). Conversely, we assume [R, a, b]-[R, ¢, d]=[R,
1, 0], then we have 1=a*{(ac)*+4(a’d+bc*+4bd)} = a*(a’+4b) (c*+4d) for some
invertible element a in R. Thus, a>+4b is invertible in R, therefore, [R,a,b] is
contained in Q,(R).

Theorem 2. Let {R\; N&A} be a family of commutative rings with unit
elements, and R=TIR, a direct product of {R,; N&A}. Then we have isomor-
AEA

phisms Q (R)=T1 O AR,) and Q r(R)=T1Q (R, by correspondence [R, T1a,, I15,]
AEA AEA AEA AEA
H)‘le-‘[I!:R}\, a,, b)\].

Proof, Let (R, T1a,, I15,))==(R, Ilc\, IId)). Then, there exist a=TJa,
AEA  AEA AEN  AEA AEA
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and B= T[] B, such that ¢ is invertible in R, [Tea=a(ITar—28) and [Id,=a’*(B
Xen

ITax+116,—B%). It is equivalent to existence of a, and B, in R, such that a,
is invertible, c,=a,(ay—28,) and d\=a,*(Brar+b,—B)\?) for all A A, namely,
II(Ry, ar, 8)=TI(Ry, cr, dr). Thus fis injective. It is clear that f is an epimor-
AEAN AEN

phism. Therefore, we have an isomorphism Q-(R)=TIQ/(R,) as semigroups,
AEA
so we have the isomorphism Q (R)==TIQ,(R,) as groups by Theorem 1.
AEA

Let U(R) be the unit group of a ring R, and U*R) the set {u*; uc U(R)}.
We define a relation ~ in R as follows; for @ and b in R, a~b if there exist ¢
and d in U*(R) such that ac=bd. Then the relation ~ is an equivalence rela-
tion and we denote by R/U*R) the quotient R/~. The multiplication in R
induces a multiplication in R/U?*(R), and R/U?(R) is an abelian semigroup with
unit element [1], where [4] denotes the class of a in R/U*R). It is clear that
the set of all invertible elements in R/U*(R) is U(R)/U*(R). We define a map-
ping D : Q(R)—R/U*(R) by D([R, a, b])=[a’4-4b], and this is a homomorphism,
which carries [R, 1, 0] and [R, 0, 0] to [1] and [0], respectively. Indeed, by
Lemma 1, D is well defined, and D([R, a,b]:[R, ¢, d])=[(ac)’+4(a’d+bc’+4bd)]
=[a*+-4b] [c*+4d].

Theorem 3. If 2 isinvertible in R, then D is an isomorphism and this induces
an isomorphism Q (R)=U(R)/U*(R) as groups. (cf. Proposition 3.3 in [1])

Proof. By Lemma 1, [R, a, b]=[R, ¢, d] in Q4(R) if and only if [a’4-4b]
=[c*+4d] in R/U*(R). Thus D is a monomorphism. For any element a in

R, D([R, 0, %]):[a], therefore D is surjective. Thus D is an isomorphism.
Furthermore, by Theorem 1, D induces an isomorphism Q ,(R)=U(R)/U*R)
as groups.

In the case where 2 is not invertible in R, we give a sufficient condition

such that D ia a monomorphism;

Theorem 4. If R is a unique factorization domain of charactaristic=2,
or a ring such that 2R is a prime ideal and 2 is a non-zero-divisor, then D is a mono-
mor phism.

Proof. In the first place, we remark that if a=a’+2r then (R, a, b)=(R,
a', ra+b—r’) and @*+4b=a"*+4(ra+b—r’). Let D([R, a, b])=D([R, ¢, d]),
that is, a®+4b=a’(c’+4d) for some invertible element ¢ in R. Since (R, a, b)==
(R, a/a, bJa®), we may assume that a’+4b=c*+4d. If a—ce2R, we may put
a=c, and so we have b=d. Thus, if a—c&2R, D is a monomorphism. Now,
we remain only to show that 4’4-4b=c*+4d implies a—c=2R. Let R be a
unique factorization domain. If b=d, the implication is clear, Let b4d. Put
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2=p1-p,%2+--p,’» the prime factorization of 2. For each 7, (1=i<n), let f; be
an integer such that a4-c=p,fi-s; and p, {’s;, Then from 4|(a+c)(a—c), we
have p;*ifila—c. If f;<e;, we have p,%i|a—c because of 2¢,—f,=¢;. On the
other hand, if f;>e¢;, we have p,%i|a—c because of a—c=p/ i-s;—2c. Thus we
have p;“i|a—c for every 7, (1<{<n). Therefore, a—ce2R. Let R be a ring
such that 2R is a prime ideal. Since (a-+c¢)(a—c)=4(d—b) is in 2R, if a—cet
2R then a+c=2r for some 7 in R, and so a—c=2(r—c). It is a contradiction.
Thus, a—c=2R.

Corollary 1. Let Z be the ring of rational integers. Q(Z) is isomorphic to a
multiplicative subsemigroup {n; n=4r or n=4r+1, r&Z} of Z. Therefore, Q,
(Z) is trivial. (cf. Proposition 4 in [3]).

Corollary 2. Let R=Z[i] be the ring of Gaussian integers. Q(R)=0Q {R)
is isomorphic to the subsemigroup {[a]€R/{l, —1}; a=4b, 4b+1, 4b+2i for all
beR} of RIUR)=Z[i]/{1, —1}. And Q((R) is trivial.

Proof. Sinec R/2R={0, 1,7, 14}, we get O(R)={[R, 0, 8], [R, 1, D],
[R,4,b], [R,1414,b]; b= R}. Therefore, we have Q(R) = Im D = {[a]=R/{1,
—1}; a=4b, 4b+1, 4b+2i for all b in R}, hence Qy(R) is trivial..

ReMark 1. In Theorem 4, we can not omit the condition that 2 is a non-
zero-divisor. For example, let R=2Z/(4), then we have Q(R)={[R, 0, 0], [R,
0,1],[R,0,2], [R0,3],[R1T1,0], [R 1,11}, O(R)={[R, 1,0], [R, 1,1]}, D
(O(R)=1{0, T} Z/(4) and D(Q4(R))={1}cZ/(4). Then D is neither mono-
morphic nor epimorphic.

ReMARK 2. In the case where R is not a unique factorization domain, we
can not omit the condition in Theorem 4 that 2R is a prime ideal. For example,
let R=Z[\/5]. Thenwehave[R,\/5, —1]%[R, 1, 0] but D ([R,/5,—1])
=D([D, 1, 0])=[1]. D is not a monomorphism.

Theorem 5. Let K=GF(p") be finite field, then Q(K) is isomorphic to the
multiplicative semigroup Z|(3). Further, the isomorphism induces an isomorphism

O«(K)=A{1, —T}=U(Z/(3)).

Proof. The case p==2. In the first place, we note that (R, a, b)=(R, 0, a°
+4b) and U(K)=K*=K—{0}. From Theorem 3 and (K*: K*)=2, we
have Q(K)={[K, 0, 0], [K, 0, 1], [K, O, a]}, where « is an element K* which
is not contained in K*°. By the correspondence [K, 0, 0]—D0, [K, 0, 1]—1 and
[K, 0, @]+ —1, we have an isomorphism Q(K)==Z/(3) as multiplicative semig-
roups, and it induces Q(K)={1, —1}=U(Z/(3)) as groups.

The case p=2. Since a’>+a=a(a+1) for a in K, we have $ {¢’°+a; ac K}
=2"""<#(K), where #(K) denotes the number of elements in K, Then, there
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exists ¢ in K such that a & {¢’+a; a K}, and the quadratic equation x*t-x-}
a=0 has no roots in K. Then, we can see the equalities #{a’+a; ac K} =#{a’
+a+a; acK}=2"" and {d*+a; acK}N {¢’+a+a; acK}=¢. For, if ¢
=a’+a and ¢=b’4-b+« for some a, b in K, then (a+b)’+(a+b)+a=0. Itis
a contradiction. Therefore, we have K={a’+a; ac K} U{¢’+a+a; acK},
(disjoint sum), namely, any element a in K verifies either 8°+B+a=0 or B>+
+a+a=0 for some B in K. On the other hand, by Lemma 1, (K, 1, 0)~(X,
1, @) if and only if there exists B in K such that 8°+B8+a4=0. And (K, 1, «)
=(K, 1, a) if and only if there exists @ in K such that 3°4 8+a+a=0. Accord-
ingly, we have Q(K)={[K, 1, 0], [K, 1, «]}. Furthermore, since U K)=U
(K), (K, 0, 0)=(K, 0, a) for all a in K, hence Q(K)={[K, 0, 0], [K, 1, 0], [K, 1,
al}. By the correspondence [K,0,0]—0, [K,1,0]—T and [K, 1, a]+>—T we
have the isomorphism Q(K)==Z/(3), and it induces Q(K)== {1, —1}=U(Z/(3)).

RemARrk 3. Let @, R and C be the fields of rational numbers, real numbers
and complex numbers, respectively. By the same argument as the proof of
Theorem 5 (in case p+2), we can see that Q(R)={[R, 0, 0], [R, 0, 1], [R, 0, —1]},
o)={[c, 0, 0], [C. 1,0]}. Further, O(®Q) is an infinite ableian group of ex-
ponent 2, O (R) is a group of order 2 and Q,(C) is trivial.

RemMARK 4. In the case R=GF(2”), the homomorphism D is not a mono-
morphism but an epimorphism.

Theorem 6. Let R=Z/(n), and let n=p ,*1+p,%---p,°r be the prime factori-
zation of n.  Then Q (R) is the abelian group of type (2, 2,---, 2), r-times.

Proof. It is enough to prove that Q(Z/(p°)) is the group of order 2 for any
prime integer p. In the case p=+2, by Theorem 3, O(Z/(p?)) is isomorphic to
the group U(Z/(p%))/U*Z|(p°)). The index (U(Z/(p°%)): U*(Z/(p°))) s 2, since
U(Z|(p®)) is a cyclic group of order p(p®)=(p—1)p°~". Thus, O(Z/(p°)) is the
group of order 2. In the case p=2, put Z/(2°)=R. We shall remark that {@*
—a; acR}=2R. In fact, let f: 2R—{@*—a; a= R} be a mapping defined by f
(@)=a*—a. 1If f(@a)=f(D), we have (a—b)(a+b—1)=0 mod 2°. Since 2} a+b
—1, we have 2°|a—b, hence a=b, Furthermore, {@*—a; a=R} and 2R are
finite sets and {@’—a; ac R}<2R. Hence, {@—a; ac R}=2R. Now, we
shall show that (R, T, a+2)=(R, 1, @) for all integer a. (R, 1, a-+2)=(R, 1, @)
if and only if there exist an odd integer ¢ and an integer 3 such that 1=a(1—
28) and a=a*(B+a+2—3%) mod 2°, namely, there exists an integer 3 such that
(4a+1)B—(4a+1)B—2=0 mod 2°. Since {@*—a; a= R}=2R, we can take an
integer 3 such that 3°—8=2(4a+1)7", and we have (4a+1)8*—(4a+1)B—2=
0 mod 2°. Hence, we have (R, T, a-+2)==(R, 1, @) for all integer a. According-
ly we have (R, T, 2a)=~(R, T, 0) and (R, T, 2a+1)=(R, T, T) for all integer a,
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But [R, T, 0]=*[R, T, T]. 'Therefore, O,(R) is the group of order 2.

ReEmMARK 5. Let R=Z/(2°). Then we have following;
i) ife=1, O(R)={[R, 0, 0], [R, 1, 0], [R, 1, T]}.
i) if e=2, Q(R)={[R, 0, a;]; i=1, 2, -, r} U{[R, T, 0], [R, 1, 1]}, (disjoint
sum), where {@,, @,, -+, @,} is the representatives of R/U*R).

Proof. i) is a special case of Theorem 5.

i) (R, 0, @)=(R, 0, p) if and only if there exist an odd integer « and
an integer B3 such that 23=0 and b= a’(a—3%) mod 2°. Put 8=2°"'n mod 2°
and 2 /'n, then we have 8°=0 mod 2°. Therefore, (R, 0, @)==(R, 0, b) if and
only if b=a’a for some @ in U(R), namely, [@]=[?] in R/U*(R).

ReMARK 6. There is a commutative ring R with the homomorphism D:
0O /(R)— R/U*R) which is not a monomoprhism but the restriction D|Q (R) is
a monomorphism. For example, if R=Z/(2°), (e=3), then we have D([R, 1,
0))=I[1], D([R, 1, 1])=[5] and [T]=[5] in U(R)/U*R). Thus, the restriction
D|Qf(R) is a monomorphism. But, we have [R, 0, 0]%[R, 0, 2°%] and D
([R, 0, 0)=D([R, 0, 2°7*])=[0], Then D is not a monomorphism.
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