Kg-GROUPS AND INVARIANT VECTOR FIELDS ON SPECIAL G-MANIFOLDS

Hiromichi MATSUNAGA

(Received September 24, 1970)
(Revised November 5, 1971)

Introduction

The main purpose of this paper is to give a formula to determine the semigroup structure of G-equivalence classes of real and complex G-vector bundles over special G-manifolds, [2], [3], [5]. K. Jänich has obtained a classification theorem for regular $O(n)$-manifolds with many orbit types, and given a formula for Vect $_{0(n)}$ of these manifolds [6]. Our formula is rather simple, but it may apply just for special G-manifolds which satisfies a condition on normalizers of isotropy subgroups, $\left(C_{2}\right)$ in $\S 2$.

In § 1, we collect some known results for later use. § 2 contains a lemma which is one of our main tools. In § 3, we define an object associated with an orbit space, which we shall call a datum, and proved the formula. As an application of the formula, in $\S 4$, we determine the complex K_{G}-group of Brieskorn-Hirzebruch $O(n)$-manifold $W^{2 n-1}(d)$, [2]. In § 5, we shall prove the existence of an $O(n)$-invariant 1-field on $W^{2 n-1}(d)$ and the non-existence of invariant 2-fields for $n \geqq 2$.

I am grateful to S. Araki and F. Uchida for their kind advices.

1. G-manifolds with one orbit type

In this section, we recall a formula due to K. Jänich and G. Segal [6], [9].
Let G be a compact Lie group and M be a compact smooth manifold. A differentiable G-action on M is a smooth map $\mu: G \times M \rightarrow M$ such that

$$
\mu\left(g_{1}, \mu\left(g_{2}, x\right)\right)=\mu\left(g_{1} \cdot g_{2}, x\right), \text { and } \mu(e, x)=x,
$$

where e is the unit of G. A compact smooth manifold with a differentiable G-action is called a G-manifold. We denote by G_{x} the isotropy subgroup of x $\in M$, and by $G(x)$ the orbit through x. We denote by (H) the conjugate class of isotropy subgroups including H, and call it the orbit type. Let M be a G manifold with one orbit type (H), and $P(H)$ be the set of fixed points under the
action of H, i.e. $P(H)=\left\{x \in M ; G_{x}=H\right\}$, then $\pi \mid P(H): P(H) \rightarrow \pi(M)$ is the principal $N(H) / H=\Gamma(H)$-bundle, 2.4, [2], 1.7.35, [8], where we denote by π : $M \rightarrow \pi(M)$ the orbit map, and by $N(H)$ the normalizer of H in G. The G manifold M is G-equivariantly diffeomorphic to $G / H \times_{\Gamma(H)} P(H), 2.4$, [2], 1.7.35, [8]. G and $P(H)$ are $N(H)$-manifolds, and H acts trivially on $P(H)$, then we have a G-equivariant diffeomorphism $G / H \times_{\Gamma(H)} P(H)=G \times_{N(H)} P(H)$.

Throughout $\S 1, \S 2$ and $\S 3$ we denote by $\hat{\operatorname{Vect}}_{G}(M)$ the set of real or complex G-vector bundles over M, and by $\operatorname{Vect}_{G}(M)$ the semi-group of G equivalence classes of them. Let $\pi_{*}^{(1)},\left(\pi_{*}^{(1)}\right)^{-}$be the restriction and the G-extension,

$$
\begin{aligned}
& \left.\pi_{*}^{(1)}: \widehat{V e c t} \underline{G}^{(G} \times_{N(H)} P(H)\right) \rightarrow \widehat{V e c t}_{N(H)}(P(H)), \\
& \left(\pi_{*}^{(1)}\right)^{-}: \widehat{V e c t}{ }_{N(H)}(P(H)) \rightarrow \widehat{V e c t}_{G}\left(G \times_{N(H)} P(H)\right),
\end{aligned}
$$

then we have the isomorphism

$$
\begin{equation*}
\pi_{*}^{(1)}: \operatorname{Vect}_{G}\left(G \times_{N(H)} P(H)\right) \underset{\rightarrow}{\approx} \operatorname{Vect}_{N(H)}(P(H)), \tag{1}
\end{equation*}
$$

and $\pi_{*}^{(1)} \cdot\left(\pi_{*}^{(1)}\right)^{-}$is the identity of $\widehat{V e c t}{ }_{N(H)}(P(H))$.
Proof of (1).
Let $E \rightarrow M$ be a G-vector bundle. By the G-equivalence $M \cong G \times{ }_{N(H)} P(H)$, we have the restriction $E_{0} \equiv E / P(H) \rightarrow P(H)$, which is an $N(H)$-vector bundle. Define a G-homomorphism of G-vector bundles $\alpha: G \times{ }_{N(H)} E_{0} \rightarrow E$ by $\alpha\left(g, e_{0}\right)$ $=g \cdot e_{0}$ and a homeomorphism $\beta: G \times E \rightarrow G \times E$ by $\beta\left(g, e_{0}\right)=\left(g, g^{-1} e_{0}\right)$. Let $\hat{\beta}$: $G \times E \rightarrow G \times{ }_{N(H)} E$ be the composition of β with the natural projection, and p_{2} : $G \times E \rightarrow E$ be the projection onto the second factor. For each $e_{0} \in E$, there exists $g \in G$ with $g^{-1} e_{0} \in E_{0}$, and so $\hat{\beta}\left(g, e_{0}\right)=\left(g, g^{-1} e_{0}\right) \in G \times{ }_{N(H)} E_{0}$. For any $g^{\prime} \in G$ with $g^{\prime-1} e_{0} \in E_{0}$, we have

$$
H=G_{\pi\left(g^{-1} e_{0}\right)}=g^{-1} G_{\pi\left(e_{0}\right)} g, H=G_{\pi\left(g^{\prime-1} e_{0}\right)}=g^{\prime-1} G_{\pi\left(e_{0}\right)} g^{\prime},
$$

and so $g H g^{-1}=g^{\prime} H g^{\prime-1}$, then $g^{\prime-1} g \in N(H)$ and $\left(g, g^{-1} e_{0}\right)=\left(g^{\prime}, g^{\prime-1} e_{0}\right)$ in $G \times$ ${ }_{N(H)} E_{0}$. If $g^{-1} e_{0} \in E_{0}$, then $\left(g_{1} g\right)^{-1} g_{1} e_{0}=g^{-1} e_{0}$. Thus we have a G-homomorphism

$$
\tilde{\beta}: E \stackrel{\mathrm{p}_{2}}{\longleftrightarrow} \hat{\beta}^{-1}\left(G \times{ }_{N(H)} E_{0}\right) \xrightarrow{\hat{\beta}} G \times_{N(H)} E_{0} .
$$

By the equalities

$$
\begin{aligned}
& \tilde{\beta} \alpha\left(g, e_{0}\right)=\tilde{\beta}\left(g e_{0}\right)=\tilde{\beta}\left(g, g e_{0}\right)=\left(g, e_{0}\right) \\
& \alpha \tilde{\beta}\left(e_{0}\right)=\alpha \tilde{\beta}\left(g, e_{0}\right)=\alpha\left(g, g^{-1} e_{0}\right)=e_{0}
\end{aligned}
$$

α is a G-isomorphism. Thus (1) is proved.
Now we consider the case which satisfies the condition
$\left(C_{1}\right) \quad N(H)=\Gamma(H) \times H$.

For any subgroup L of G, we have $N\left(g L g^{-1}\right)=g N(L) g^{-1}$, and so, if L satisfies the condition $\left(C_{1}\right)$, then $g L g^{-1}$ also does and $\left(C_{1}\right)$ is satisfied for all $L_{1} \in(L)$.

Let $E \rightarrow P(H)$ be an $N(H)$-vector bundle over $P(H)$. By $\left(C_{1}\right)$ we have an H-vector bundle $E / \Gamma(H) \rightarrow P(H) / \Gamma(H)=\pi(M)$. On the other hand, for a given H-vector bundle $E^{\prime} \rightarrow P(H) / \Gamma(H)=\pi(M)$, take the vector bundle induced by the orbit map $\pi \mid P(H): P(H) \rightarrow \pi(P(H))=\pi(M)$, and denote it by $P(H) \times_{\pi(M)} E^{\prime} \rightarrow$ $P(H)$. We define an $N(H)$-action on $P(H) \times{ }_{\pi(M)} E^{\prime}$ as follows : for any $(\gamma, h) \in$ $N(H)$, and $\left(x, e^{\prime}\right) \in P(H) \times_{\pi(M)} E^{\prime},(\gamma, h) \cdot\left(x, e^{\prime}\right)=\left(\gamma x, h e^{\prime}\right)$. Then the bundle $P(H) \times_{\pi(M)} E^{\prime} \rightarrow P(H)$ has an $N(H)$-vector bundle structure. Let $\pi_{*}^{(2)},\left(\pi_{*}^{(2)}\right)^{-}$be the factorization by $\Gamma(H)$ and the induced bundle construction,

$$
\begin{aligned}
& \pi_{*}^{(2)}: \widehat{\operatorname{Vect}_{N(H)}}(P(H)) \rightarrow{\widehat{\operatorname{Vect}_{H}}}^{(P(H) / \Gamma(H)),} \\
& \left(\pi_{*}^{(2)}\right)^{-}: \widehat{\operatorname{Vect}_{H}}(P(H) / \Gamma(H)) \rightarrow \widehat{V e c t}_{N(H)}(P(H)),
\end{aligned}
$$

then we have the isomorphism

$$
\begin{equation*}
\operatorname{Vect}_{N(H)}(P(H)) \rightarrow \operatorname{Vect}_{H}(P(H) / \Gamma(H)), \tag{2}
\end{equation*}
$$

and $\pi_{*}^{(2)} \cdot\left(\pi_{*}^{(2)}\right)^{-}$is the identity of $\operatorname{Vect}_{H}(P(H) / \Gamma(H))$. Denote. $\pi_{*}^{(2)} \cdot \pi_{*}^{(1)}$ by π_{*}, and $\left(\pi_{*}^{(1)}\right)^{-} \cdot\left(\pi_{*}^{(2)}\right)^{-}$by $\pi_{*}^{-} . \quad$ By (1), (2) we have

Theorem 1. (K. Jänich, 1.4, [6], G. Segal, Proposition 2.1, [9])
Under the condition $\left(C_{1}\right)$, we have isomorphisms

$$
\pi_{*}: \operatorname{Vect}_{G}(M) \cong \operatorname{Vect}_{H}(\pi(M)), K_{G}(M) \cong K_{H}(\pi(M)),
$$

and $\pi_{*} \cdot \pi_{*}^{-}$is the identity of $\operatorname{Vect}_{H}(P(H) / \Gamma(H))$.

2. Special G-manifolds with restricted type

For a G-manifold M, we can choose a G-invariant Riemannian metric on M. We denote by V_{x} the fiber over $x \in M$ of the normal bundle of the imbedding $G(x) \subset M$. A G-manifold M is called special, if for any $x \in M$, and for the slice representation $G_{x} \rightarrow G L\left(V_{x}\right), V_{x}$ is a direct sum of G_{x}-invariant subspaces, $V_{x}=W_{x} \oplus F_{x}$, such that the representation of G_{x} on the unit sphere in W_{x} is transitive, and on F_{x} is trivial.

In this paper we treat special G-manifolds which have the principal orbit type (H) and the singular orbit type (K). Further we assume that the orbit space $\pi\left(M_{(K)}\right)$ is connected, where $M_{(K)}$ denote the set $\left\{x \in M ; G_{x}\right.$ is conjugate to $K\}$. $\quad M_{(K)}$ is a closed submanifold of M. Let N be an invariant tublar neighborhood of $M_{(K)}$ of the imbedding $M_{(K)} \subset M$, and M_{1} be the complement of the interior of N, i.e. $M_{1}=M$-Int N. Then we have a G-invariant decomposition $M=M_{(H)} \cup M_{(K)}=M_{1} \cup N$. Define $\rho: \partial N \times[0,1] \rightarrow N \subset M$ by $\rho \mid \partial N \times(0)=$ the projection of the sphere bundle $p: \partial N \rightarrow M_{(K),}$

$$
\rho(x, t)=\operatorname{Exp}(t x) \text { on } \partial N \times(0,1],
$$

where we identify N with a normal disc bundle, then by the speciality of M, we obtain a diffeomorphism $f: \pi\left(M_{(K)}\right) \times[0,1] \rightarrow \pi(N)$ such that the following diagram is commutative

$$
\begin{array}{ll}
\partial N \times[0,1] & \rho \\
\pi \cdot p \times \mathrm{id} . \\
\pi\left(M_{(K)}\right) \times[0,1] & f \\
& \| \pi \\
\pi(N), 3.0,[5], \text { lemma p 16, [2] }
\end{array}
$$

Since the projection p is equivariant, it induces a smooth map $p^{\prime}: \pi(\partial N) \rightarrow$ $\pi\left(M_{(K)}\right)$ with $p^{\prime} \cdot \pi=\pi \cdot p . \quad \rho \mid N \times(1)=$ the identity of ∂N, then we have $p^{\prime}=$ $(f \mid(\partial N))^{-1}$, and it is a diffeomorphism.

For a fixed principal isotropy subgroup H and for each $y^{\prime} \in \pi\left(M_{(K)}\right)$, there exists $y \in \pi^{-1}\left(y^{\prime}\right)$ such that the slice S_{y} admits $x \in \partial S_{y}$ with $\left(G_{y}\right)_{x}=G_{x}=H, p(x)$ $=y$. Let K be the isotropy subgroup G_{y}. We denote by $r^{*}: \operatorname{Vect}_{K}\left(\pi\left(M_{(K)}\right)\right.$ $\rightarrow \operatorname{Vect}_{H}\left(\pi\left(M_{(K)}\right)\right.$, the semigroup homomorphism induced by the inclusion $H \subset K$.

Now we cosider the case which satisfies the condition
$\left(C_{2}\right) N(H)=H \times \Gamma(H), N(K)=K \times \Gamma(K)$, and $\Gamma(K) \subset \Gamma(H) \subset G$.
Lemma. The following diagram is commutative

Proof of the lemma is divided into three parts.
(i) Commutativity on a fiber

The spaces $P(K)=\left\{y \in M_{(K)} ; G_{y}=K\right\}$ and $\partial P(H)=\left\{x \in \partial N ; G_{x}=H\right\}$ are the total spaces of the principal bundles over $\pi\left(M_{(K)}\right)$ and $\pi(\partial N)$ with left $\Gamma(K), \Gamma(H)$-actions respectively. For a given K-vector bundle (1) $F^{\prime} \rightarrow \pi\left(M_{(K)}\right)$, (2) $P(K) \times_{\pi\left(M_{(K)}\right)} F^{\prime} \rightarrow P(K)$ is the induced bundle by the projection $\pi \mid P(K):$ $P(K) \rightarrow \pi\left(M_{(K)}\right)$, then $\left(\pi_{*}^{-} F^{\prime}\right)$ is the G-vector bundle

$$
\begin{equation*}
G \times_{N(K)}\left(P(K) \times_{\pi\left(M_{(K)}\right)} F^{\prime}\right) \rightarrow G \times_{N(K)} P(K)=M_{(K)}, \tag{3}
\end{equation*}
$$

and the induced bundle of (3) by p is the G-vector bundle
(4) $\quad\left[G \times_{N(H)} \partial P(H)\right] \times_{\left.M_{(K)}\right)}\left[G \times_{N(K)}\left(P(K) \times_{\pi\left(M_{(K)}\right)} F^{\prime}\right)\right] \rightarrow \partial N$.

The G-action in the total space of (4) is the diagonal G-action. Now we restrict the bundle (4) on $\partial P(H)$ then we have an $N(H)$-vector bundle

$$
\begin{equation*}
\partial P(H) \times_{\left.M_{(K)}\right)}\left[G \times_{N(K)}\left(P(K) \times_{\pi\left(M_{(K)}\right)} F^{\prime}\right)\right] \rightarrow \partial P(H) \tag{5}
\end{equation*}
$$

with the diagonal $N(H)$-action. We have choosed a pair (x, y) such that $G_{x}=H$, $G_{y}=K$ and $p(x)=y$. Let $\pi(x)=b$, then $\pi(y)=\pi(p(x))=p^{\prime} \pi(x)=p^{\prime}(b)$. Now we restrict (5) on $\Gamma(H) x$. For $\gamma \in \Gamma(H), p(\gamma x)=\gamma p(x)=\gamma y$, and so for $g \in G$, if $g y=\gamma y$ then $\gamma^{-1} g \in K$, thus $g \in \Gamma(H) \cdot K$ and $\gamma \equiv g \bmod K$. Hence the bundle (5) over $\Gamma(H) x$ is

$$
\begin{equation*}
\Gamma(H)\left\{x \times K \times_{K}\left(y \times{F^{\prime}}_{p^{\prime}(b)}^{\prime}\right)\right\} \rightarrow \Gamma(H) x . \tag{6}
\end{equation*}
$$

On the other hand the G-vector bundle $\pi_{*}^{-} p^{\prime *} r^{*} F^{\prime}$ is

$$
\begin{equation*}
G \times_{N(H)}\left[\partial P(H) \times_{\pi(\partial N)}\left(p^{\prime *} r^{*} F^{\prime}\right)\right] \rightarrow G \times_{N(H)} \partial P(H) . \tag{7}
\end{equation*}
$$

The restriction of (7) on $\Gamma(H) x$ is

$$
\begin{equation*}
\Gamma(H) x \times p^{\prime *} r^{*} F_{p^{\prime}(b)}^{\prime} \rightarrow \Gamma(H) x . \tag{8}
\end{equation*}
$$

(6) is H-equivariantly isomorphic to (8) by

$$
\Psi(\Gamma(H) x): \gamma\left(x \times k \times{ }_{K}(y \times f)\right) \rightarrow(\gamma x \times k f),
$$

where $\gamma \in \Gamma(H), k \in K, f \in F^{\prime}{ }_{p^{\prime}(b)}$ and its inverse is given by $(\gamma x \times k f) \rightarrow \gamma(x \times$ $\left.e \times{ }_{K}(y \times k f)\right)=\gamma\left(x \times k \times{ }_{K}(y \times f)\right), e$ denotes the unit of G.
(ii) Commutativity over a neighborhood of b

Let ε be the radius of a fiber of the sphere bundle $\partial N \rightarrow M_{(K)}$, then we use the tublar neighborhood $N_{1} \rightarrow M_{(K)}$ with radius $\varepsilon / 2$ instead of N if it is necessary. The fiber N_{y} over y is included in a slice and there exists $x \in \partial N_{y}$ such as $G_{x}=$ H and $p(x)=y$. For any $y_{0} \in S_{y} \cap P(K), G_{y_{0}}=G_{y}=K$. Take the slice $S_{y_{0}}$ at y_{0} with radius ε, then $S_{y_{0}} \supset N_{y}$ and for any $x_{1}^{\prime} \in\left(\bar{x} y_{0}-\left\{y_{0}\right\}\right), G_{x}^{\prime}=G_{x}=H$. Thus \{the half line through $p\left(x_{1}^{\prime}\right)$ and $\left.x_{1}^{\prime}\right\} \cap \partial N=x_{1}$ has the isotropy subgroup $G_{x_{1}}=$ $G_{x_{1}}^{\prime}=H$, and $G_{p^{\left(x_{1}\right)}}=K$. Hence we have local cross sections $S_{y} \cap P(K) \supset s_{K}^{\left(p^{\prime}(b)\right)}$ ($p^{\prime}(U(b))$) of the bundle $P(K) \rightarrow \pi\left(M_{(K)}\right)$ and $s_{H}^{(b)}(U(b))$ of $\partial P(H) \rightarrow \pi(\partial N)$ such that the diagram

is commutative. We can suppose that the bundle F^{\prime} is trivial over $p^{\prime}(U(b))$. By using $\Psi(\Gamma(H) x)$ in (i) and the product representation $F^{\prime} \mid p^{\prime}(U(b))=F_{p^{\prime}(b)}^{\prime} \times$ $p^{\prime}(U(b))$ as a K-vector bundle over $p^{\prime}(U(b))$, we construct an isomorphism of $N(H)$-vector bundles over $\Gamma(H) s_{H}^{(b)}(U(b))$ of

$$
\begin{equation*}
\Gamma(H)\left\{s_{H}^{(b)}(U(b)) \times K \times_{K}\left(s_{K}^{p \prime(b)}\left(p^{\prime}(U(b)) \times F_{p^{\prime}(b)}^{\prime} \times p^{\prime}(U(b))\right\} \rightarrow \Gamma(H) s_{H}^{(b)}(U(b))\right.\right. \tag{9}
\end{equation*}
$$

onto

$$
\begin{equation*}
\Gamma(H)\left\{s_{H}^{(b)}(U(b)) \times r^{*} F_{p^{\prime}(b)}^{\prime} \times U(b)\right\} \rightarrow \Gamma(H) s_{H}^{(b)}(U(b)), \tag{10}
\end{equation*}
$$

which is given by

$$
\Psi\left(\Gamma(H) s_{H}^{(b)}(U(b))\right): \gamma\left\{x \times k \times{ }_{K}\left(y \times f \times p^{\prime}\left(b_{1}\right)\right)\right\} \rightarrow \gamma x \times k f \times b_{1},
$$

where $x \in s_{H}^{(b)}(U(b)), y=p(x), f \in F_{p^{\prime}(b)}^{\prime}, k \in K$ and $b_{1} \in U(b)$.
(iii) Commutativity over ∂N

Since $\pi\left(M_{(K)}\right)$ is compact connected, by the construction in (ii), we can choose an open covering of $\pi(\partial N)=\pi\left(M_{(K)}\right), \bigcup_{i=1}^{L} U_{i}=\pi(\partial N)$ which admit local cross sections $s_{K}^{(i)}: p^{\prime}\left(U_{i}\right) \rightarrow P(K), s_{H}^{(i)}: U_{i} \rightarrow \partial P(H)$ with $p \cdot s_{H}^{(i)}=s_{K}^{(i)} \cdot p^{\prime}$. Further we can assume that $F^{\prime} \mid p^{\prime}\left(U_{i}\right)$ is product for each i. Now we construct isomorphisms $\Psi\left(\Gamma(H) s_{H}^{(i)}\right)$ of $N(H)$-vector bundles as in (ii). If $b \in U_{i} \cap U_{j}$, then there exists $\gamma(b) \in \Gamma(K)$ such as $s_{K}^{(j)}\left(p^{\prime}(b)\right)=\gamma(b) s_{K}^{(i)}\left(p^{\prime}(b)\right)$. On the other hand $s_{H}^{(j)}(b)=\gamma^{\prime}(b) s_{H}^{(i)}(b)$ for some $\gamma^{\prime}(b) \in \Gamma(H)$, then $\gamma^{\prime}(b)^{-1} \gamma(b) \in K$ and so $\gamma^{\prime}(b)$ $=\gamma(b) k$ for some $k \in K \cap \Gamma(H)$, or equivarently $\gamma(b)=\gamma^{\prime}(b) k^{-1}$. Then $\Psi\left(\Gamma(H) s_{H}^{(t)}\right)$ coincides with $\Psi\left(\Gamma(H) s_{H}^{(j)}\right)$ over $\Gamma(H) s_{H}^{(i)}\left(U_{i} \cap U_{j}\right)=\Gamma(H) s_{H}^{(j)}\left(U_{i} \cap U_{j}\right)$ by the definition of $\Psi\left(\Gamma(H) s_{H}\right)$ in (ii). Since $\Gamma(H) s_{H}^{(i)}\left(U_{i}\right)$ and $\Gamma(K) s_{K}^{(i)}\left(p^{\prime}\left(U_{i}\right)\right)$ are open in $\partial P(H)$ and $P(K)$ respectively, we can paste the family $\Psi\left(\Gamma(H) s_{H}^{(i)}\right) i=1$, \cdots, l to get an isomorphism of $N(H)$-vector bundles over $\partial P(H)$ of

$$
\begin{equation*}
\partial P(H) \times_{M_{(K)}}\left[G \times_{N(K)}\left(P(K) \times_{\pi\left(M_{(K)}\right)} F^{\prime}\right)\right] \rightarrow \partial P(H) \tag{11}
\end{equation*}
$$

onto

$$
\begin{equation*}
\partial P(H) \times_{\pi(\partial N)}\left(p^{\prime *} r^{*} F^{\prime}\right) \rightarrow \partial P(H) . \tag{12}
\end{equation*}
$$

We denote the isomorphism by $\Psi(\partial P(H))$. By the first step of the proof of Theorem 1 in § 1, we have the isomorphism $1_{G} \times_{N(H)} \Psi(\partial P(H)$) of

$$
\begin{equation*}
\left[G \times_{N(H)} \partial P(H)\right] \times_{M_{(K)}}\left[G \times_{N(K)}\left(P(K) \times_{\pi\left(M_{(K)}\right)} F^{\prime}\right)\right] \rightarrow \partial N \tag{13}
\end{equation*}
$$

onto

$$
\begin{equation*}
G \times_{N(H)}\left[\partial P(H) \times_{\pi(\partial N)} P^{\prime *} r^{*} F^{\prime}\right] \rightarrow \partial N \tag{14}
\end{equation*}
$$

We denote the required isomorphism by Ψ_{G}.
Notational conventions. Let M be a G-manifold with one orbit type (H) and the property $\left(C_{1}\right)$, and $\varphi: E \rightarrow \bar{E}$ be a G-isomorphism of G-vector bundles over M, then φ induces the H-isomorphism $\varphi^{\prime}: \pi_{*} E \rightarrow \pi_{*} \bar{E}$, we denote it by
$\pi_{*}(\varphi)$. On the other hand, for a given H-isomorphism $\varphi^{\prime}: E^{\prime} \rightarrow \bar{E}^{\prime}$ of H-vector bundles over $\pi(M)$, the induced G-isomorphism $\pi_{*} E^{\prime} \rightarrow \pi_{*} \bar{E}^{\prime}$ is denoted by $\pi_{*}^{-}\left(\varphi^{\prime}\right)$. Suppose $f: N \rightarrow M$ to be a G-map of G-manifolds, then the above $\varphi: E \rightarrow \bar{E}$ induces the G-isomorphism $f^{*} E \rightarrow f^{*} \bar{E}$, we denote it by $f^{*}(\varphi)$. The G-isomorphism due to G. Segal, $E \rightarrow \pi_{*} \pi_{*} E$, is denoted by $\pi_{*}^{-} \pi_{*},(\S 1$ of this paper, § 2, [9]).

3. A classification theorem

We consider a family $D=\left\{\left(F^{\prime}, E_{1}^{\prime}\right) \in \widehat{\text { Vect }_{K}}\left(\pi\left(M_{\left(K_{K}\right)}\right)\right) \times \widehat{\operatorname{Vect}_{H}}\left(\pi\left(M_{1}\right)\right), \alpha_{H}\right\}$, where we use notations in $\S 2$ and α_{H} is an isomorphism of H-vector bundles $p^{\prime *} r^{*} F^{\prime} \rightarrow E_{1}^{\prime} \mid \partial \pi\left(M_{1}\right)$, say ∂E_{1}^{\prime}. We call each element of D a datum.

Definition 1. A datum $\left(F^{\prime}, E_{1}^{\prime}, \alpha_{H}\right)$ is equivalent to a datum $\left(\bar{F}^{\prime}, \bar{E}_{1}^{\prime}, \bar{\alpha}_{H}\right)$ if and only if there exist isomorphisms ρ_{K} of K-vector bundles and φ_{H} of H-vector bundles such that the diagram

is commutative, where $\rho_{H, K}$ is the isomorphism ρ_{K} as an H-vector bundle isomorphism.

The relation in the definition is an equivalence relation.
Proposition 1. For two data $\left(F^{\prime}, E_{1}^{\prime}, \alpha_{H}\right),\left(F^{\prime}, E_{1}^{\prime}, \bar{\alpha}_{H}\right)$ if α_{H} is homotopic to $\bar{\alpha}_{H}^{\prime}$ by a homotopy $\left\{h_{t} ; 0 \leqq t \leqq 1\right\}$ such that h_{t} is an H-isomorphism for each t, then the data are equivalent each other.

Proof. We choose a coloring $\partial \pi\left(M_{1}\right) \times I \subset \pi\left(M_{1}\right)$. Since $h_{0} \cdot h_{0}^{-1}=$ the identity of ∂E_{1}^{\prime}, the homotopy $h_{1-t} \cdot h_{0}^{-1}: E_{1}^{\prime}\left|\partial \pi\left(M_{1}\right) \times I \rightarrow E_{1}^{\prime}\right| \partial \pi\left(M_{1}\right) \times I$ can be extended to an H-automorphism $\varphi_{H}: E_{1}^{\prime} \rightarrow E_{1}^{\prime}$ such that the diagram

$$
\begin{gathered}
p^{*} r^{*} F^{\prime}<\left.\bar{\alpha}_{H} \nearrow \partial E_{1}^{\prime} \quad \subset \quad \bar{\alpha}_{H} \cdot \alpha_{H}^{-1}\right|_{1} ^{\prime} \varphi_{H} \\
\searrow \partial E_{1}^{\prime} \quad \subset \quad E_{1}^{\prime}
\end{gathered}
$$

is commutative.
Remark. The isomorphism α_{H} of a datum $\left(F^{\prime}, E_{1}^{\prime}, \alpha_{H}\right)$ determines a canonical G-isomorphism between G-vector bundles $p^{*} \pi_{*}^{-} F^{\prime}$ and $\pi_{*}^{-} \partial E_{1}^{\prime}$. In fact, by the lemma in § 2, we have the G-isomorphism $\Psi_{G}: p^{*} \pi_{*}^{-} F^{\prime} \rightarrow \pi_{*}^{-} p^{\prime *} r^{*} F^{\prime}$. Using α_{H}, we have a G-isomorphism $1_{G} \times_{N(H)}\left(1_{\partial P(H)} \times_{\pi(\partial N)} \alpha_{H}\right): \pi_{*}^{-} p^{\prime *} r^{*} F^{\prime} \rightarrow$
$\pi_{*}^{-}\left(\partial E_{1}^{\prime}\right)$, i.e. $\pi_{*}^{-}\left(\alpha_{H}\right)$. Let $\Phi_{G}\left(\alpha_{H}\right)$ be the composition $\pi_{*}^{-}\left(\alpha_{H}\right) \cdot \Psi_{G}$, which we call the canonical G-isomorphism.

Using the deformation along geodesics which are perpendicular to $M_{(K)}$, we have the equivariat deformation retract $\tilde{p}: N \rightarrow M_{(K)}$ with $\tilde{p} \mid \partial N=p$. Precisely \tilde{p} is defined to be $\tilde{p} \cdot \rho(x, t)=p(x)$ over $\rho(\partial N \times(0.1])$ and $\tilde{p}(x)=x$ for $x \in M_{(K)}$, where ρ has been used in $\S 2$.

Proposition 2. If a datum $\left(F^{\prime}, E_{1}^{\prime}, \alpha_{H}\right)$ is equivalent to a datum ($\bar{F}^{\prime}, \bar{E}_{1}^{\prime}, \bar{\alpha}_{H}$), then $\tilde{p}^{*} \pi_{*} \bar{F}^{\prime} \cup_{\Phi_{G}\left(\alpha_{H}\right)} \pi_{*} \bar{E}_{1}^{\prime}$ is G-isomorphic to $\tilde{p}^{*} \pi_{*} \bar{F}^{\prime} \cup_{\Phi_{G}\left(\bar{\alpha}_{H}\right)} \pi_{*} \bar{E}_{1}^{\prime}$, where we denote by $U_{\Phi_{G}}$ the clutching construction.

Proof. From the equivalence

we have the commutative diagram
for the second square from the left, its commutativity is obtained from the commutative diagram

$$
\begin{array}{ll}
x \times k \times{ }_{K}\left(y \times f \times p^{\prime}\left(b_{1}\right)\right) & \xrightarrow{\Psi\left(\Gamma(H) s_{H}^{(b)}(U(b))\right.} \underset{\longrightarrow}{x \times k f \times b_{1}} \\
\qquad 1_{P(H)} \times \pi_{*}^{-}\left(\rho_{K}\right) & \\
x \times k \times{ }_{K}\left(y \times \rho_{K}(f) \times p^{\prime}\left(b_{1}\right)\right) \xrightarrow{\Psi\left(\Gamma(H) s_{H}^{(b)}(U(b))\right.} \xrightarrow{\downarrow} \underset{\partial P(H) \times \pi_{*}^{-}\left(\rho_{H, K}\right)}{ }
\end{array}
$$

c.f. (ii), the proof of the lemma, § 2. For other squares, the commutativities are resulted by the definition of π_{*}^{-}. Since each arrow is a G-isomorphism, we have the proposition.

For each G-vector bundle E over M, we use the notations, $E \mid M_{1}=E_{1}$, $\pi_{*} E_{1}=E_{1}^{\prime}, E\left|\partial N=\partial E_{1}, E\right| M_{(K)}=F, \pi_{*} F=F^{\prime}$.

Since N is a compact differentiable manifold, using \tilde{p} and the covering homotopy theorem, we have a G-equivalence $p_{G}^{*}: \tilde{p}^{*} F \rightarrow E \mid N$, and we get a
 G-isomorphism. By the commutative diagram

$$
\begin{array}{ll}
\tilde{p}^{*} F \cup_{\partial p_{G}^{*}} E_{1} & \xrightarrow{p_{G}^{*} \cup 1_{E_{1}}} E \\
\left\lvert\, \begin{array}{ll}
\downarrow \\
\left.\tilde{p}_{G}^{*}\right)^{-1} \cdot p_{G}^{*} \cup 1_{E_{1}} \\
\tilde{p}^{*} F \cup \cup_{\partial \bar{p}_{G}^{*}} E_{1} & \xrightarrow{\bar{p}_{G}^{*} \cup 1_{E_{1}}}
\end{array}\right. & \|,
\end{array}
$$

$\tilde{p}^{*} F \cup_{\partial_{p} *} E_{G}$ is G-isomorphic to $\tilde{p}^{*} F \cup_{\partial \bar{p}_{G}^{*}} E_{1}$.
G-isomorphisms $\partial p_{G}^{*}, \Psi_{G}$ and $\pi_{*} \pi_{*}$ induce H-isomorphisms $\partial p_{H}^{*}=\pi_{*}$ $\left(\partial p_{G}^{*}\right): \pi_{*}\left(p^{*} F\right) \rightarrow \partial E_{1}^{\prime}, \quad \Psi_{H}=\pi_{*}\left(\Psi_{G}\right): \pi_{*}\left(p^{*} \pi_{*}^{-} F^{\prime}\right) \rightarrow p^{\prime *} r^{*} F^{\prime}$ and $q=\pi_{*}\left(p^{*}\right.$ $\left.\left(\left[\pi_{*}^{-} \pi_{*}\right]^{-1}\right)\right): \pi_{*}\left(p^{*} \pi_{*}^{-} F^{\prime}\right) \rightarrow \pi_{*}\left(p^{*} F\right)$ respectively. To the bundle $p^{*} F \cup$ $\partial_{p_{G}^{*}}^{*} E_{1}$, we make to correspond a datum ($F^{\prime}, E_{1}^{\prime}, \partial p_{H}^{*} \cdot q \cdot \Psi_{H}^{-1}$). By the next proposition the correspondence is independent of the choice of p_{G}^{*}.

Proposition 3. If a G-vector bundle E is G-isomorphic to a G-vector bundle \bar{E}, then the resulting data are equivalent.

Proof. Let $\varphi_{G}: E \rightarrow \bar{E}$ be a G-isomorphism. Choose representations $\tilde{p}^{*} F \cup$ $\partial_{p_{G}^{*}}^{*} E_{1} \rightarrow E, \tilde{p}^{*} \bar{F} \cup \partial_{\partial_{G}}{ }_{F}^{*} \bar{E}_{1} \rightarrow \bar{E}$. Let $\widetilde{\varphi}_{G}$ be $\left(\bar{p}_{G}^{*}\right)^{-1}\left(\varphi_{G} \mid N\right)\left(p_{G}^{*}\right): \tilde{p}^{*} F \rightarrow \tilde{p}^{*} \bar{F}$. Since $\widetilde{\mathcal{P}}_{G}$ is resulted from $\widetilde{\mathscr{P}}_{G} \mid M_{(K)}: F \rightarrow \bar{F}$, we have commutative diagrams
and

The equivalence classes of elements of D has a semi group structure by the Whitney sum, we denote it by $D_{H, K}(M)$. By Proposition 3 we get a homomorphism $S: \operatorname{Vect}_{G}(M) \rightarrow D_{H, K}(M)$ which is defined to be $S(E)=\left(F^{\prime}, E_{1}^{\prime}\right.$, $\partial p_{H}^{*} \cdot q \cdot \Psi_{H}^{-1}$) for a representation $\tilde{p}^{*} F \cup_{\partial p_{G}}^{*} E_{1}$ up to G-isomorphisms. We define $\hat{T}: D \rightarrow \widehat{V e c t} t_{G}(M)$ by $\hat{T}\left(F^{\prime}, E_{1}^{\prime}, \alpha_{H}\right)=\tilde{p}^{*} \pi_{*}^{-} F^{\prime} U_{\Phi_{G}\left(\boldsymbol{w}_{H}\right)} \pi_{*}^{-} E_{1}^{\prime}$, then by Proposition 2, it induces a homomorphism $T: D_{H, K}(M) \rightarrow \operatorname{Vect}_{G}(M)$. Now we are in a position to prove our main theorem.

Theorem 2. The homomorphism $S: \operatorname{Vect}_{G}(M) \rightarrow D_{H, K}(M)$ is an isomorphism of semi groups and T is its inverse.

Proof. For $E \in \widehat{V e c t}(M)$ we choose a representation $\tilde{p}^{*} F \cup_{\partial p_{G}^{*}}^{*} E_{1}=E$ and take the datum $\left(F^{\prime}, E_{1}^{\prime}, \partial p_{H}^{*} \cdot q \cdot \Psi_{H}^{-1}\right)$. We consider the following diagram,

In order to get the commutativity of the lower square, we use commutativities of other parts, and we have

$$
\begin{aligned}
& \pi_{*}^{-}\left(\partial p_{H}^{*} \cdot q \cdot \Psi_{H}^{-1}\right) \cdot \Psi_{G} \cdot p^{*}\left(\pi_{*}^{-} \pi_{*}\right)=\pi_{*}^{-}\left(\partial p_{H}^{*}\right) \cdot \pi_{*}^{-}(q) \cdot \pi_{*}^{-}\left(\Psi_{H}^{-1}\right) \cdot \Psi_{G} \cdot p^{*}\left(\pi_{*}^{-} \pi_{*}\right) \\
= & \pi_{*}^{-}\left(\partial p_{H}^{*}\right) \cdot \pi_{*}^{-}(q) \cdot \pi_{*}^{-} \pi_{*} \cdot p^{*}\left(\pi_{*}^{-} \pi_{*}\right) \\
= & \pi_{\bar{*}} \pi_{*}\left(\partial p_{G}^{*}\right) \cdot \pi_{*}^{-} \pi_{*}\left(p^{*}\left[\left(\pi_{*}^{-} \pi_{*}\right)^{-1}\right]\right) \cdot \pi_{*} \pi_{*}\left(p^{*}\left(\pi_{*} \pi_{*}\right)\right) \cdot \pi_{*}^{-} \pi_{*} \\
= & \pi_{\bar{*}}^{-\bar{\pi}} \pi_{*}\left(\partial p_{G}^{*}\right) \cdot \pi_{*}^{-} \pi_{*}=\pi_{*}^{\bar{*}} \pi_{*} \cdot \partial p_{G}^{*},
\end{aligned}
$$

and G-isomorphisms,

$$
E \cong p^{*} F \cup_{\partial p_{G}^{*}} E_{1} \cong p^{*} \pi_{*}^{-} F^{\prime} \cup_{\Phi\left(\partial p_{H}^{*} \cdot q \cdot \Psi_{H}^{-1}\right)} \pi_{*} E_{1}^{\prime},
$$

where $\Phi\left(\partial p_{H}^{*} \cdot q \cdot \Psi_{H}^{-1}\right)=\pi_{*}^{-}\left(\partial p_{H}^{*} \cdot q \cdot \Psi_{H}^{-1}\right) \cdot \Psi_{G}$, (Remark after Proposition 1).
Let $[E]$ be the equivalence class which contains E, then we have $T \cdot S([E])$ $=[E]$ by the above equalities and Propositions 2,3. Let $\left(F^{\prime}, E_{1}^{\prime}, \alpha_{H}\right)$ be a datum, then $T\left(F^{\prime}, E_{1}^{\prime}, \alpha_{H}\right)=p^{*} \pi_{*}^{-} F^{\prime} U_{\Phi\left(\alpha_{H}\right)} \pi_{*} E_{1}^{\prime}$. Since $\Phi\left(\alpha_{H}\right) \Psi_{G}^{-1}=\pi_{*}^{-}\left(\alpha_{H}\right)$ and $\pi_{*} \pi_{-}^{-}=$the identity, $\left(F^{\prime}, E_{1}^{\prime}, \alpha_{H}\right)$ is a datum of this representation. Thus we have proved that $S \cdot T=$ the identity of $D_{H, K}(M)$.
4. $\boldsymbol{K}_{0(n)}\left(\boldsymbol{W}^{2 n-1}(\boldsymbol{d})\right), \boldsymbol{n} \geqq 2$.

Brieskorn-Hirzebruch $O(n)$-manifold $W^{2 n-1}(d)$ is the loci of equations $z_{0}^{a}+$ $z_{1}^{2}+\cdots+z_{n}^{2}=0,\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}=2$. By 4.5 of [2], the manifold is a special $O(n)$-manifold with the orbit type $(O(n-2), O(n-1))$, and the orbit space is D^{2}, the 2-disc, and $\partial D^{2}=S^{1}=\pi\left(W^{2 n-1}(d)_{(0(n-1))}\right)$.

In this section, we consider complex vector bundles, then any vector bundle is orientable. Since the boundary S^{1} is a trivial $O(n-1)$-manifold, any vector bundle over S^{1} is equivalent to a product $O(n-1)$-vector bundle, and we have an isomorphism $\operatorname{Vect}_{0(n-1)}\left(S^{1}\right) \cong \widehat{O(n-1)}$, where $\widehat{O(n-1)}$ is the semi group of isomorphism classes of complex $O(n-1)$-modules, (Prop. 2.2, [9]).

Let K be the Grothendieck functor, then by Theorem 2 in § 3, we have

$$
\begin{aligned}
& K\left(D_{o(n-2), 0(n-1)}\right) \cong K\left(\operatorname{Vect}_{0(n)}\left(W^{2 n-1}(d)\right)=K_{o(n)}\left(W^{2 n-1}(d)\right),\right. \\
& K_{o(n-1)}\left(S^{1}\right)=K\left(\operatorname{Vect}_{0(n-1)}\left(S^{1}\right)\right) \cong K(O(n-1))=R(O(n-1)),
\end{aligned}
$$

where $R(G)$ is the complex representation ring of G.
Using notations in §3, we define a homomorphism of semi groups j^{*} : $D_{H, K} \rightarrow \operatorname{Vect}_{K}\left(\pi\left(M_{(K)}\right)\right.$ by $j^{*}\left(F^{\prime}, E_{1}^{\prime}, \alpha_{H}\right)=F^{\prime}$.

In the case of $M=W^{2 n-1}(d), \pi\left(M_{1,(0(n-2))}\right)=D_{\mathrm{e}}^{2}$, where ε is the radius of the $\operatorname{disc} \pi\left(M_{1, C 0(n-2)}\right)$. We define a homomorphism $k^{*}: \operatorname{Vect}_{0(n-1)}\left(S^{1}\right) \rightarrow D_{0(n-2), 0(n-1)}$ by $k^{*}\left(S^{1} \times V\right)=\left(S^{1} \times V, D_{\varepsilon}^{2} \times r^{*} V, \alpha_{0(n-2)}=p^{\prime} \times 1_{r^{*} V}\right)$ for each $O(n-1)$-module V. Then we have $j^{*} \cdot k^{*}=$ the identity of $\operatorname{Vect}_{0(n-1)}\left(S^{1}\right)$, and $K_{0(n-1)}\left(S^{1}\right) \cong R(O$ $(n-1))$ is a direct summand of $K_{\mathrm{o}(n)}\left(W^{2 n-1}(d)\right)$.

Now we prove our main result in this section.

Theorem 3.

$$
K_{\mathrm{o}(n)}\left(W^{2 n-1}(d)\right) \cong R(O(n-1))
$$

Proof. At first we seek a linear form of a clutching function $\alpha_{0(n-2)}$. We can do this quite parallely to the proof of the Bott periodicity due to Atiyah-Bott, [4]. For any datum ($\left.S^{1} \times V, D_{\mathrm{z}}^{2} \times r^{*} V, \alpha_{0(n-2)}\right)$, the clutching function $\alpha_{0(n-2)}$ is equivariantly homotopic to a Laurent polynomial clutching function $\beta_{0(n-2)}=$ $\sum_{|k| \leq l} a_{k} z^{k}, 2.5$, Proposition p. 130 [4], then $\left(S^{1} \times V, D_{\mathrm{z}}^{2} \times r^{*} V, \alpha_{0(n-2)}\right)$ is equivalent to $\left(S^{1} \times V, D_{\mathrm{e}}^{2} \times r^{*} V, \beta_{0(n-2)}\right)$ by the proposition $1, \S 3$. There exists a polynomial clutching function $p(z)=b_{0}+b_{1} z+\cdots+b_{s} z^{s}$ with $\beta_{0(n-2)}=p(z) z^{-s}$. By the diagram

$\left(S^{1} \times V, D_{\varepsilon}^{2} \times r^{*} V, p(z) z^{-s}\right)$ is equivalent to $\left(S^{1} \times V, D_{\mathfrak{z}}^{2} \times r^{*} V, p(z)\right) . \quad p(z)+1_{(1)}$ $+\cdots+1_{(s)}$ is equivariantly homotopic to a linear clutching function $a z+b$, further to $a_{+} z \oplus b_{-}$, and ($\left.S^{1} \times(s+l) V, D_{8}^{2} \times r^{*}(s+l) V, p(z)+1_{(1)}+\cdots+1_{(s)}\right)$ is equivalent to $\left(S^{1} \times(s+1) V, D_{z}^{2} \times\left\{\left(r^{*}(s+1) V\right)_{+}^{0} \oplus\left(r^{*}(s+1) V\right)_{-}^{0}\right\}, a_{+} z \oplus b_{-}\right)$, where $\left(r^{*}(s+1) V\right)_{+}^{0}$ and $\left(r^{*}(s+1) V\right)_{-}^{0}$ are $O(n-2)$-modules and a_{+}, b_{-}are $O(n-2)$ automorphisms, Proof of 3,2. p. 132, 4.6 p. 135, [4], (Since $a z+b$ is $O(n-2)$ equivariant, then p_{0}, p_{∞} are $O(n-2)$-equivariant and the decomposition $\operatorname{im} p_{0} \oplus \operatorname{ker} p_{0}$ is $O(n-2)$-invariant).

By the corollary 2 (i) [7], $r^{*}: R(O(n-1)) \rightarrow R(O(n-2))$ is epimorphic, then for any $O(n-2)$-module L there exist $O(n-1)$-modules L_{1}, L_{2} with $L=r^{*} L_{2}-$ $r^{*} L_{1}$, and so $L+r^{*} L_{1}=r^{*} L_{2}$ in $R(O(n-1))$. Thus $L+r^{*} L_{1}+L_{3}=r^{*} L_{2}+L_{3}$,
where L_{3} is a trivial $O(n-2)$-module and it can be considered as a trivial $O(n-$ $1)$-module. Then we can choose $O(n-1)$-modules V_{+}, V_{-}with $\left(r^{*}(s+1) V\right)_{ \pm}^{0} \oplus$ $r^{*} V \in \operatorname{im} r^{*}$. Since $\left[a_{+} z \oplus z\right] \oplus\left[b_{-} \oplus 1_{V_{-}}\right]=\left\{\left[a_{+} \oplus 1_{V_{+}}\right] \oplus\left[b_{-} \oplus 1_{V_{-}}\right]\right\} . \quad\{[z] \oplus[1]\}$, adding the datum $\left(S^{1} \times\left(V_{+} \oplus V_{-}\right), D_{z}^{2} \times\left(r^{*} V_{+} \oplus r^{*} V_{-}\right), z \oplus 1\right) \in \operatorname{im} k^{*}$ to the last one, the datum

$$
\begin{align*}
& \left(S^{1} \times\left\{(s+1) V \oplus V_{+} \oplus V_{-}\right\}, D_{\varepsilon}^{2} \times\left\{\left[\left(r^{*}(s+1) V\right)_{+}^{0} \oplus r^{*} V_{+}\right] \oplus\left[r^{*}(s+1) V\right)_{-}^{0}\right.\right. \tag{1}\\
& \left.\left.\left.\quad \oplus r^{*} V_{-}\right]\right\},\left[a_{+} z \oplus z\right] \oplus\left[b_{-} \otimes 1_{V_{-}}\right]\right)
\end{align*}
$$

is equivalent to
(2) $\quad\left(S^{1} \times\left\{(s+1) V \oplus V_{+} \oplus V_{-}\right\}, D_{\varepsilon}^{2} \times\left\{\left[\left(r^{*}(s+1) V\right)_{+}^{0} \oplus r^{*} V_{+}\right] \oplus\left[r^{*}(s+1) V\right)_{-}^{0}\right.\right.$ $\left.\left.\left.\oplus r^{*} V_{-}\right]\right\},\left[a_{+} \oplus 1_{V_{+}}\right] \oplus\left[b_{-} \oplus 1_{V_{-}}\right]\right)$.
The $O(n-2)$-automorphism $\left[a_{+} \oplus 1_{V_{+}}\right] \oplus\left[b_{-} \oplus 1_{V_{-}}\right]$has the extension to an $O(n-$ 2)-automorphism of $D_{\varepsilon}^{2} \times\left\{\left[\left(r^{*}(s+1) V\right)_{+}^{0} \oplus r^{*} V_{+}\right] \oplus\left[\left(r^{*}(s+1) V\right)_{-}^{0} \oplus r^{*} V_{-}\right]\right\}$, thus the datum (2) is equivalent to
(3) $\quad\left(S^{1} \times\left\{(s+1) V \oplus V_{+} \oplus V_{-}\right\}, D_{z}^{2} \times\left\{\left[\left(r^{*}(s+1) V\right)_{+}^{0} \oplus r^{*} V_{+}\right] \oplus\left[r^{*}(s+1) V\right)_{-}^{0}\right.\right.$ $\left.\left.\oplus r^{*} V_{-}\right]\right\}$, the identity),
which belongs to im k^{*}. By the remark before the theorem 3, we have proved the theorem.

Remark. S. Araki has obtained the theorem by using a Fáry type spectral sequence.

5. Invariant vector field on $\mathbf{W}^{2 n-1}(\mathbf{d}), \mathbf{n} \geqq 2$

5.1 A Killing vector field on $W^{2 n-1}(d)$

The manifold $W^{2 n-1}(d)$ is an $S O(2) \times O(n)$-manifold. In fact for $A \in O(n)$, the action is defined by

$$
A\left(z_{0}, z_{1}, \cdots, z_{n}\right)=\left(z_{0}, \mathrm{~A}\left(z_{1}, \cdots, z_{n}\right)\right)
$$

On the other hand the 1-parameter group $\left\{\operatorname{Diag}\left(e^{2 i t}, e^{d i t}, \cdots, e^{d i t}\right) ; 0 \leqq t \leqq\right.$ $2 \pi\} \cong S O(2)$ acts by

$$
\operatorname{Diag}\left(e^{2 i t}, e^{d i t}, \cdots, e^{d i t}\right)\left(z_{0}, \cdots, z_{n}\right)=\left(e^{2 i t} z_{0}, e^{d i t} z_{1}, \cdots, e^{d i t} z_{n}\right)
$$

and the action is free for sufficiently small $|t|$. The actions of $S O(2)$ and $O(n)$ are commutative.

Choosing an $S O(2) \times O(n)$-invariant Riemannian metric on $W^{2 n-1}(d)$, we have $S O(2) \times O(n) \subset I\left(W^{2 n-1}(d)\right)$, the group of isometries of $W^{2 n-1}(d)$, and $S O(2)$ is an 1-parameter group of transformations. Define a vector field on $W^{2 n-1}(d)$ by

$$
\begin{equation*}
X_{p} f=\left.\frac{d f\left(\varphi_{t}(p)\right)}{d t}\right|_{t=0} \quad \text { for any } f \in C^{\infty}(U(p), R) \tag{1}
\end{equation*}
$$

where $U(p)$ is a neighborhood of a point p in $W^{2 n-1}(d)$, and $\varphi_{t}=\operatorname{Diag}\left(e^{2 i t}\right.$, $\left.e^{d i t}, \cdots, e^{d i t}\right)$, then by definition, X is a complete vector field on $W^{2 n-1}(d)$.

The next proposition is well known in differential geometry.
Proposition 5. Let X be a complete vector field on a Riemannian manifold M, then X is a Killing vector field if and only if $\operatorname{Exp} t X$ is an isometry of M for each $t \in R$.

Thus the vector field X defined by (1) is a Killing vector field. Since φ_{t} acts freely for sufficiently small $|t|$, the vector field X has no singularity.

Definition. Let G be a compact Lie group. A vector field X on a G manifold M is called G-invariant if it satisfies the equality

$$
\begin{equation*}
(d g)_{p} X_{p}=X_{g p} \quad \text { for all } p \in M \text { and } g \in G \tag{2}
\end{equation*}
$$

Let $\left\{\varphi_{t}: t \in R\right\}$ be an 1-parameter group of transformations of a G manifold M, and suppose to be $g \varphi_{t}=\varphi_{t} g$ for all $g \in G$ and $t \in R$, then for any $f \in C^{\infty}(U(g p), R)$,

$$
\left\{(d g)_{p} \times X_{p}\right\}(f)=X_{p}(f \cdot g)=\left.\frac{d(f \cdot g)\left(\varphi_{t}(p)\right)}{d t}\right|_{t=0}=\left.\frac{d f\left(\varphi_{t}(g p)\right)}{d t}\right|_{t=0}=X_{g p} f
$$

then the condition (2) is satisfied, and the vector field X is G-invariant.
By these discussions, we have proved
Theorem 4. There exists an $O(n)$-invariant Killing vector field without singularity on $W^{2 n-1}(d)$.

The next proposition is well known in the case without G-action.
Proposition 5. A G-manifold M admits a G-invariant vector field without singularity if and only if the tangent bundle $T(M)$ of M has a G-invariant decomposition $T(M)=E \oplus \theta^{1}$, where E is a G-vector bundle and θ^{1} is the product G-line bundle over M, and the decomposition is smooth.

We can prove the proposition quite similarly to the case without G-action.
Remark (1). Suppose n to be a positive odd integer and $n \geqq 3$, then $W^{2 n-1}$ $(2 k+1)$ is diffeomorphic to $S^{2 n-1}$, the standard sphere if $2 k+1 \equiv+1 \bmod 8$, and to $\sum^{2 n-1}$, the Kervaire sphere if $2 k+1 \equiv+3 \bmod 8$, and $\sum^{2 n-1}$ is not diffeomorphic to $S^{2 n-1}$ if $2 k+1 \equiv+3 \bmod 8$ and $n+1$ is not a power of 2 . (11.3, [2]).

Remark (2) $S^{4 l+1}$ admits 1-field but not 2-field (27.11, [11]). Here we quote a theorem in [10]. Let $f: S^{n} \rightarrow \Sigma^{n}$ be an orientation preserving homotopy equivalence of the standard n-sphere S^{n} onto a homotopy sphere Σ^{n}, then we have an equivalence $f * T\left(\Sigma^{n}\right) \approx T\left(S^{n}\right)$. Thus $\sum^{4 l+1}$ admits 1 -field but not 2-field.
5.2 Non existence of invariant 2-fields

Now we proved the following
Theorem 5. For $n \geqq 2$, the $O(n)$-manifold $W^{2 n-1}(d)$ admits an $O(n)$ invariant 1-field, but not $O(n)$-invariant 2 -fields.

Proof. The orbit map $\pi: W^{2 n-1}(d) \rightarrow D^{2}$ is the projection $\left(z_{0}, z_{1}, \cdots, z_{n}\right) \rightarrow$ z_{0}. Since $\left|z_{0}\right| \leqq 1,\left|z_{0}\right|^{2}=\left|z_{1}\right|^{2}=1$ for $\left(z_{0}, z_{1}\right) \in P(O(n-1))$ and $z_{0}=e^{2 \pi i t}, z_{1}$ $= \pm i e^{d \pi i t}$ for $0 \leqq t \leqq 1$. Then

$$
\begin{aligned}
i e^{d \pi i(t+1)} & =-i e^{d \pi i t} \text { if } d \text { is odd }, \\
& =i e^{d \pi i t} \text { if } d \text { is even } .
\end{aligned}
$$

Thus
(3) $\quad P(O(n-1))=S^{1}$ if d is odd and the orbit map $P(O(n-1)) \rightarrow S^{1}$ is the non trivial covering,
$=S^{1} \cup S^{1}$, the disjoint sum, if d is even and the orbit map is the trivial covering.

Let X be a vector field on a G-manifold M and generate the 1-parameter group of transformations $\left\{\varphi_{t}\right\}$. The next proposition is well known.

Proposition 6. X is G-invariant if and only if $g \varphi_{t}=\varphi_{t} g$ for each $t \in R$ and $g \in G$.

Proof. The if part has been proved in 5.1. Suppose X to be G-invariant. For any $f \in C^{\infty}(U(g p)), f \cdot g \in C^{\infty}(U(p)), 5.1$ for notations. By the equalities

$$
\begin{aligned}
\left(d g X_{p}\right) f & =X_{p}(f \cdot g) \\
& =\lim _{t \rightarrow 0} \frac{\left(f \cdot g \cdot \varphi_{t}-f \cdot g\right) g^{-1}(g p)}{t} \\
& =\lim _{t \rightarrow 0} \frac{\left(f \cdot g \cdot \varphi_{t} \cdot g^{-1}-f\right)(g p)}{t}
\end{aligned}
$$

$d g X$ generates $g \cdot \varphi_{t} \cdot g^{-1}$. Since $d g X=X$, we have $g \cdot \varphi_{t} \cdot g^{-1}=\varphi_{t}$ by the uniqueness of the solution of ordinary differential equations.

Proposition 7. Suppose M to be a G-manifold with non empty fixed point
set F, and admits an invariant vector field X without singularity. Then the restriction $X \mid F$ is a tangent vector field on F.

Proof. Suppose X to be a vector field on M and the restriction $X \mid F$ to be a non trivial, non tangential vector field on F, then X can not be G-invariant. For, if X is G-invariant and generates the 1-parameter group of transformations $\left\{\varphi_{t}\right\}$, then there exist $p_{0} \in F$ and $t_{0} \in R$ with $\varphi_{t_{0}} p_{0} \notin F$ since X is not tangential to F. By Proposition $6 g \cdot \varphi_{t_{0}} \cdot p_{0}=\varphi_{t_{0}} \cdot g p_{0}=\varphi_{t_{0}} p_{0}$ for any $g \in G$, then $\varphi_{t_{0}} p_{0} \in F$ which is a contradiction.

Now we return to the proof of the theorem. If X is an $O(n)$-invariant, then it is $O(n-1)$-invariant. By (11) and Proposition 7, $W^{2 n-1}(d)$ can not admit $O(n-1)$-invariant 2-fields. Thus we proved the theorem.

Osaka City University

References

[1] A. Borel and F. Hirzebruch: Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-538.
[2] F. Hirzebruch and K. Mayer : O(n)-Mannigfaltigkeiten, exotische Sphären und Singularitäten, Lecture notes in Math. 57, Springer-Verlag, 1968.
[3] Wu-chung Hsiang and Wu-yi Hsiang: Differentiable actions of compact connected classical groups I, Amer. J. Math. 89 (1967), 705-786.
[4] D. Husemoller: Fibre Bundles, McGraw-Hill, 1966.
[5] K. Jänich: Differenzierbare Mannigfaltigkeiten mit Rand als Orbiträume Differenzierbarer G-Mannigfaltigkeiten ohne Rand, Topology 5 (1966), 301-320.
[6] K. Jänich: On the classification of $O(n)$-manifolds, Math. Ann. 176 (1968), 53-76.
[7] H. Minami: The representation rings of orthogonal groups, Osaka J. Math. 8 (1971), 243-250.
[8] R.S. Palais: The Classification of G-spaces, Mem. Amer. Math. Soc. 36, 1960.
[9] G. Segal: Equivariant K-Theory, Inst. Hautes Etudes Sci. Publ. Math. 34 (1968) 129-151.
[10] K. Shiraiwa: A note on tangent bundles, Nagoya Math. J. 29 (1967), 259-267.
[11] N.E. Steenrod: The Topology of Fibre Bundles, Princeton, 1951.

