ON THE JANKO'S SIMPLE GROUP OF ORDER 175560

HIROYOSHI YAMAKI

(Received July 23, 1971)

1. Introduction

Let $\mathfrak{F}(11)$ be the Janko's simple group of order 175560 presented in [1] and \mathfrak{A}_m be the alternating group of degree m. In his papers [1], [2] Janko characterized the non-solvable group having the centralizer of an involution in the center of a Sylow 2-subgroup isomorphic to the splitting central extension of a group of order 2 by \mathfrak{A}_4 or \mathfrak{A}_5 . His result is that such a non-solvable group containing no normal subgroup of index 2 must be isomorphic to $P\Gamma L(2,8)$ or $\mathfrak{F}(11)$. The purpose of this note is to sharpen his results [1], [2]. Namely we want to prove the following theorem.

Theorem. Let S be a finite non-solvable group with the following two properties:

a) (3) has no normal subgroup of index 2,

b) \mathfrak{G} contains an involution J in the center of a Sylow 2-subgroup of \mathfrak{G} such that the centralizer $C_{\mathfrak{G}}(J) = \langle J \rangle \times \mathfrak{T}_m$, where \mathfrak{T}_m is isomorphic to \mathfrak{A}_m .

Then one of the following holds:

- 1) m=4 and \otimes is isomorphic to $P\Gamma L(2, 8)$,
- 2) m=5 and \otimes is isomorphic to $\Im(11)$.

REMARK. Our proof depends on Janko's theorems [1], [2] and by his results it is sufficient to prove that m=4 or 5.

2. Proof of the Theorem

Put m=4n+r, where $0 \le r \le 3$. Assume that *n* is greater than 1. Then the group \mathfrak{A}_m contains involutions \tilde{X}_i , \tilde{X}'_i $(1 \le i \le n)$ and \tilde{Y}_j $(1 \le j \le n-1)$ with the cycle decompositions

$$\begin{split} & X_i = (4i-3, 4i-2) \; (4i-1, 4i) \\ & \widetilde{X}'_i = (4i-3, 4i-1) \; (4i-2, 4i) \\ & \widetilde{Y}_j = (4j-3, 4j-2) \; (4j+1, 4j+2). \end{split}$$

In the isomorphism from \mathfrak{A}_m to \mathfrak{T}_m , let the images of the elements \widetilde{X}_i , \widetilde{X}'_i and

Н. Үамакі

 \tilde{Y}_{j} be X_{i}, X'_{i} and Y_{j} , respectively. Put $\mathfrak{X} = \langle X_{i}, X'_{j} | 1 \leq i, j \leq n \rangle$ and $\mathfrak{Y} = \langle Y_{j} | 1 \leq i \leq n-1 \rangle$. Then \mathfrak{X} and \mathfrak{Y} are 2-groups and \mathfrak{Y} normalizes \mathfrak{X} . Hence $\mathfrak{X}\mathfrak{Y}_{j}$ is a 2-group. By the definition we have $Y_{j}^{-1}X'_{j}Y_{j} = X_{j}X'_{j}$ and $Y_{j}^{-1}X'_{j+1}Y_{j} = X_{j+1}X'_{j+1}$, and then $\langle X_{i} | 1 \leq i \leq n \rangle$ is the commutator subgroup $(\mathfrak{X}\mathfrak{Y})'$ of $\mathfrak{X}\mathfrak{Y}$. Put $C_{i} = X_{1}X_{2}\cdots X_{i}$ for $1 \leq i \leq n$. Then we may assume that $\{C_{i} | 1 \leq i \leq n\}$ is the set of the representatives of the conjugacy classes of involutions in \mathfrak{T}_{m} . Let \mathfrak{D} be a Sylow 2-subgroup of \mathfrak{G} contained in $C\mathfrak{G}(J)$ and containing $\langle J \rangle \times \mathfrak{X}\mathfrak{Y}$. Hence the group \mathfrak{D}' contains C_{n} and the center $Z(\mathfrak{D})$ of \mathfrak{D} contains J and C_{n} . These facts are also true if n=1 and r=2 or 3.

Assume by way of contradiction that *n* is greater than 1, or n=1 and r=2 or 3. For $1 \le i \le n-1$, C_i is the square of an element of order 4 in \mathfrak{T}_m . Since \mathfrak{G} has no normal subgroup of index 2, it follows from a transfer lemma of Thompson [3] that J must fuse with C_n in \mathfrak{G} . Note that J is not a square of an element of order 4. Therefore Burnside's argument implies that J must fuse with C_n in the normalizer $N\mathfrak{G}(\mathfrak{D})$ of \mathfrak{D} . This is impossible because \mathfrak{D}' contains C_n but does not J. Thus we get a contradiction and hence n=1 and r=0 or 1, that is, m=4 or 5. Applying the results of Janko [1], [2], \mathfrak{G} is isomorphic to $P\Gamma L(2,8)$ or $\mathfrak{I}(11)$, respectively.

The proof of our theorem is complete.

OSAKA UNIVERSITY

References

- [1] Z. Janko: A new finite simple group with abelian Sylow 2-subgroups and its characterization, J. Algebra 3 (1966), 147–186.
- [2] Z. Janko: A characterization of the smallest group of Ree associated with the simple Lie algebra of type (G_2) , J. Algebra 4 (1966), 293-299.
- [3] J.G. Thompson: Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383-437.

112