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In the previous papers [3], [4], we have defined a full sub-category 91 in
the category SΰlR of modules over a ring R, whose objects consist of injective
modules or directsums of completely indecomposable modules.

Making use of those ideas, in this short note, we shall give a proof of Z.
Papp's theorem in [9] as an application of [3], Theorem 1 and generalize
Theorems 4 and 7 in [4] to cases of semi-T-nilpotent system and quasi-
projective module, respectively. Especially, we shall show that if R is a right
perfect ring, then every quasi-projective module is a directsum of completely
indecomposable modules and the Krull-Remak-Schmidt's theorem is valid for
those direct decompositions.

In this note, we always assume that the ring R has the identity and every
module is an unitary i?-module. We shall use the same notations and
definitions in [3], [4] and [5] for categories, those in [1] and [8] for semi-perfect
modules and those in [5] for quasi-projective modules.

1. Papp's theorem

We shall give an application of [3], Theorem 1.

Theorem 1 ([9], Z. Papp). Let R be a ring. If every (right) R-injective
module is a directsum of indecomposable modules, then R is (right) noetherian.

Proof. It is known by [2], Proposition 4.1 that R is noetherian if and
only if any directsum of injective modules is also injective. Let 51 be the full
sub-category of all injective /^-modules in the category of right i?-modules and
$ the Jacobson radical of St. Then 51/^ is a completely reducible C3-abelian
category by the assumption and [3], Theorem 1. Let {Q{}i be a family of
injective modules, and E an injective hull of Σ θ ζ ? / F r o m the assumption

where E'μ are (completely) indecomposable. Hence, Σ θ ^ / =
in 51/3 by [3], Theorem 1. Therefore, £ ^ Σ θ O , , which means that
is injective. Hence, R is noetherian.
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2. Exchange property

Let M be a directsum of completely indecomposable modules Ma; M=

2 ® M Λ . We have defined the (Ko-) exchange property in M for a direct

summand iV of M in [4]. Namely, we have M=iV®Σ®jΓ£ for any decom-

position M = 2 e r r t (with Card /<K0), where Tί^Ta for all α<= J.

Let M=N ® iV'. If JV has the exchange property in M, then N and JV'

are directsums of indecomposable modules.

Now we assume M = Σ ® Λf<» A family {Mβ}j (/<=/) is called a s£mz-

T-nilpotent system with respect to the radical of [Mβ, Mβ]R if the following
condition is satisfied. / is a finite or empty set or if J is otherwise, for any
subfamily {Mβi\ with /3,-e/and β.φβj if *Φ? and any set of non isomorphisms
fi:Mβ.-^Mβi+1, there exists a natural number /z such that /«/w_i/ /i(^)=0 for
nι^Mβl> where n may depend on m, (cf. [5]). Then we have a generalization of
[4], Theorem 4 as follows;

Theorem 2. Lei M ^ Σ θ ^ f * SMYA M Λ completely indecomposable and

M=N1φN2. If the dense submodule of N^ is a directsum of indecomposable

modules which are a semί-T-nilpotent system with respect to the radical, then N{ has

the exchange property in M for i = l , 2.

Proof. We first note that iVΊ=Σ®M£ by the assumption and [7], Coro-
llary to Theorem 1. Furthermore, since the ideal Q of SNl=[Niy N^R defined
in [3], §3 is equal to the Jacobson radical of SNl by [7], Theorem 1. Hence, we
have from the first part of the proof of [4], Theorem 4 that N2 has the exchange
property. Let M=^φTβ with any Card K. We shall use the same notation

in [4]. If we consider the category »/3 in [4], then M=J]®Tβ=N1®N2 in
SC/S by [4], Theorem 1. Since Sί/3f is a completely reducible C3-abelian category,
Λ N ^ Φ ί Σ ® ί ί ) > w h e r e Tβ=Tiϊ®T'β' and we may assume that T'β and T'β' are
in SI and submodules in Tβ by [4], Proposition 2. Since Σ θ T £ ' « # i , N ^

K

by the assumption and [7], Theorem 1. Let p be a homomorphism
ofMto20Γ^suchthat^is a projection of M to Σ θ ? V with Ker p=

& K.

Thenp splits. Put L=Ker/>, then Tβ=T'β'®T$, where T$=Tβf)
K

L. Since L=Σ®Tf and L=Ker ^, Σ θ ί ^ Σ θ f j ί . H e n c e . M=^φ
_ _ _ K K

^ ) = Σ θ f ^ 0 Σ θ T β

/ . Therefore, Ker ^ n ^ = 0 and ^(N1)=/'(M)=

, which implies £ | ̂  is isomorphic. Hence, M=Nλ 0 Ker p=Nλ®

1) See [4], §1 for the definition.
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Corollary. Let M be as above and N a direct summand of M, Then the
following statements are equivalent,

1) Every direct summand of N has the X0-exchange property in M.
2) Every direct summand of N has the exchange property in M,
3) N^ΣΏNβ Nβ^M^ and {Nβ} is a semi-T-nilpotent system with

respect to the radical of [Ny, NS]R,

Proof. l)-^3). Let iV be a direct summand of M and N=^

Nβ^Mβ with Card / < Card /. We first note that every direct summand P of N

has the K0-exchange property in N, Let M=N®Q and i V = P 1 0 P 2 = Σ 0 Ϊ V

T h e n M = P 1 © ( P 2 φ ρ ) = 2 0 Γ ί 0 ρ . Since Px has the K0-exchange property
in M, M=P1®

y£±®T't®Q'y
 w h e r e τ'ι^τi a n d Q'^Q- Hence, N=P1®J]®T'i

ΦP1 (Ί Q' and Px Π Qί^P1 Π Q=(0). Now put P ^ Σ θ ^ for any / 0 c 7 with
J o

Card / o <^o Then {Λ 7̂}/o is a semi-Γ-nilpotent system by [7], Theorem 1.
Hence, {Ny}j is a semi-Γ-nilpotent system. 3)-»2). Since the ideal 3> °f
[Λ̂ , N]R denned in [3] is the Jacobson radical by [7], Theorem 1, every direct
summand of N is a directsum of indecomoposable modules and has the exchange
property in M by Theorem 2. 2)->l). It is clear.

Lemma 1. Let M be as above. We assume that M = 1 2

If N1 has the exchange property in M and there exists an automorphism f of M such

that f(Ni)=Ni for i=ίy2 then N{ has the exchange property in M,

Proof. It is clear.

Lemma 2. Let M, N± and N2 be as above. We assume i V t = 5 ] 0 M f Λ,

Card Jt are infinite and MiΛ's are indecomposable modules for ί = l , 2. Let
{gi}i, be sets of non-isomorphic homomorphisms of Mla. to M2Λ. and M20ύ. to
respectively. Furthermore, we assume that N1 has the X0-exchange property.
Then for any m in M1Λl there exists n such that gnfngn_Jn_λ"-gJλ{m)=Q.

Proof. We shall make use of the same argument in [3], Lemma 9. Put
i) I in ,eM l α J and MίΛi= {m.+g^m,) \ m^M2cui}. Then M=

M1OΘM2O, wherre M ί o = Σ 0 J l ί ί β . Since 2 1 = M ί β l 0 M ί ^ θ 0M l o«JV1, T

has the K0-exchange property in M by Lemma 1. Hence, Λf==ϊ1©Λf&1+M2*1

0 M ί ^ 0 M ί ϊ 2 0 ..0Mίo, where M&.=0 or Mloύj (MίSs=0 or MίΛj). In this
case we can use the same argument in [3], Lemma 9.
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From Lemma 2 we have

Proposition 1. Let M = 2 ® M Λ with Ma completely indecomposable. We
assume that M=NX®N2 and JVt = Σ Σ ® M & \ where Mfi^Mfi' and M $ ' φ

M^y'β" if γ Φ γ ' , where M$ ys are indecomposable. We further assume Card J™ >
Card ]^ for all Card J^ which is smaller than or equal to Ko. Then N1 has the
(Ko-) exchange property if and only if {Λf$} is a semi-T-nilpotent system with
respect to the radical.

Now we take the category SI of all i?-modules which is a directsum of some
completely indecomposable modules. Let M be an object in 51. We call M
having the exchange property in SI if M has the exchange property in P for any
object P in SI which contains M as a direct summand.

Corollary 2. Let SI be the above. Then we have the following equivalent
statements for M = Σ φ M Λ in SI.

1) M has the exchange property in SI.
2) {Mj/ is a semi-T-nilpotent system with respect to the radical,

where MΛ's are completely indecomposable.

Proof. 2)->l). It is clear from Corollary to Theorem 2. \)^>2). Let

, Maβ^MΛβf and M Λ β φM α / β / if aΦa'. Put P =

Pn=M. Since M has the exchange property in P by the assumption, {Ma} is
a semi-T-nilpotent system by Proposition 1.

Finally, we shall consider a special case. Let Z be the ring of integers (or
Z may be a Dedekind domain) and {Pt }7 a family of primes. Let M be a
directsum of any copies of Z/Pn«, where i runs over a sub-set of / and n/s are
integers. Then J l ί = Σ θ M P . , where M P . = Σ ® Z / P t

 ni. In this case, every

submodule N of Λf is a directsum of iVP, where NP=Nf] MP. Hence, a direct
summand N of M has the exchange property in M if and only if NP has the
exchange property in MP for each P.

Corollary 3. L^ Z, M P αwrf Λf fo as above. We assume M=N1ξ&N2 and
N. =ΣθAfj,y; M^.^ZjPp.. Then Nx has the exchange property in M if and
only if either {M^} or {M^} y is a semi-T-nilpotent system with respect to the
radical for every Pά.

Proof. It is clear from Lemma 2 and [3], Lemma 12.

REMARK. If Pλ^P2, then Σ θ Z / P ΐ has the exchange property in

P=ΣΦ^/i>Γ®Σ3θZ/P£ from the above remark. However, {Z/P^}n are not
1 1

semi-Γ-nilpotent systems for i = l , 2. Hence, Λf does not have the exchange
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property in SI.

3. Quasi-projective modules

First, we consider projective modules of a special type.

Lemma 3. Let P and Q be projective R-modules such that J(P) and J(Q)
are small in P and Q, respectively. Then [PjJ{P), QIJ(Q)]R/JQRΪ=O if and only
ifiQIΛQl PIJ(P)]R/JOV=0, where /(*) is the Jacobson radical of (*).

Proof. Put T=P(BQ. Then/(Γ) is a unique maximal one among small
submodules in T. We assume [P, Q]R=[P, J(Q)]R and / an element in [Q,
P]R. We put fτ=(°o°f) in ST=[T, T]R. Since [P, Q]Rf=[P,J(Q)hf^[Q>
ΛQ)]R^J(SQ) by [4], Proposition 1. Hence, Sτfτ is in J(ST). Therefore,
fτ(T)ςzJ(P)®J(Q). Hence, f(Q)czJ(P) and [Q,P]R=[Q,J(P)]R. It is clear
that [P, / ( £ ) ] * = [P, Q]R if and only if [P/J(P), QIJ(Q)]R^=0, since P is
projective.

Proposition 2. Let P and Q be as above. We further assume that P is

completely indecomposable, then the following are equivalent.

1) P is isomorphic to a direct summand of Q.

2) P/J(P) is isomorphic to a sub-module of QIJ(Q).

Proof. It is clear, since J{P) is a unique maximal sub-module in P by
[4], Theorem 5.

Changing slightly the proofs in [10], Lemma 1 and [5], Proposition 1, we
have

Lemma 4. Let M be a quasi-projective, then J(SM)={f\^SM,f(M) is
small in M}. Furthermore, J(M) is small if and only if [M, J(M)]R=J(SM),
where, SM=[My M]R.

We note that a quasi-projective module with projective cover is nothing
but a factor module of projective module P with respect to a small i?-sub-module
K in P which is a 5P-module by [6], Propositions 2.1 and 2.2. Furthermore,
if we take the ring of column summable matrices, we know Proposition 2.4 in
[6] is valid for a directsum of infinite components, (cf. [3], § 3).

Proposition 3. Let M be a quasi-projective. We assume that M has pro-
jective cover P. Then SM^SP/A and P//(P)«M//(M), where A is an ideal
contained in J(SP). Furthermore, J{P) is small in P if and only if J(M) is small
in M.

Proof. We have the exact sequence 0^[P, K]R->SP->[P, M]R->0 from

an exact sequence 0-^K->P-^>M-+0. A—[P, K]R is a two-sided ideal by [6],
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Proposition 2.2. Let/be in [P, M\R. Since P is projective, we have£ in SP

such that vg=f. Hence, f(K)=vg(K)^v(K)=0. Therefore, [P, M]R=SM.
Since K<^J(P), J(M)^J{P)jK and P//(P)~M//(M). Furthermore, A ^J(SP)
by Lemma 4. The last part is clear.

Lemma 5. Let {Ma}j be a family of quasi-projectίve modules and I an
infinite set. We assume M=^®Ma is quasi-projective. ThenJ(M) is small in

M if and only ifJ(Ma) is small in Mafor alla^I and {Ma}j is a semi-T-nίlpotent
system with respect to the radical of [May Mβ]R.

Proof. We can make use of the same argument in [5], Theorem 3 from
Lemma 4.

Theorem 3. Let M be a quasi-projective module with projective cover P.

Then P is semi-perfect if and only if 1) M = Σ θ ^ « ; MJs are completely

indecomposable R-modulesy 2) {Ma}τ is a semi-T-nilpotent system with respect to
the Jacobson radical of [May Mβ]R and 3) Ma has a projective cover for all « E / ,
In this case any direct decomposition of MjJ{M) is lifted to M.

Proof. We assume P is semi-perfect. Then 1) is clear from [6], Proposition
2.4 and the above remark. 2) is clear from Proposition 3 and Lemma 4. 3) is
clear from [6], Proposition 2.4. Conversely, we assume 1), 2) and 3). Let
Pa be a projective cover of MΛ via va and Q=Σχ@Pa We have an exact

sequence 0->K->P-^M->0 with K small. Hence, we have/e [Q, P]R and g<=
[P, Q]R such that/£=//> and vf=vg> where y = Σ θ ^ . Since v and v' induce
natural isomorphisms PjJ{P)^MjJ{M)^QjJ{Q)y g is isomorphic. Furthermore,
PΛ is semi-perfect from Proposition 3 and [4], Theorem 5. We know from 2)
and Lemma 4 that J{M) is small in M. Hence, J{P) is small in P by Proposition
3. Therefore, P is semi-perfect by [8], Theorem 5.2. The last part is clear
from Proposition 3, [6], Proposition 2.4 and [8], Theorem 4.3.

Corollary. If R is a right perfect (resp, semi-perfect) ring, then every (resp.
finitely generated) quasi-projective module is a directsum of completely indecomposable
modules and the Krull-Remak-Schmidt's theorem is valid for those decompositions.
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