ON THE POTENTIAL TAKEN WITH RESPECT TO COMPLEX-VALUED AND SYMMETRIC KERNELS

Nobuyuki NINOMIYA

(Received June 30, 1971)

On the fundamental of the potential theory, we have two following theorems well-known as existence theorems. Let $K(P, Q)$ be any real-valued function defined in a locally compact Hausdorf space Ω, lower semi-continuous for any points P and Q, may be $+\infty$ for $P=Q$, always finite for $P \neq Q$ and bounded from above for P and Q belonging to disjoint compact sets of Ω respectively. The potential of a measure μ taken with respect to the kernel $K(P, Q)$ is the function defined as

$$
K(P, \mu)=\int K(P, Q) d \mu(Q)
$$

which will be called simply the potential of μ. The potential of a positive measure μ with compact support is always well determined as a function lower semi-continuous in Ω and bounded on any compact set disjoint with the support of μ. Let $K(P, Q)$ be symmetric: $K(P, Q)=K(Q, P)$ for any points P and Q. Then, we have two following theorems.

Theorem A. Let F be any compact set of Ω with positive K-transfinite diameter ${ }^{1)}$ and $f(P)$ be any real-valued function upper semi-continuous and bounded

1) In the case where the kernel K is symmetric, that a compact set F of Ω is of positive K-transfinite diameter is defined as follows. The sequence, made from n different points P_{1}, P_{2}, \cdots and P_{n} of F,

$$
W_{n}(F)=\min \frac{\sum_{i<j} K\left(P_{i}, P_{j}\right)}{\binom{n}{2}}=\min \frac{\sum_{i \neq j} K\left(P_{i}, P_{j}\right)}{n(n-1)}
$$

is monotone increasing for $n \uparrow+\infty$. As is well-known, its limit $W(F)$ is equal to the minimum of energy integrals of positive measures μ with total mass 1 supported by F :

$$
W(F)=\min K(\mu, \mu)=\min \iint K(P, Q) d \mu(Q) d \mu(P)
$$

When $W(F)$ is finite, F is said to be of positive K-transfinite diameter. Any Borelian set E of Ω will be said to be of positive K-transfinite diameter if it contains a compact set of positive K-transfinite diameter, otherwise said to be of K-transfinite diameter zero. Whenever we consider the potential taken with respect to a kernel K, we should like to suppose that all the open sets of Ω are of positive K-transfinite diameter.
from below defined on F. Then, given any positive number a, there exist a positive measure μ supported by F and a constant γ such that
(1) $\mu(F)=a$,
(2) $K(P, \mu) \geqq f(P)+\gamma$ on F with a possible exception of a set of K-transfinite diameter zero, and
(3) $K(P, \mu) \leqq f(P)+\gamma$ on the support of μ.

Theorem B. In the above theorem, suppose the further conditions: $K(P, Q)$ >0 and inf $f(P)>0$ for any points P and Q of F. Then, given any compact set F of Ω with positive K-transfinite diameter, there exists a positive measure μ supported by F such that
(1) $K(P, \mu) \geqq f(P)$ on F with a possible exception of a set of K-transfinite diameter zero, and
(2) $K(P ; \mu) \leqq f(P)$ on the support of μ.

The former is an extension of the result stated in Frostman's thesis (see [1], p. 65), and the latter is an extension of the result studied in Kametani's paper (see [2]).

In this paper, we are going to extend these theorems for the potential taken with respect to complex-valued and symmetric kernels and to complex-valued measures.

Let $K(P, Q)$ be any complex-valued function defined in a locally compact Hausdorff space Ω. Let $k(P, Q)=\Re K(P, Q)$ be a function lower semi-continuous, may be $+\infty$ for $P=Q$, always finite for $P \neq Q$ and bounded from above for P and Q belonging to disjoint compact sets of Ω respectively, and $n(P, Q)=$ $\Im K(P, Q)$ be a finite and continuous function. We suppose that the kernel K is Hermitian symmetric: $k(P, Q)=k(Q, P)$ and $n(P, Q)=-n(Q, P)$ for any points P and Q. Given any positive numbers a and b and any Borelian set E of Ω, denote by $\mathfrak{M}(a, E)$ the family of all the complex-valued measures supported by E whose real parts are positive measures with total mass a and whose imaginary parts are any positive measures, by $\mathfrak{M l}(E, b)$ the family of all the complex-valued measures supported by E whose real parts are any positive measures and whose imaginary parts are positive measures with total mass b, and by $\mathfrak{M}(a, E, b)$ the family of all the complex-valued measures supported by E whose real parts and imaginary parts are positive measures with total mass a and b respectively. We shall study the potential of such measures α

$$
K(P, \alpha)=\int K(P, Q) d \alpha(Q)
$$

which is well determined whenever both $\Re \alpha$ and $\mathfrak{J} \alpha$ are with compact supports. Then, we have two following theorems.

Theorem 1. ${ }^{2)}$ Let F be any compact set of Ω with positive k-transfinite diameter and $F(P)$ be any complex-valued function whose $\Re F(P)$ and $\Im F(P)$ are functions upper semi-continuous and bounded from below defined on F both. Then, given any positive numbers a and b, there exist a measure α of $\mathfrak{M}(a, F, b)$ and a complex number γ such that
(1) $\Re K(P, \alpha) \geqq \Re\{F(P)+\gamma\}$ on F with a possible exception of a set of k-transfinite diameter zero,
(2) $\mathfrak{R} K(P, \alpha) \leqq \Re\{F(P)+\gamma\}$ on the support of $\mathfrak{R} \alpha$,
(3) $\mathfrak{J} K(P, \alpha) \geqq \Im\{F(P)+\gamma\}$ on F with a possible exception of a set of k-transfinite diameter zero, and
(4) $\Im K(P, \alpha) \leqq \Im\{F(P)+\gamma\}$ on the support of $\mathfrak{\Im} \alpha$.

Theorem 2. In the above theorem, suppose the further conditions: $k(P, Q)>0$, inf $\Re F(P)>0$ and $\inf \Im F(P)>0$ for any points P and Q of F. Then, given any positive number a such that $a \cdot|n(P, Q)|<\Im F(P)$ for points P and Q of F, there exist a measure α of $\mathfrak{M}(a, F)$ and a real number γ, such that
(1) $\Re K(P, \alpha) \geqq \Re F\{(P)+\gamma\}$ on F with a possible exception of a set of k-transfinite diameter zero,
(2) $\mathfrak{R K}(P, \alpha) \leqq \Re\{F(P)+\gamma\}$ on the support of $\mathfrak{R} \alpha$.
(3) $\mathfrak{J} K(P, \alpha) \geqq \mathfrak{J} F(P)$ on F with a possible exception of a set of k-transfinite diameter zero, and
(4) $\Im K(P, \alpha) \leqq \Im F(P)$ on the support of $\Im \alpha$.

Similarly, given any positive number bsuch that $b \cdot|n(P, Q)|<\Re F(P)$ for points P and Q of F, there exist a measure α of $\mathfrak{M}(F, b)$ and an imaginary number γ such that
(1') $\Re K(P, \alpha) \geqq \Re F(P)$ on F with a possible exception of a set of k-transfinite diameter zero,
(2') $\Re K(P, \alpha) \leqq \Re F(P)$ on the support of $\Re \alpha$.
(3^{\prime}) $\mathfrak{J} K(P, \alpha) \geqq \Im\{F(P)++\gamma\}$ on F with a possible exception of a set of k-transfinite diameter zero, and
(4') $\Im K(P, \alpha) \leqq \Im\{F(P)+\gamma\}$ on the support of $\Im \alpha$.
Proof of Theorem 1. For any measure α of $\mathfrak{M}(a, F, b)$, let us consider the quantity

$$
G(\alpha)=\iint K(P, Q) d \alpha(Q) d \bar{\alpha}(P)-\int F(P) d \bar{\alpha}(P)-\int \overline{F(P)} d \alpha(P)
$$

which is obviously an extension of the Gauss' variation taken with respect to a real-valued kernel and positive measures. Put

[^0]$$
K(P, Q)=k(P, Q)+i n(P, Q), \quad F(P)=f(P)+i g(P) \quad \text { and } \quad \alpha=\mu+i \nu
$$

Then, the kernel K being symmetric, we have

$$
\begin{aligned}
G(\alpha)= & \iint k(P, Q) d \mu(Q) d \mu(P)+\iint k(P, Q) d \nu(Q) d \nu(P) \\
& -\int d \mu(P) \int n(P, Q) d \nu(Q)+\int d \nu(P) \int n(P, Q) d \mu(Q) \\
& -2 \int f(P) d \mu(P)-2 \int g(P) d \nu(P)
\end{aligned}
$$

So, $G(\alpha)$ is always real and $-\infty<G(\alpha) \leqq+\infty$. Put $G^{*}=\inf G(\alpha)$ for measures α of $\mathfrak{M}(a, F, b) . \quad F$ being of positive k-transfinite diameter, G^{*} is a finite number. Take any sequence $\left\{\alpha_{n}\right\}$ of measures of $\mathfrak{M}(a, F, b)$ such that $G\left(\alpha_{n}\right) \downarrow G^{*}$, and put $\alpha_{n}=\mu_{n}+i \nu_{n}$. Then, we may consider both $\left\{\mu_{n}\right\}$ and $\left\{\nu_{n}\right\}$ as vaguely convergent sequences by the selection theorem of F . Riesz, if necessary, by extracting their proper subsequences. Let μ and ν be their limiting measures respectively. The measure $\alpha=\mu+i \nu$ is naturally one of $\mathfrak{M}(a, F, b)$. As there hold

$$
\begin{aligned}
& \iint k(P, Q) d \mu(Q) d \mu(P) \leqq \lim _{n \rightarrow \infty} \iint k(P, Q) d \mu_{n}(Q) d \mu_{n}(P), \\
& \int d \mu(P) \int n(P, Q) d \nu(Q)=\lim _{n \rightarrow \infty} \int d \mu_{n}(P) \int n(P, Q) d \nu_{n}(Q)
\end{aligned}
$$

and

$$
\int f(P) d \mu(P) \geqq \varlimsup_{n \rightarrow \infty} \int f(P) d \mu_{n}(P), \text { etc. }
$$

we have

$$
G^{*} \leqq G(\alpha) \leqq \lim _{n \rightarrow \infty} G(\alpha,) \leqq G^{*}
$$

which indicates that the measure α minimizes the quantity G among all the measures of $\mathfrak{M}(a, F, b)$. Take any measure $\beta=\sigma+i \tau$ supported by F such that $\alpha+\beta \in \mathfrak{M}(a, F, b)$. Naturally, both σ and τ are real-valued measures with total mass zero supported by F, and both $\mu+\sigma$ and $\nu+\tau$ are positive measures with total mass a and b supported by F respectively. As the measure $\alpha+\varepsilon \beta$ are of $\mathfrak{M}(a, F, b)$ for any positive number $\varepsilon(<1)$, we have $G(\alpha) \leqq G(\alpha+\varepsilon \beta)$. The hernel K being symmetric, this induces the inequality

$$
\begin{aligned}
0 \leqq & 2 \varepsilon \int A(P) d \sigma(P)+2 \varepsilon \int B(P) d \tau(P) \\
& +\varepsilon^{2}\left\{\iint k(P, Q) d \sigma(Q) d \sigma(P)+\iint k(P, Q) d \tau(Q) d \tau(P)\right. \\
& \left.-\int d \sigma(P) \int n(P, Q) d \tau(Q)\right\},
\end{aligned}
$$

where

$$
A(P)=\int k(P, Q) d \mu(Q)-\int n(P, Q) d \nu(Q)-f(P)
$$

and

$$
B(P)=\int k(P, Q) d \nu(Q)+\int n(P, Q) d \mu(Q)-g(P)
$$

Putting

$$
\gamma_{1}=\int A(P) d \mu(P) \quad \text { and } \quad \gamma_{2}=\int B(P) d \nu(P)
$$

we are going to prove that
(1) $A(P) \geqq \frac{\gamma_{1}}{a}$ on F with a possible exception of a set of k-transfinite diameter zero,
(2) $A(P) \leqq \frac{\gamma_{1}}{a}$ on the support of μ,
(3) $B(P) \geqq \frac{\gamma_{2}}{b}$ on F with a possible exception of a set of k-transfinite diameter zero, and
(4) $B(P) \leqq \frac{\gamma_{2}}{b}$ on the support of ν.

First, apply that inequality for the case where $\tau \equiv 0$. We have

$$
0 \leqq 2 \int A(P) d \sigma(P)+\varepsilon \iint k(P, Q) d \sigma(Q) d \sigma(P)
$$

for any measure σ such that $\mu+\sigma$ is a positive measure with total mass a supported by F. For any positive number δ, suppose that the set

$$
S=\left\{P ; P \in F, A(P)<\frac{\gamma_{1}}{a}-2 \delta\right\}
$$

is of positive k-transfinite diameter, then there exists a positive measure σ^{\prime} of finite energy supported by S whose total mass is equal to the total mass $c(>0)$ of the restricted measure $\mu^{\prime}(\equiv 0)$ of μ to the set

$$
T=\left\{P ; P \in F, A(P)>\frac{\gamma_{1}}{a}-\delta\right\} .
$$

Applying the inequality for the measure $\sigma=\sigma^{\prime}-\mu^{\prime}$, we have

$$
0 \leqq-\delta c+\varepsilon \iint k(P, Q) d \sigma(Q) d \sigma(P)
$$

Here, the coefficient of ε is finite, since

$$
\begin{aligned}
& \iint k(P, Q) d \sigma(Q) d \sigma(P) \\
=\iint k(P, Q) d \sigma^{\prime}(Q) d \sigma^{\prime}(P) & +\iint k(P, Q) d \mu^{\prime}(Q) d \mu^{\prime}(P) \\
+ & 2 \int d \sigma^{\prime}(P) \int k(P, Q) d \mu^{\prime}(Q)
\end{aligned}
$$

whose first and second terms are finite both. As to the third term, there holds, by taking a positive number C such that $k(P, Q)+C>0$ for any points P and Q of F,

$$
\begin{aligned}
& -\infty<\int d \sigma^{\prime}(P) \int k(P, Q) d \mu^{\prime}(Q) \\
& =\int d \sigma^{\prime}(P) \int k(P, Q) d \mu(Q)-\int d \sigma^{\prime}(P) \int k(P, Q)\left(d \mu-d \mu^{\prime}\right)(Q) \\
& <\int\left(\int n(P, Q) d \nu(Q)+f(P)+\frac{\gamma_{1}}{a}-2 \delta\right) d \sigma^{\prime}(P)+C \cdot c(a-c) .
\end{aligned}
$$

$f(P)$ being bounded, we have

$$
\iint k(P, Q) d \sigma(Q) d \sigma(P)<+\infty
$$

Making $\varepsilon \rightarrow 0$, we have a contradiction, which induces that the set S is of k-transfinite diameter zero. Making $\delta \rightarrow 0$, we obtain the property (1). Then, we have also the property (2) by recalling that μ has no positive mass on any set of k-transfinite diameter zero and that $\int A(P) d \mu(P)=\gamma_{1}$. Similarly, we shall have the properties (3) and (4). Finally, as we have

$$
A(P)=\Re\{K(P, \alpha)-F(P)\} \quad \text { and } \quad B(P)=\Im\{K(P, \alpha)-F(P)\}
$$

the measure $\alpha=\mu+i \nu$ and the number $\gamma=\frac{\gamma_{1}}{a}+i \frac{\gamma_{2}}{b}$ are what the theorem needs.
Q.E.D.

Proof of Theorem 2. For any measure α of $\mathfrak{M}(a, F)$, let us consider the Gauss' variation as presented in the proof of Theorem 1

$$
\begin{aligned}
G(\alpha)= & \left.\iint K(P, Q) d \alpha(Q) d \bar{\alpha}(P)-\int F(P) d \bar{\alpha}(P)-\int \overline{F(P}\right) d \alpha(P) \\
= & \iint k(P, Q) d \mu(Q) d \mu(P)+\iint k(P, Q) d \nu(Q) d \nu(P) \\
& -\int d \mu(P) \int n(P, Q) d \nu(Q)+\int d \nu(P) \int n(P, Q) d \mu(Q) \\
& -2 \int f(P) d \mu(P)-2 \int g(P) d \nu(P)
\end{aligned}
$$

Put $G^{*}=\inf G(\alpha)$ for measures α of $\mathfrak{M}(a, F)$. First, we are going to show that $-\infty<G^{*}<\inf G(\mu)$ for measures of $\mathfrak{M}(a, F, 0)$. In fact, there holds

$$
\begin{aligned}
& G(\mu)+p \varepsilon^{2}-2(r+a q) \varepsilon \leqq G\left(\mu+i \varepsilon \nu_{1}\right) \\
& \quad \leqq G(\mu)+\varepsilon^{2} \iint k(P, Q) d \nu_{1}(Q) d \nu_{1}(P)-2\left(r^{\prime}-a q\right) \varepsilon
\end{aligned}
$$

for any measures ν_{1} of finite energy of $\mathfrak{M}(1, F, 0)$ and for positive numbers ε, p, q, r and r^{\prime} such that

$$
p \leqq k(P, Q), \quad|n(P, Q)| \leqq q \quad \text { and } \quad r^{\prime} \leqq g(P) \leqq r
$$

for any points P and Q of F. That first hand is greater than a constant added to $G(\mu)$ whatever ε may be, and that last hand is smaller than $G(\mu)$ on account of $a q<r^{\prime}$ when ε is sufficiently small. So, we have $-\infty<G^{*}<\inf G(\mu)$ for measures μ of $\mathfrak{M}(a, F, 0)$. Take any sequence $\left\{\alpha_{n}\right\}$ of measures of $\mathfrak{M l}(a, F)$ such that $G\left(\alpha_{n}\right) \downarrow G^{*}$, and put $\alpha_{n}=\mu_{n}+i \nu_{n}$. Then, we may suppose that the total mass of each ν_{n} is not greater than

$$
\frac{2(r+a q)}{p}
$$

therefore, we may consider both $\left\{\mu_{n}\right\}$ and $\left\{\nu_{n}\right\}$ as vaguely convergent sequences. Let μ and ν be their limiting measures respectively. The measure $\alpha=\mu+i \nu$ is naturally of $\mathfrak{M}(a, F)$. By the inequality

$$
G^{*} \leqq G(\alpha) \leqq \lim _{n \rightarrow \infty} G\left(\alpha_{n}\right)=G^{*},
$$

we have $G^{*}=G(\alpha)$. Therefore, we can assert that $\nu \equiv 0$. Put

$$
B(P)=\int k(P, Q) d \nu(Q)+\int n(P, Q) d \mu(Q)-g(P)
$$

and suppose that, for any positive number δ, the set

$$
S=\{P ; P \in F, B(P)<-\delta\}
$$

is of positive k-transfinite diameter. Then, there exists a positive measure σ of finite energy supported by S, and there holds the inequality $G(\alpha) \leqq G(\alpha+i \varepsilon \sigma)$ for any positive number ε. The kernel k being symmetric, this induces the inequality

$$
\begin{aligned}
0 & \leqq 2 \varepsilon \int B(P) d \sigma(P)+\varepsilon^{2} \iint k(P, Q) d \sigma(Q) d \sigma(P) \\
& <-2 \delta \cdot \varepsilon+\varepsilon^{2} \iint k(P, Q) d \sigma(Q) d \sigma(P)
\end{aligned}
$$

which is a contradiction if ε is sufficiently small. Accordingly, the set S is of k-transfinite diameter zero. Furthermore, suppose that the set

$$
T=\{P ; P \in F, B(P)>\delta\}
$$

has any positive mass for ν. Denoting by ν^{\prime} the restricted measure of ν to T, there holds the inequality

$$
G(\alpha) \leqq G\left(\alpha-i \varepsilon \nu^{\prime}\right)
$$

for any positive number $\varepsilon(<1)$. This induces the inequality

$$
\begin{aligned}
0 & \leqq 2 \varepsilon \int B(P) d \nu^{\prime}(P)+\varepsilon^{2} \iint k(P, Q) d \nu^{\prime}(Q) d \nu^{\prime}(P) \\
& <-2 \delta \cdot \nu(T) \cdot \varepsilon+\varepsilon^{2} \iint k(P, Q) d \nu^{\prime}(Q) d \nu^{\prime}(P),
\end{aligned}
$$

which is a contradiction if ε is sufficiently small. Accordingly, the set T has no mass for ν. Making $\delta \rightarrow 0$, we have the properties (3) and (4). Next, in order to obtain the properties (1) and (2), take any real-valued measure σ supported by F such that $\alpha+\sigma \in \mathfrak{M}(a, F)$. Naturally, σ is a measure with total mass 0 and $\mu+\sigma$ is a positive measure with total mass a supported by F. As the measure $\alpha+\varepsilon \sigma$ is of $\mathfrak{M}(a, F)$ for any positive number $\varepsilon(<1)$, we have the inequality

$$
G(\alpha) \leqq G(\alpha+\varepsilon \sigma) .
$$

The kernel k being symmetric, this induces the inequality

$$
0 \leqq 2 \varepsilon \int A(P) d \sigma(P)+\varepsilon^{2} \iint k(P, Q) d \sigma(Q) d \sigma(P)
$$

where

$$
A(P)=\int k(P, Q) d \mu(Q)-\int n(P, Q) d \nu(Q)-f(P)
$$

Putting $\gamma=\int A(P) d \mu(P)$, we obtain in the same way as Theorem 1 that $A(P) \geqq$ γ / a on F with a possible exception of a set of k-transfinite diameter zero and $A(P) \leqq \gamma / a$ on the support of μ. Thus, the measure $\alpha=\mu+i \nu$ and the real number γ are what the theorem needs. The analogous arguments will give us the properties $\left(1^{\prime}\right),\left(2^{\prime}\right),\left(3^{\prime}\right)$ and $\left(4^{\prime}\right)$.
Q.E.D.

Osaka City University

References

[1] O. Frostman: Potentiel d'équilibre et capacité des ensembles avec quelques application à la théorie des fonctions, Medd. Lunds Univ. Mat. Sem. 3 (1935), 1-118.
[2] S. Kametani: Positive definite integral quadratic forms and generalized potentials, Proc. Imp. Acad. Tokyo 20 (1944), 7-14.

[^0]: 2) This result has been written by the author in the journal (in Japanese) edited by the Mathematical Society of Japan, "Sûgaku, vol. 20, no. 2, 1968, pp. 96-97", which was reviewed by Masayuki Ito in the "Math. Review, vol. 39, no. 2, 1970, p. 1674".
