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Introduction. Let K be an algebraic number field and {p} be the valua-

tions of K, then related to Takagi-Artin's class field theory, the following exact

sequence is well-known (c.f. Hasse [5]);

(1) 0 - Br(K) - ®Br(Kp) -+Q/Z-+0

where K^ is the completion of K with respect to p. In the Seminar 1966 at

Bowdoin College, G. Azumaya [4] showed that the middle term of (1) is iso-

morphic to the Brauer group of the adele ring Aκ of K and that the following

diagram with canonical arrows is commutative

(2) 0-+Br(K)' R ^

But on an algebraic function field, the class field theory does not hold except

the case of finite constant field (Artin-Whalpe [1]), so the analogies of (1), (2)

must have fallen.

The purpose of this paper is to clarify the relations of the Brauer group of

the adέle ring of a function field, to the Brauer group of a function field and to

Galois cohomologies.

We use the following notations:

k : a perfect field

k : the algebraic closure of k

F : an algebraic function field of one variable over k i.e. Fjk is finitely

generated, k is algebraically closed in F and the degree of transcend-

ency of F/k is one

F=F k: the field theoretic compositum of F and k

p : a prime divisor of F over k

Fp : the completion of F with respect to p

Dp : the valuation ring of F~
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&p : the residue class field of Fp i.e. Op/p
G : the Galois group of k over k and we shall identify G with the

Galois group of F over F
Gj, : the decomposition group of p
%(*) : the character group of the group *

AF=AF/k: the adele ring of F i.e. the restricted direct product of Fp with
respect to Op

J5r(*) : the Brauer group of the ring *.
The author would like to express his gratitude to Dr. Y. Watanabe for

suggesting this problem, for helpful advices and for continuing encouragement.

JU The homomorphism of Br(AF) to
P

It is well-known that Op coincides with the formal power series ring &p[[ττp]]
with respect to some prime element πp and Fp coincides with &p((ττp)) (c.f. Serre
[8] II, §4). Witt [10] and Shuen Yuan [11] showed the sequence

n ~

UU >0

is exact, where θp is the one induced by the ring homomorphism kp->Fp. Azu-
maya [3] and Auslander-Goldman [2] showed that Br(kp) is isomorphic to l?r(Op).
From the sequence (3), considering the direct product for all py we have the
following exact sequence

(4) 0 > UBr(kp) ϊ UBr(FΛ—l UX(Gp) > 0
P P P

Proposition 1. There exists the epίmorphίsm φ of Br(AF) to the direct sum
®X(Gp)ofX(Gp).

Proof. Let Λ be a central separable algebra over AF and Xx—1, λ2, •••, \m

be a set of generators of Λ over AF. Since Λ is separable over AFy there exist
the elements u19 •••, un; vu •••, vn in Λ satisfying the relations;

(*) 1
Σ ^ ^ ^ ^ Σ ^ ® ^ ^ ) 0 m t n e enveloping algebra Λ*=Λ<g>Λ° for any

A
xm

Let us set u~^aihλhy Vi=^bih\h9 \^j=^ijh*<h where aihy bih, cijh are in AF.

Since aih, bih) cijh are adeles, {α?Λ}, {6^}, {cp

iJfι} are in O p for almost all p where
xp is the -Fp-component of an element x in AF. We shall set Λp=Λ(8)-Fp and

u?tz=zz/t(g)l, v\=Όi®\y λ ? = λ , ® l in Λp, and let Γp be the Op-module generated
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by λ?, * , λ L Then u\, •••, u\\ v\, •••, ©£ satisfy the similar relations as (*).

Thus Tp is a separable Op-order in Λp for almost all p since u\, •••, ι/£, *α> •"> *£

are contained in Γp for almost all p and Γp forms a ring with identity for almost

all p. Therefore, denning φ0: Br(AF)->ΐ[Br(Fp) .to be the homomorphism in-
P

duced by the projection AF^Fp, the image of <p0 is contained in the restricted

direct product of Br(Fp) with respect to Br(Op)^Br(kp). We define φ to be the

composite IiVp°<Po> then the image of φ is in ®X(Gp).

To see φ is an epimorphism we need the following

L e m m a 2. Let A be an algebra over AF which is a finitely generated free

Aj.-module with the free basis wly-~, wm. If Ap=A®Fv is a central separable
JF

algebra over Fp for all p and the Op-module generated by w\=wx®\y ••-, w^=

wm®\ in Λp is a separable Op-order for almost all py then A is a central separable

algebra over AF.

Proof of Lemma 2. As Λp is separable over Fp, there are the elements z/ξ,

•••, Unp\ v\y •••, Vnp in Λp satisfying the similar relations as (*). Since np^m, we

may assume without loss of generalities that np=n is independent of p. Let us

set « I = Σ Λ ? A W A > ^ί = Σ^?^Λ where α?Λ, bp

ifι are in Fp, then from the hypothesis
h h

we may assume that α?Λ, b\h are in Op for almost all p. We shall put Ui=^aihwhf

Vi=Hlbihwh where Λ ί Λ =(—,Λ? Λ , •••)> bih=(~ ,$h, •••) are in ^4F, then the fact

that u19"'yuH; vly "',vn satisfy the same relations as (*) is readily verified.

Thus Λ is a separable algebra over AF. The statement about the centrality is

easily verified and we omit the proof.

Now let us return to the proof of Proposition 1. For any 0 % p e 0 % ( G p ) ,

we can find a central separable algebra Λp over Fp such that the class of Λp in

Br(Fp) is mapped to Xp by ηp in (3). For %p=0, we can take such that Λp is

similar to Fp, hence we may assume (Λp: Fp)=m is independent of p. For p

such that Λp is similar to Fp, let w\, •••, w^ be matrix units and for another p let

w?, ••*,&>« be an arbitrary basis of Λΰ over F*. We shall set w?«;$=2£ij*w£,

c? j Λ ^Fp. We, now, construct an algebra Λ over AF as follows; Let Λ be an

^ - a l g e b r a with an ^4F-free basis wly -~<>wm and with the structure coefficients

cijh=(-~, c\jh, " )^AF, i.e. WiW~^cijhwh. Then by Lemma 2, Λ is a central

separable algebra over AF and the class of Λ in Br(AF) is mapped to the given

by φ. Thus we have proved that φ is an epimorphism of Br(AF) to

This construction of the epimorphism φ is essentially due to Azumaya [4].
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REMARK 1. For any element Ucl(Ap) in the restricted direct product of

Br(Fp) with respect to Br(kp) such that the set of Schur indexes of cl(Ap) is
bounded, we can construct, by the similar argument as in the proof of Proposi-
tion 1, a central separable algebra over AF whose class in Br(AF) is mapped to
the given Tlcl(Ap) by φ0> where "cl" means the algbera class.

P

REMARK 2. Let ΐ[KL be the direct product of fields Kιy c^I. For any

element Π^/(Γt) in the direct product of Br(Kλ such that the set of Schur

indexes of cl(Tt) is bounded, we can construct a central separable algebra over
HKL whose class in Br(J\KL) is mapped to the given Π^/(Γt) by ψ'f where ψ' is

tεί ιeί tei

the homomorphism oί Br(J\Kt) to ΐlBr(Kt) induced by the projection T[Kt->Kt,
ter i£ί teί

The proof of this fact is also similar to that of Proposition 1.

To define the epimorphism φ, we used the homomorphism φ0: Br(AF)-+
As to φ0 we have the following

P

Proposition 3.a. The homomorphism φ0 is a monomorphism.

Proof. Let Λ be a central separable algebra over AF such that its class in
Br(AF) is contained in the kernel of <pOy i.e. Ap=A®Fp~Fp (similar) for all p.

Ap

Let λ i = l , λ2, •••, Xm be a set of generators of Λ as an ^4^-module. By the
proof of Proposition 1, for almost all p, the Op-module Tp generated by λ x® 1 =
λ?, •••, λ w ® l = λ™ in Λp is a separable D^-order, which is of split type since O p

is a Dedekind domain, i.e. there exists a finitely generated free Op-module Ep
such that Tp is algebra-isomorphic to HomDp^', Ep). So we identify Tp with
Horn Op(E\ E'). We shall set Ep=Ep

f®Fpy then Λp-Γp(g)Fp = HomFp(Ep, Ep).
Op Dp

For another p, Λp is algebra-isomorphic to HomFp(Ep, Ep) for some finitely
generated Fp-module Ep. So we identify Λp with HomFp(£'p, Ep). Let Ep' be
an arbitrary Op-lattice of Ep> then Ep is a finitely generated free Op-module since
Op is a discrete valuation ring. Let E be the restricted direct product of Ep with
respect to Ep> then one can easily check that £ is a finitely generated projective
faithful ^4F-module with the canonical ^4F-module structure on E> since 1 ^
rankDp£'p/==rankFpJE'p^v/^ We define the Λ-module structure on E via the
canonical homomorphism Λ-^ΠΛJJ. Then we obtain an ^4F-algebra homomor-

p
phism a: A-^>HomAF(E, E) by the homothety. To see a is an epimorphism,
it suffices to show that H o m Λ (£, E) is generated by Π λ i , •••, Π λ ^ as an AF-

P P

module. For any/GHom A ί ,(£,E), we shall denote the restriction of/ to Ep

by/p. Then/p has the form Σ α W with a\ in Fp since HomFp(£'p, Ep) is gen-

erated by λ?, •••, λ£* as an Fp-module. But/p sends Ep into Ep for almost all p,
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so a\ must belong to O^ for such a p. Thus ah=(-~, ai, •••) is in fact an adele.
Hence / can be expressed by the form Σβ/*Πλ£, ah^AF. Therefore a is an

h p

epimorphism, so an isomorphism by Corollary 3.2 of [2].

A central separable algebra Λ over AF is a finitely generated ^4F-module so
Schur indexes of {Λξζ)Fp}p are bounded. Combining this fact and the proof of

Proposition 1, Remark 1 and Proposition 3.1, we get the following

Corollary 4.a. By the monomorphism φ0, Br(AF) can be identified with
the subgroup of the restricted direct product of Br(F^) with respect to Br(kp) consist-
ing of the elements whose Schur indexes of p-components are bounded.

By the similar argument to the proof of Proposition 3.a, we get

Proposition 3.b. Let ΠSΓt be the direct product of fields KL (the cardinality

of the index set / = {ι} is utterly arbitrary). Then the canonical homomorphism ty'o:
B^ΐlK^^ΐlB^K,) is a monomorphism.

Similarly to the proof of Corollary 4.a, we get

Corollary 4.b. By the monomorphism ψΌ, Br(J\Kt) can be identified with

the subgroup ofΠBr(Kt) consisting of the elements whose Schur indexes of t-compo-

nents are bounded.

As mentioned at the beginning of this section, kp can be imbedded to Dp.
So Π&B can be imbedded to T[Oc:AFy using this imbedding we shall define the

homomorphism ψ: Br(J\_k^)->Br(AF).

Theorem 5. The following sequence is exact.

0 > Br(Ukp) - ^ Br(AF) - ^ φX(Gp) > 0
P P

Proof. Let us consider the following diagram.

0 ^ ^
p ) ( F )

p P

I ^° ί φ°
0 > UBr(k.) 1 UBr(Fp) — ^ Π%(G.) > 0

P P P

Then by the definitions of arrows, the above diagram is commutative with the
exact lower row. From the commutativity of the above diagram, it follows that
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ψ is a monomorphism since ψ0 is a monomorphism by Proposition 3.b. Also it
follows that the image of ψ is contained in the kernel of φ. Conversely, let Λ
be a central separable algebra over AF such that its class in Br(AF) is contained
in the kernel of φ. We shall set AΪJ=A®FΪ>9 then the calss of Λo in BrίFS) is

¥ Ap

contained in the kernel of ηp. So by the exactness of the sequence (3), there
exists a central separable algebra Tp over kp such that T®Fp is similar to Λp.

P

The Schur indexes of Γp's are bounded since those of Λp's are bounded. So,
according to Remark 2 we can construct a central separable algebra Γ over Π&p

P

in such a way that cl(Γ)^ Br(Πkp) is mapped to Ucl(Tp) e ΐ[Br(kp) by ψ0. If we
P P

set Γ'=Γ<g) ^ F , then £ / ( Γ ' ) e £ r ( ^ ) is mapped to Ucl(Ap) (ΞUBr(Fp) by φ0.
ilk* p P

P
 ¥

Thus Λ and Γ' are similar since <p0 is a monomorphism by Proposition 3.a.
Therefore, the kernel of φ is contained in the image of ψ. And φ is an epimor-
phism by Proposition 1. This completes the proof of Theorem 5.

Corollary 6. If k is a finite field, then Br(AF) is ίsomorphίc to Q)X(Gp) and
i s o m o r p h i c t o ® B r ( F p ) , i . e . ( F ) ( p )

P P P

REMARK 3. Let Aκ be an adele ring of the algebraic number field K,
then, replacing AF by Aκ and JF^ by Kp, Proposition 1 and Proposition 3.a still
hold. Thus we get the isomorphisms Br(AK)^®X(Gp)^(BBr(Kp). So our

P P

results contain those of Azumaya [4] essentially.

2. The homomorphism of Br(F) to Br{AF)

The ring homomorphism F 9 f l H ( , a, - )^AF (diagonal) induces the
homomorphism p: Br(F)-^Br(AF). In this section we shall determine the
kernel of p.

Let if be a finite dimensional Galois extension of k with the Galois group
Gκ. We identify Gκ with the Galois group of FK over F, where FK is the
field theoretic composition of F and K. Let JFK be the idele group of FK over
K> i.e. the group consisting of all the units of the adele ring AFK of FK. We
fix a prime divisor β̂ of FK over K lying above the prime divisor p of F over k.
Let GKp be the decomposition group of ^3, and ^?!—^3, •••, tyg be the complete
set of prime divisors of FK over K lying above p. If we put FK*= {(•••, #&,
-~)^JFκ\aQ,= l if £l=t=Sβi> * '>Sβ/r} t n e G^-subgroup of JFKf then we have
Hg(Gκ, FK*)^H*(GKp, FK*) by Shapiro's lemma (c.f. Serre [8], p. 128, Exe-
rcices) since FK*^FK%ι x ••• x FKξ = Π ( i ^ $ ) * where FϋΓ| is the

group of all the units of FKψr We shall denote the valuation ring of FK%. by
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0$. and we shall denote the group of all the units of 0 $ . by £/$.. We shall set

U'p=U%ι X ••• X U9β. Then we have Hq(GKy U'p)^Hq(GKy U$) by the above

isomorphism. Now, as JFK can be considered to be the restricted direct product

of the G^-subgroup FK$ with respect to Upy Hq(GKy JFK) is mapped surjec-

tively to the restricted direct product TΓH*(GK, FK*) of H\GKy FK*) with

respect to Hq(GKy U'p)y since if the Fi£*-component of f^Z\GKy UFK*) is in

Zq(Gκ, U'p) for almost all py then /is a cocycle in Zq(Gκ,JFK). The homomo-

rphism Hq(GKpy Klξ)->Hq(GKpy FK$) is a monomorphism for any py since any

p is unramified, where K^ is the group of all units of K$=Dς$ffi. Now, we

suppose that for f^Zq(GKyJFK) there exists gp<EίCq-\GKy FK*) such that

dgp=fp for all the FK$-component /p of /. Then we may assume that gp is in

Cq~\GKy U'p) for almost all p, since Hq(GKp, Kξ) is isόmorphic to Hq(GKy U*).

We defineg^Cq~1(Gκ,JFK) that its FK$-component is equal t o ^ . Then we

get f=dg. Thus we have proved that Hq(Gκ,JFK) is isomorphic to"X['H9(GK9

FK$). Passing to direct limit and using the well-known isomorphisms:

Br{FK^Fv)^H\GKpyFKξ)y H\GKpy Uψ)^H%Gκpy K*)^Br(Kφp), we get
the following

Proposition 7.a. H2(G,J) is isomorphic to the subgroup of the restricted

direct product of Br(Fp) with respect to Br(kp), which consists of the elements

Πcl(At) satisfying the following condition: There exists a finite dimensional Galois

extension K of k such that FK$ splits the p-component cl(Ap)for every p, where J

is the idele group of F=F> k over k.

Similarly, we get the following

Proposition 7.b. H\Gy 0) is isomorphic to the subgroup of the direct prod-

uct HBr(£;ρ) °f Br{k%)> which consists of the elements Hcl(Γp) satisfying the same

condition of Proposition 7.a, where Ό is the group of idele units in / .

Now we are ready to prove the following

Theorem 8. The kernel of p: Br(F)-+Br(AF) is isomorphic to H\Gy ~CJ).

More precisely, the following diagram with canonical arrows is commutative with

exact rows and columns,
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:

I
H\G,

I
H\G,

I
H\G,

CU)

CJ)

CD)

K. YOKOGAWA

0

I
H\G,R)

ϊ
-* Br(k) -

1 9
-* Br(F) -

1
-> H\G, H) -*

0

1
Br{Uh)

P

®X(Gp)

where we use the following notations:
D: the divisor group of F/k
R: the group of principal divisors in D
CD=D/R: the divisor class group
CJ=JjF*: the group of idele classes
CU=U/Έ*: the group of idele unit classes.

Proof. The commutativity i
umns is clear by Theorem 5 and
modules and G-homomorphisms
[6], Scharlau [7]).

0

o -+1*

I
0 -> F*

I
0 -* R

ί
0

s easy so we omit it. The exactness of col-
by the following commutative diagram of G-
with exact rows and columns (c.f. Roquette

0 0

I
- ϋ

I
- /

I
-+ D

I
0

I
^cϋ-

1
- cj-

I
^~CD -

1
0

* 0

* 0

^ 0

The exactness of the lower row is clear by the above diagram since H2(G, D)^

@X(Gp) by Shapiro's lemma. Also the homomorphisms H\Gy Cj)-+Br(F),

H\G, CΌ)-*Br(k) are monomorphisms since H\G, J7)=0, H\Gj)=Q. By
the following commutative diagrams,
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o o

H\G, C/) H\G~CV)

Br(F) - ^ Br{AF) Br(k) > Br(Ukp)
P

<p0: mono. ψ 0 : m o n o .

Jti \Lry J) > lir>r(rp) ti (Car, U) • ILof(&p)

mono. p mono. p

and by Proposition 7.a, 7.b, we can easily see that the upper row and the middle

row are exact. This completes the proof of Theorem 10.

By Tate [9], we have immediately

Corollary 9. If k is a p-adic number field, then the homomorphism p: Br(F)

-^Br(AF) is a monomorphism.

REMARK 4. By Remark 1, 2 and Proposition 7a, 7b, we can define β: H2

{Gj)-+Br{AF)y 7: H*(G, U)->Br(Ukp). With these homomorphisms, the fol-

lowing diagram is commutative with exact rows.

0 > H2(Gy Ό) > H\Gy J) ••0%(G P ) > -
p

β II
0 > Br(Πkp) - ^ Br(AF) -¥-» ®X(Gp) • 0

P P

The homomorphism β is given by the crossed product. In fact, for any finite

Galois extension K of k> AFK is nothing else AF®K. So AFK\AK is Galois

extension of rings. Since φ0 is a monomorphism, the homomorphism β is

completely determined by the composite φo°β: H2(G, J)^ΐ[Br(Fp). And the
P

composite φo°β is obtained by the componentwise crossed product. So our

assertion follows immediately. But the author does not know whether β is an

epimorphism or not.
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