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0. Introduction

There are many works on the determination or the estimation of the funda-

mental unit £ and the ideal class number h of real quadratic number fields F

([1], [3], [6] and [10], for example). The £'s which are treated in them have

small orders of absolute value in comparison to their discriminants Z), that is,

S=O(\/D) or \og8=O(\og\/ D). The aim of this note is to construct such

JF'S with comparatively large £'s.

Let p and q be rational primes such that p<q. Then put

(0.1) mk=(pkq+p+ιγ-4p

for k=l, 2, •••. Set Fk—Q(\/mk) the quadratic number field obtained by ad-

joining \/mk to the rational number field Q and denote by Dk, 6k and hk the

discriminant, the fundamental unit and the ideal class number of Fk respectively.

It holds Dk-^oo as Λ—>cx), namely, Fk(k=ί, 2, •••) gives infinitely many real

quadratic number fields. Then we can find a positive constant cx such that

(0.2) log^> C l (logv/^) 3

holds for sufficiently large Dk (Theorem 3.2).

It is known ([4]) that the following inequality holds for all real quadratic num-

ber fields

(0.3) h log£ <VD(log sJD +1).

Combining (0.2) and (0.3), we get

(0 4 ) hk<

for sufficiently large Dk.

On the other hand, for imaginary quadratic number fields F's with Z)<0,
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it was shown by Hecke that

(0.5)

if there exists a positive constant c4 such that

(0.6) L(s,X)Φθ for 1 - , Cfnι <*

where L(s,X) is the Dirichlet L-funcioin attached to F. To be very broad, we
can say that the order of the ideal class numbers of real quadratic number fields
is smaller than that of imaginary ones under the assumption (0.6) is valid for all
D<0.

NOTATIONS : We denote by Z, Q and R the ring of rational integers, the ra-
tional nubmer field and the real number field respectively.

1. Reduced quadratic irrationals

In the first place, we recall some fundamental properties of quadratic irra-

tionals (see [2], [5], or [9]). Let a be a real quadratic irrational number with

discriminant Dy that is, a is a root of a quadratic equation

aX2+bX+c=0

with rational integral coefficients α, b, c such that tf>0, (a, b> c)=ί and b2—\ac
=D. In what follows, we give our attention to the case Z)>0 exclusively, so
the quadratic irrationals are always to be understood to be real ones. We call a
quadratic irrational a reduced if a > 1 and 0 > a' > — 1, where a' is the conjugate
of a with respect to Q. Let a and β be two quadratic irrationals, we say a and
β are equivalent if we have

aβ+b
a= cβ+d

with a, by cy d^Z satisfying ad—bc=±l, then a and β have the same discrim-
inant. We know that every quadratic irrational is equivalent to a reduced one.

Denote by A*=A*(D) and A=A(D) the set of all quadratic irrationals with
discriminant D and the subset of A* consisting of all reduced ones respectively.

Lemma 1.1. (a) A is a finite set.

(b) For a^A*y a is reduced (i.e. a^A) if and only if the continued fractional
expansion of a is purely periodic.

Let « G A Set
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for i = l , 2,.. ,

where a{ is the greatest rational integer not exceeding av Then, from Lemma
1.1 (b), it holds aN+1=aly where N is the (minimal) period of the continued
fractional expansion of α, and moreover α f.(ί=l,2, , N) formacosetof A with
respect to the equivalence relation. Let

A=A1{) A2{J — {jAh

be the equivalence class decomposition of A, then the number h of the cosets is
equal to the ideal class number of the field F=Q(\/D) if D is the discriminant of
F. We restrict ourselves to the case where D is the discriminant of a real quad-
ratic number field F in the following.

From (1.1) we have, for

Then ad—bc=(—l)N and the fundamental unit £ of F is given by ca+d.

Proposition 1.2 If D is equal to the discriminant of a real quadratic number

field F and 8 is the fundamental unit of Fy then

(1.3)
Λ&A

for any equivalence class -4f.(ί=l,2, . ., h).

Corollary 1.3. It holds that

Proof of the Proposition 1.2. Let a^A and define a{ by relation (1.1).
Then the equivalence class containing a is given by {aly oc2y "> aN}, where
iV is the period of the continued fractional expansion of a. From (1.2), the
fundamental unit £ is given by

(1.4) £

where[ ] is defined in the following;

[ ] = 1, [40=*! and

We claim
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(1.5) cx2a3"'ak=[a2y a3., ~, ak_ly ak] (k^2).

In fact, from (1.1), it holds

(1.6) α t α , . + 1 = α Λ . + 1 + l ( i ^ l ) .

So (1.5) is valid for k=2. Suppose (1.5) is valid for k.

Then

a2a3-ak+1

= [«»—> <*k-i] afcak+1+ [a2,-, ak_2]ak+1

= [a2f~ y ak_^\ akak+1+ [a2y , ak_^\ + [α2, , ak_2] ak+1

Therefore (1.5) is valid for all k^2. Our proposition follows from (1.4) and

(1.5), using the relation aN+1^=a1=a.

REMARK. Relation (1.3) is used also in [5].

2. Reduced ideals

Let F=Q(\/D) be the real quadratic number field with discriminant D. Put

ω = —xΛl— y then 1 and ω form a ^-basis of the ring o of all algebraic integers in

F. Let ξly ξ2y •••, ξn be elements of F, we denote by [ξ19 ξ2J —, ξH] and by (ξu

ζ'ii •-•> ζn) respectively the modules in F generated by the elements over Z and

over o. So o = [ l , ω]=(l). Every integral ideal α has the (unique) canonical

basis of the following form: a=[ά, b-\-cω] where a, b, CEΞZ satisfying (i) <2>0,

c>0 and ac=N(a) (the absolute norm of α), (ii) a=b = O (mod c) and N(b+cω)

= 0 (mod ac) and (iii) -^a<b-\-cω' < 0 (ω' is the conjugate of ω). Then we

define a by

• x b + cω
a = a(a) = —^—

and call a the quadratic irrational associated with the ideal α. An integral ideal

a is called reduced if c=\ and a(ά) is a reduced quadratic irrational.

Proposition 2.1. The map a->a(a) gives a bijection of the set of all

reduced ideals to the set A =A(D) of all reduced quadratic irrationals with discrimi-

nant D. And it induces a bijection of the ideal class group of F to the set {Av A2, ,

Ah) of the equivalence classes of A%
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Proposition 2.2. An integral ideal α is reduced if (i) N(a)<^—- and (ii)

the conjugate ideal a' is relatively prime to α.

For the proof of Proposition 2.1, see [2], [5] or [9]. Proposition 2.2 is
easily seen by checking the definition of reduced quadratic irrationals.

3. Lower bounds of regulators

In this section we estimate the values of the regulators of a certain type of
real quadratic number fields.

Theorem 3.1. Let p. (i=l, 2, •••, n) be rational primes satisfying px<p2<
\"<pn Assume that there exist infinitely many real quadratic number fields F
satisfying the following condition (*):

(*) Every p{ is decomposed in F into the product of two principal prime
ideals £,. and p/.
Then there exists a positive constant c0 depending only on n and plfp2, •••,/>„ such that

holds for sufficiently large D, where D and £ are the discriminant and the funda-
mental unit or F.

Proof. Consider the ideals α of the form

Then α is a principal integral ideal and reduced if (a) N(ά)=p1

ei+fί'"pn

en+fn<i

X=— and (b) e1f1 = - -=enfn=0 (Proposition 2.2). Let a19 α2, •••, at be the set

of all reduced ideals obtained as above. Then the quadratic irrationals aly «α2, .
•••, at associated with them build a subset of the equivalence class Aly say,
corresponding to the principal ideal class. So we get, from Proposition 1.2,

S= Π a > Π a{.

On the other hand, we have

where dt =[Λ^(αt), i t +ω] is the canonical basis of a(. Hence we get the following
inequality
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(3.1)

The product in (3.1) is taken over all integers e. and/,, satisfying

(*') (

(40 «,^0,/^0 and *,/,=() (*=1, 2, - , n).

We have

The number £ equals to the cardinal of the set of 2w-tuples (^!,/i, , £„,/„) satisfy-
ing (Λ') and {bf). Then it holds

(3-3) / = = ^

where V is the volume of the w-simplex Δ in the w-dimensional euclidean space

(
= (xιt -, x

and P = (log A) (log />2) -(log />„).
We have

JΔ

For the product of all denominators in the right side of (3.1), we have

(3.4) log Π' (A*1+/l * Pnn+fn)

=Σ'[(*rf/i) logA+ + (

From (3.3) and (3.4), we get
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log ε 0 = i o g ( ^ ) - log Π'(/>Λ+/'-pn

e*+'«)

+O({\ogVD)»).

Our theorem follows from this and (3.1).

Theorem 3.2. For the casen=2, the assumption of Theorem 3.1 is satisfied

by the following F's : F=Q(x/mk)

mk= (pkq+p+l)2-4p (£=1,2,<")>

where we set p=p1 and q=p2-

Proof. We see easily that mk = 1 (modp), mk= (p—ίf (mod q) and mk= 1
(mod 4) ( % Ξ 1 (mod 8) if p=2). Hence each of p and q is decomposed into the
product of two distinct prime ideals in F (if mk is not a square). Set/>=££' and
q=(\<\'. From the definition of mk it holds

(3.5) (P

(3.6) (p* ?+/>-l)2 - m A = - 4

From (3.5), p and ^ are both principal (set p=(P ? + j > +

2

+ ^ m * ) , for example).

From (3.6), either pkq or ί)/Afq is principal. Since pk and !p/Λ are principal, both
q and q' are also principal. So the condition (*) in Theorem 3.1 is satisfied. Finally,
the infiniteness of the number of F's given above is as follows. Set k=2j (we
consider the case where k is even), then

mk=m2J= (pV q+p+iy-4p=qψ'+2q(p+l)f>+ (p-l)2.

Since the diophantine equation

Df=cfx*+2q(p+ I)x2+(P-1)2

has only a finite number of rational integral solutions (x, y) for a fixed integer D

(SiegePs theorem), Q{\/m2j) represents infinitely many real quadratic number

fields F for j= 1,2, This completes the proof.

4. Some examples

(I) The case » = 1 .
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Set Fk=Q{\/h2^4p)> for a given prime number p!=p. Then it can
easily be seen that Fk Satisfies the condition (*) in Theorem 3.1. Hence we get
the lower bound for the fundamental unit Sk of Fk;

log 6k>c0 (log y/JTtf

if the discriminant Dk of Fk is sufficiently large.

Here is an interesting example where we can determine the fundamental

units. Let F=Q(\/d), where

d=dk=(2>°+3y-8 .

Since d = 1 (mod 8), the discriminant of F is equal to d if d is square-free. Sup-
pose d is square-free. Set

Then cζ is the reduced quadratic irrational with discriminant d associated with
the idfeal (1) in F. Calculating the continued fractional expansion (1.1) and
(1.2), we see that all the reduced quadratic irrationals equivalent to a are given
by

2* + l+\/~rf . . . , ,.

(ι=l,2, -,k).

From Proposition 1.2, we get

ε = α 1 α ! α ! l iα2*+1

2(2 2 2 3 2*+I)

(

In fact,

..<*, = 17, h=ί, B=A

d2 = 41, A=l, £ = 3 2 + 5 ^ 4 1 .

d3 = 113, h=l, £=776+73^113.

dt = 353, h=\, £=71264+3793^/353.

rf5 = 1217, h=l, £=276 28256+7 91969vΊ2Ϊ7.
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where h is the ideal class number of F. For the values of h=hk (&^12) c.f. |8].

(II) The case w=2 (c.f. Theorem 3.2).

Set

m=mk=(ρk i

Let F= Q(V m ) and h be the ideal class number of F.

(a)p=2, q=3.

m1= 73, h—\,

ε =1068+125 v

/73.

m2= 217=7-31, h=ί,

ε =38 44063+2 60952^217.

m3= 721=7-103, Λ=l,

ε =18 63217 69432 92415+69389 85301 22112^721.

mt= 2593, A=l,

ε =2290 04858 04690 92256 48456 +44 97212 78935 82134 31953 v/2593.

(b) p=2, q=5.

m1= 161=7-23, A=l,

ε =11775+928^161.

m2= 521, h=ί,

ε =1383 77240+56 24309^521

m3= 1841=7-263, A=l,

ε =221 70854 28203 33535+5 16720 31146 43592 χ/1841.
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