Kamata, M. Osaka J. Math. 8 (1971), 233-241

ON THE DIFFERENTIAL $d_3^{p,0}$ OF U-COBORDISM SPECTRAL SEQUENCE

MASAYOSHI KAMATA

(Received November 26, 1970)

For a finite CW-pair (X, A), there is the extraordinary cohomology group of unitary cobordism group denoted by

$$U^{k}(X, A) = \lim_{\xrightarrow{m}} \{S^{2m-k}(X|A), MU(m)\},\$$

[3]. Consider the spectral sequence $\{E^{p,q}\}$ associated to the cohomology group $U^*(X, A)$ with $E^{p_2^*q} = H^p(X, A; U^q)$, where $U^q = U^q$ (a point). If q is odd then $U^q = 0$. Hence, the differential

$$d_2^{p,q}: E_2^{p,q} \to E_2^{p+2,q-1}$$

is zero homomorphism and $E^{p_{3}^{\circ}} \approx H^{q}(X, A; U^{p})$. In this paper we compute the differential $d^{p_{3}^{\circ}}$ and study the admissible multiplication of mod 2 cohomology theory of unitary cobordism.

1. Preliminaries

The spectral sequence $\{E^{p,q}\}$ of $U^*(X, A)$ is obtained as follows; Define $Z^{p,q}_r = Im\{U^{p+q}(X^{p+r-1}, X^{p-1}) \to U^{p+q}(X^p, X^{p-1})\}$, $B^{p,q}_r = Im\{U^{p+q-1}(X^{p-1}, X^{p-r}) \to U^{p+q}(X^p, X^{p-1})\}$,

where X^{p} is the *p*-skeleton of (X, A), then $E_{r}^{p,q} = Z_{r}^{p,q} / B_{r}^{p,q}$, and the differential

$$d_r^{p,q}: E_r^{p,q} \to E_r^{p+r,q-r+1}$$

is the following composition homomorphism

$$Z_{r}^{p,q} / B_{r}^{p,q} \rightarrow Z_{r}^{p,q} / Z_{r+1}^{p,q} \approx B_{r+1}^{p+r,q-r+1} / B_{r}^{p+r,q-r+1} \rightarrow Z_{r}^{p+r,q-r+1} / B_{r}^{p+r,q-r+1} / B_{r}^{p+r+1} / B_{r}^{p+r+1$$

Consider the commutative diagram,

Then, the isomorphism (*) is given by

$$Imj^*/Imj_1^* \approx Im\delta_1^* \circ j^* \approx Imj_2^* \circ \delta \approx Im\delta/Im\delta_2$$

Therefore,

$$d_{r}^{p,q}(\{j^{*}(x)\}) = \{\delta(x)\},\$$

where $x \in U^{p+q}(X^{p+r-1}, X^{p-1})$.

We define the homomorphism

by

where e_p^* is the generator of $\tilde{H}^p(S^p)$ and S_*^{-p} is the inverse of the suspension isomorphism S_*^p : $\tilde{U}^r(S^0) \approx \tilde{U}^{p+r}(S^p)$. The homomorphism μ is the isomorphism, and it follows immediately that

Lemma 1.1.
$$U^{p+r}(X^{p}, X^{p-1}) \approx H^{p}(X^{p}, X^{p-1}) \otimes U^{r}$$
.

We denote this isomorphism by

$$\mu: U^{p+r}(X^p, X^{p-1}) \to H^p(X^p, X^{p-1}) \otimes U^r.$$

2. On the elements of $U^{p-2}(X^p, X^{p-1})$

Consider the element $x \in \tilde{U}^{p-2}(S^p)$, which is the class of a map $f: S^{2m-p+2}S^p \to MU(m)$, where MU(m) is the Thom space of the *m*-dimensional complex universal bundle ξ_m . Denote by $c_1(\xi_m)$ the 1-st Chern class of ξ_m . Applying the homomorphism μ of Lemma 1.1 to the element x, we can represent the element $\mu(x)$ as follows;

Lemma 2.1.
$$\mu(x) = -\frac{1}{2} \{ S_*^{-(2m-p+2)} f^* \phi_{\xi}(c_1(\xi_m)) \} \otimes [CP(1)] ,$$

where ϕ_{ξ} is the Thom isomorphism

$$\phi_{\boldsymbol{\xi}}: H^*(BU(\boldsymbol{m})) \rightarrow \tilde{H}^{*+2\boldsymbol{m}}(MU(\boldsymbol{m})),$$

 S_*^{-*} is the inverse of the k-fold suspension isomorphism S_*^{*} , and CP(1) is the 1-dimensional complex projective space.

Proof. From (1.1) we have

$$\mu(x) = e_p^* \otimes S_*^{-p}(x), \ S_*^{-p}(X) \in U_2.$$

Put $[V^2] = S_*^{-p}(x)$. Then, since the generator of U_2 is the cobordism class of 1-dimensional complex projective space CP(1), we can represent $[V^2]$ as

$$[V^2] = a[CP(1)], a \in \mathbb{Z}.$$

Consider the Chern number $\langle c_1(\tau), [V^2] \rangle$, where τ is the tangent bundle of V^2 , $c_1(\tau)$ is the lst Chern class of τ and $[V^2]$ is the fundamental class of V^2 . Since

$$\langle c_1(\tau(CP(1))), [CP(1)] \rangle = 2$$
,

We have the following

$$[V^2] = \frac{1}{2} \langle c_1(\tau), [V^2] \rangle [CP(1)].$$

Therefore,

$$\mu\{f\} = e_p^* \otimes \frac{1}{2} \langle c_1(\tau), [V^2] \rangle [CP(1)] \qquad \cdots \cdots \qquad (2. 1).$$

We can see that $V^2 = f_0^{-1}(BU(m))$, where f_0 is transverse regular on BU(m) and an \mathcal{E} -approximation to $f | S^{2m+2} - f^{-1}(P)$, where \mathcal{E} is a positive continuous function on $S^{2m+2} - f^{-1}(P)$ and P is the base point of MU(m). Let η be the normal bundle of V^2 in $S^{2m+2} - f^{-1}(P)$. We have the bundle map

 $f_0: \eta \to \xi_m,$

which induces the map $f_0: V^2 \rightarrow BU(m)$. Let $J: S^{2m+2} \rightarrow D(\eta)/S(\eta)$ be the map given by collapsing $S^{2m+2} - IntD(\eta)$, where $D(\eta)$ and $S(\eta)$ denote the associated disk bundle and sphere bundle of η respectively. Then, $\tilde{f}_0 \circ J$ is homotopic to f [4], where $\tilde{f}_0: T(\eta) = D(\eta)/S(\eta) \rightarrow MU(m)$ is the map induced by f_0 . Let e_*^p and [T] be the fundamental classes of $\tilde{H}_p(S^p)$ and $H_{2m+2}(D(\eta), S(\eta))$ respectively. Let $U(\xi_m)$ and $U(\eta)$ be the Thom classes of ξ_m and η respectively. Denote by

$$\phi_{\eta}: H^{*}(V^{2}) \to H^{*+2m}(T(\eta))$$

the Thom isomorphism and by

 $\pi : D(\eta) \rightarrow V^2$

the projection.

 $\langle c_{\scriptscriptstyle 1}(au),\, [V^2]
angle$

М. Камата

$$= -\langle c_1(\eta), [V^2] \rangle$$

= $-\langle c_1(\eta), \pi_*([T] \cap U(\eta)) \rangle$
= $-\langle \phi_\eta(c_1(\eta)), [T] \rangle$
= $-\langle \tilde{f}_0^* \phi_{\xi}(c_1(\xi_m)), [T] \rangle$
= $-\langle J^* \tilde{f}_0^* \phi_{\xi}(c_1(\xi_m)), e_{*}^{2m+2} \rangle$
= $-\langle f^* \phi_{\xi}(c_1(\xi_m)), e_{*}^{2m+2} \rangle$.

Therefore, by (2.1)

$$\mu\{f\} = -\frac{1}{2} \langle f^* \phi_{\xi}(c_1(\xi_m)), e_*^{2m+2} \rangle e_p^* \otimes [CP(1)]$$
$$= -\frac{1}{2} S_{\ast}^{-(2m+2-p)} f^* \phi_{\xi}(c_1(\xi_m)) \otimes [CP(1)] . \text{ q. e. d.}$$

Theorem 2.2. If $x \in U^{p-2}(X^p, X^{p-1})$ and x is represented by a map $f: S^{2m-p+2}(X^p/X^{p-1}) \to MU(m)$, then

$$\mu(x) = -\frac{1}{2} S_{*}^{-(2m+2-p)} f^{*} \phi_{\xi} c_{1}(\xi_{m}) \otimes [CP(1)]$$

Proof. For the element $x \in U^{p-2}(X^p, X^{p-1}) \approx \widetilde{U}^{p-2}(\bigvee_j S^p_j)$,

$$x=\sum_{j}p_{j}^{*}i_{j}^{*}(x),$$

where $i_j: S_j^p \subset \bigvee_k S_k^p$ is inclusion and $p_j: \bigvee_k S_k^p \rightarrow S_j^p$ is projection.

$$\mu(x) = \sum_{j} (p_{j}^{*} \otimes 1) \mu(i_{j}^{*}(x))$$

= $\sum_{j} (p_{j}^{*} \otimes 1) \mu\{f \circ i_{j}\}$
= $-\sum_{j} p_{j}^{*} \left(\frac{1}{2} S_{*}^{-(2m+2-p)}(f \circ i_{j})^{*} \phi_{\xi}(c_{i}(\xi_{m}))\right) \otimes [CP(1)]$

by Lemma 2.1,

$$= -\frac{1}{2} \sum_{j} p_{j}^{*} i_{j}^{*} S_{*}^{-(2m+2-p)} f^{*} \phi_{\xi}(c_{1}(\xi_{m})) \otimes [CP(1)]$$

$$= -\frac{1}{2} S_{*}^{-(2m+2-p)} f^{*} \phi_{\xi}(c_{1}(\xi_{m})) \otimes [CP(1)] . \text{ q. e. d.}$$

3. The differential $d_3^{p,0}$

In §1, we have seen that $d_{\mathbb{S}}^{p,0}{j^*(x)} = {\delta(x)}$, where

$$j^*: U^p(X^{p+2}, X^{p-1}) \to U^p(X^p, X^{p-1}),$$

and

$$\delta: U^{p}(X^{p+2}, X^{p-1}) \to U^{p+1}(X^{p+3}, X^{p+2})$$

are the maps induced by injection $j: (X^{p}, X^{p-1}) \rightarrow (X^{p+2}, X^{p-1})$ and the coboundary homomorphism of the exact sequence of the triple $(X^{p+3}, X^{p+2}, X^{p-1})$ respectively. By Lemma 1.1, $\mu: U^{p+r}(X^{p}, X^{p-1}) \approx H^{p}(X^{p}, X^{p-1}) \otimes U^{r}$, and we can see easily that

$$(\delta \otimes id) \circ \mu = \mu \circ d_1^{p,r}$$
,

where $\delta : H^p(X^p, X^{p-1}) \to H^{p+1}(X^{p+1}, X^p)$ is the coboundary homomorphism and $d_1^{p,r} : E_1^{p,r} \to E_1^{p+1,r}$ is the differential.

Considering $H^{p}(X^{p}, X^{p-1}) = C^{p}(X, A)$ as the cochain group, we have

 $E_{2}^{p,r} = H^{p}(X, A; U^{r}).$

Since $E_3^{p,r} \approx E_2^{p,r}$, we identify the homomorphism $d_3^{p,0} : E_3^{p,0} \to E_3^{p+3,-2}$ with the homomorphism which applies $[\mu(j^*(x))] \in H^p(X,A)$ to $[\mu\delta(x)] \in H^{p+3}(X,A; U^{-2})$. Let $x \in U^p(X^{p+2}, X^{p-1})$ be represented by a map

$$f: S^{2m-p}(X^{p+2}/X^{p-1}) \to MU(m).$$

Then, $\delta(x)$ is represented by the following composition

$$g: S^{2m-p-1}(X^{p+3}/X^{p+2}) \xrightarrow{r} S^{2m-p}(X^{p+2}/X^{p-1}) \xrightarrow{f} MU(m),$$

where r is the composition map of homotopy equivalence $X^{p+3}/X^{p+2} \simeq (X^{p+3}/X^{p-1}) \cup C(X^{p+2}/X^{p-1})$ and the natural map induced by the projection $(X^{p+3}/X^{p-1}) \cup C(X^{p+2}/X^{p-1}) \rightarrow S(X^{p+2}/X^{p-1})$. The map r gives the boundary homomorphism

$$-\delta: \tilde{H}^{*}(X^{p+2}/X^{p-1}) \to \tilde{H}^{*+1}(X^{p+3}/X^{p+2})$$

and the following diagram is commutative,

$$\begin{split} \hat{H}^*(X^{p+2}/X^{p+1}) & \xrightarrow{\hat{j}^*} \hat{H}^*(X^{p+2}/X^{p-1}) \\ & \searrow \delta & \delta \swarrow \\ & \hat{H}^{*+1}(X^{p+3}/X^{p+2}) \,. \end{split}$$

where \hat{j} is the injection \hat{j} : $(X^{p+2}, X^{p-1}) \rightarrow (X^{p+2}, X^{p+1})$.

Considering the cohomology exact sequence of the triple $(X^{p+2}, X^{p+1}, X^{p-1})$, we have the following

Lemma 3.1.
$$j^*: \tilde{H}^{p+2}(X^{p+2}/X^{p+1}) \to \tilde{H}^{p+2}(X^{p+2}/X^{p-1})$$

М. Камата

is an epimorphism.

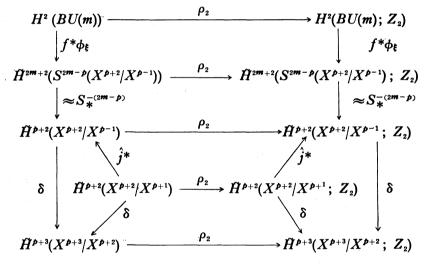
Lemma 3.2. There exists an element $y \in \hat{H}^{p+2}(X^{p+2}|X^{p+1}) = C^{p+2}(X, A)$ such that $\rho_2 y$ is a cocycle,

and

$$\beta[\rho_2(y)] = \left[-\frac{1}{2}S_*^{-(2m-1-p)}g^*\phi_{\xi}c_1(\xi_m)\right] \qquad \cdots \cdots \cdots (3.2),$$

where ρ_2 is the reduction modulo 2, β is the Bockstein homomorphism and [] denotes the cohomology class of $H^*(X, A)$.

Proof. We consider the following commutative diagram.



By Lemma 3.1, there exists the element $y \in \hat{H}^{p+2}(X^{p+2}/X^{p+1})$ such that

$$\hat{j}^{*}(y) = S_{*}^{-(2m-p)} f^{*} \phi_{\xi} c_{1}(\xi_{m}),$$

and (3.1) follows. By the definition of the map g and (3.1),

$$\delta j^{*}(y) = -S_{*}^{-(2m-p-1)}g^{*}\phi_{\xi}c_{1}(\xi_{m}).$$

Then, we note that Theorem 2.2 implies that there exists the element $\frac{1}{2}S_{*}^{-(2m-p-1)}g^{*}\phi_{\xi}c_{1}(\xi_{m})$ in the cochain group $C^{p+3}(X, A) = \tilde{H}^{p+3}(X^{p+3}/X^{p+2})$. Therefore, $\rho_{2}\delta j^{*}(y) = 0$, that is, $\rho_{2}(y)$ is cocycle. Then, we have

$$\beta[\rho_2(y)] = \left[\frac{1}{2}\,\delta(y)\right]$$

$$= \left[\frac{1}{2} \,\delta j^*(y)\right]$$
$$= -\left[\frac{1}{2} S_*^{-(2m-p-1)} g^* \phi_{\xi} c_1(\xi_m)\right]. \quad \text{q.e.d.}$$

It is well known that $\rho_2 c_1(\xi_m) = W_2(\xi_m)$, where W_2 is 2-dimensional Stiefel-Whitney class, and $W_2(\xi_m) = \phi_{\xi}^{-1} Sq^2 \phi_{\xi}(1)$, [5]. Therefore, it follows that

Corollary 3.3. $\hat{j}^* \rho_2(y) = S_*^{-(2m-p)} f^* Sq^2 \rho_2 \phi_{\xi}(1)$

Theorem 3.4. $d_{3}^{p,0}[\mu\{j^*(x)\}] = \beta Sq^2[\rho_2\mu\{j^*(x)\}] \otimes [CP(1)].$ Proof. By Theorem 2.2 and (3.2)

$$[\mu\{\delta(x)\}] = \left[-\frac{1}{2}S_{*}^{-2m+p+1}g^{*}\phi_{\xi}c_{1}(\xi_{m})\right] \otimes [CP(1)]$$

= $\beta[\rho_{2}(y)] \otimes [CP(1)]$ (3.3)

Consider the following commutative diagram;

$$\begin{array}{c} \hat{H}^{p+2}(X^{p+2}|X^{p+1} ; Z_{2}) \\ \downarrow \hat{j}^{*} \\ \hat{H}^{p}(X^{p-1} ; Z_{2}) \xleftarrow{j^{*}} & \hat{H}^{p}(X^{p+2}|X^{p-1} ; Z_{2}) \xrightarrow{Sq^{2}} & \hat{H}^{p+2}(X^{p+2}|X^{p-1} ; Z_{2}) \\ \downarrow i^{*}_{1} & \downarrow i^{*}_{2} & \downarrow i^{*}_{2} \\ \hat{H}^{p}(X^{p}|A ; Z_{2}) \xleftarrow{k^{*}} & \hat{H}^{p}(X^{p+2}|A ; Z_{2}) \xrightarrow{Sq^{2}} & \hat{H}^{p+2}(X^{p+2}|A ; Z_{2}) \\ p^{*}_{1} & \uparrow p^{*}_{2} & \uparrow p^{*}_{2} \\ \hat{H}^{p}(X|A ; Z_{2}) \xrightarrow{Sq^{2}} & \hat{H}^{p+2}(X|A ; Z_{2}) \\ p^{*}_{2}[\rho_{2}(y)] = i^{*}_{2}\hat{j}^{*}(\rho_{2}(y)) \\ = i^{*}_{2}S^{-(2m-p)}f^{*}Sq^{2}\rho_{2}\phi_{\xi}(1) \end{array}$$

by Corollary 3.3,

$$= Sq^{2}i_{2}^{*}S_{*}^{-(2m-p)}f^{*}\rho_{2}\phi_{\xi}(1).$$

Put $\hat{\mu}(x) = S_*^{-(2m-p)} f^* \phi_{\xi}(1)$. Let $[j^* \rho_2 \hat{\mu}(x)]$ be the cohomology class of $\hat{H}^{p+1}(X/A; Z_2)$ represented by $j^* \rho_2 \hat{\mu}(x)$, that is,

$$i_1^* j^* \rho_2 \hat{\mu}(x) = p_1^* [j^* \rho_2 \hat{\mu}(x)].$$

Using the same way as Lemma 2.1, we have $j^*\hat{\mu}(x) = \mu\{j^*(x)\}$.

Then,

$$k^*p_2^*[\rho_2\mu j^*(x)] = k^*i_2^*\rho_2\hat{\mu}(x)$$
.

Since k^* is injective, $p_2^*[\rho_2 \mu j^*(x)] = i_2^* \rho_2 \hat{\mu}(x)$. On the other hand

$$egin{aligned} p_2^*Sq^2[
ho_2\mu j^*(x)] &= Sq^2p_2^*[
ho_2\mu j^*(x)] \ &= Sq^2i_2^*
ho_2\hat{\mu}(x) \ &= p_2^*[
ho_2(y)] \,. \end{aligned}$$

Since p_2^* is injective, $Sq^2[\rho_2\mu j^*(x)] = [\rho_2(y)]$. Hence by (3.3) theorem follows.

4. Application

Araki-Toda [1] showed the existence theorem of the admissible multiplications in the mod q-cohomology theories, that is; In case $q \equiv 2 \pmod{4}$ admissible multiplications exist always; In case $q \equiv 2 \pmod{4}$, if we assume that $\eta^{**}=0$ in \tilde{h} and μ is commutative then admissible ones exist, where μ is the multiplication in \tilde{h} , and $\eta: S^3 \rightarrow S^2$ is the Hopf map. In mod 2 U*-cohomology theory, it is known that $\tilde{U}^k(S^m) = U^{k-m}$ and the canonical multiplication induces the isomorphism $\tilde{U}^{n+i}(X \wedge S^n) \approx \tilde{U}^i(X) \otimes \tilde{U}^n(S^n)$. Hence, it follows immediately that $\eta^{**}=0$. Therefore, there exist the admissible multiplications in mod 2 U*-cohomology theory. Moreover, Araki-Toda [2] showed the existence theorem of the commutative admissible multiplications in the mod q-cohomology theories.

Let $\bar{\eta}$ be a generator of $\{S^2M_2, S^2\}$, $M_2 = S^1 \cup e^2$, which is represented by a map $f: S^4M_2 \rightarrow S^4$ such that

where $i: S^1 \subset M_2$ and η is the Hopf map.

Theorem 4.1. (Araki-Toda). Let \tilde{h} be equipped with a commutative and associative multiplication and $\eta^{**}=0$ in \tilde{h} . The necessary and sufficient condition for the existence of commutative admissible multiplication in $\tilde{h}(; Z_2)$ is that $\bar{\eta}^*(1)=0$.

Applying Theorem 4.1 to the mod 2 U^* -cohomology theory, we have the following,

Corollary 4.2. The mod 2 U*-cohomology theory has no commutative admissible multiplication.

Proof. Let L be the mapping cone of f, that is,

$$L = S^4 \bigcup_f C(S^4M_2)$$
.

By (4.1), there exists the following commutative diagram,

the lower sequence is exact, considering the cofibration $S^4 \rightarrow L \rightarrow S^5 M_2$. It is well known that

$$H^{i}(L; Z) pprox \begin{cases} Z ext{ for } i = 0,4 \\ Z_{2} ext{ for } i = 7 \\ 0 ext{ others,} \end{cases}$$

and $S_q^3|H^4(L; Z_2)$ is non trivial. By Theorem 3.4, $d_3^{4,0}$ is non trivial. Let $\{J^{p,5-p}\}$ be the filtration of $\widetilde{U}^5(L)$ with $J^{p,5-p}/J^{p+1,4-p} \approx E_{\infty}^{p,5-p}$. Then,

$$\widetilde{U}^{5}(L) \approx J^{0,5}$$
 and $J^{i,5-i}/J^{i+1,4-i} \approx 0$ for $0 \leq i \leq 6$.

Since $d_r^{7,-2} = 0$ and if r > 3 then $d_r^{7-r,-3+r} = 0$,

$$J^{7,-2}/J^{8,-3} \approx \cdots \approx E_4^{7,-2}, J^{8,-3} = 0$$
.

Since $d_{3}^{4,0}$ is non trivial, $E_{4}^{7,-2}=0$. Therefore, $\tilde{U}^{5}(L)\approx 0$, and by (4.2) $\bar{\eta}^{*}$ is onto. Note that $\tilde{U}^{2}(S^{2})\approx Z$ and $\tilde{U}^{2}(S^{2}M_{2})\approx Z_{2}$, we have $\bar{\eta}^{*}(1) \neq 0$. q.e.d.

OSAKA CITY UNIVERSITY

References

- [1] S. Araki and H. Toda: Multiplicative structures in mod q cohomology theories I, Osaka J. Math. 2 (1965), 71-115.
- [2] S. Araki and H. Toda: Multiplicative structures in mod q cohomology theories II, Osaka J. Math 3 (1966), 81-120.
- [3] P.E. Conner and E.E. Floyd: Torsion in SU-bordism, Mem. Amer. Math. Soc. 60, 1966.
- [4] J. Milnor: Differential Topology, Lecture note, Princeton University, 1958.
- [5] J. Milnor: Lectures on Characteristic Classes, Princeton University, mimeographed, 1957.