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1. Introduction

Two dynamical systems are equivalent if there is a diffeomorphism 4 from
one manifold to the other such that 2 maps every orbit of the dynamical system
onto an orbit of the other preserving the natural orientations of orbits. For a
diffeomorphism f on X, a dynamical system (}, ¢) is constructed canonically as
follows; M = R X X/(t, x)~(t + 1, f7}(X)) and the flow ¢ is the one which is
induced from the natural flow » on RXX., Where, ) is the l-parameter
group given by yr, (u, x)=(u + ¢, x). This (M, ¢) is called the suspension of f.

Let f and g be diffeomorphisms on X and Y respectively. If the suspensions
of f and g are equivalent, the paris (X, f) and (Y, g) will be said to be flow equiva-
lent.

By S. Smale ([4], [5]), it is shown that if f and g are conjugate by a diffeomor-
phism X—Y, then (X, f) and (Y, g) are flow equivalent. In [2], the following result
is shown. Suppose that there exists no surjection from the fundamental group of X
onto the infinite cyclic group Z. Then f and g are conjugate if and only if (X, f) and
(Y, g) are flow equivalent. 1If there is a surjection 7,(X)—Z, there is an example
of (X, f) and (Y, g) such that (X, f) and (Y, g) are flow equivalent but f and
g are not conjugate. In [2] this example is shown when X=Y=S"

In §3 of this paper, we will show a sufficient condition on (X, f) and (Y, g)
under which they will be flow equivalent, and will show examples of (X, f) and
(Y, g) such that they will be flow equivalent but f and g will be not conjugate.

In §5, some results about flow equivalence of diffeomorphisms are men-
tioned. Our main result in this paper are Corollary (5.4) and Theorem (5.5),
which can be simplified as follows.

Theorem A. Let X, Y be compact connected manifolds which may possibly
have boundaries. If (X, f) and (Y, g) are flow equivalent, then there exist regular-
coverings p: W—X and q: W—Y with the common connected covrineg space W,
such that both covering transformation groups are isomorphic to Z or trivial group 1.

Theorem B. Let (X, f)and (Y, g) be asin Theorem A. Then there exist cov-
erings p: W—X and q: W—Y as in Theorem A such that for some pairs of
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positive integers (m, n), there exist a diffeomorphism h on W such that the following
diagram is commutative.

b, e

Xe—W—>Y

If there exist no surjection =,(X)—>Z, we can take m=n=1.

By the above result of S. Smale, Theorem B is an extension of the above
result of [2].

For the prroof of theorems in §5, we will prepare Theorem (4.1) in §4. Let
Y be a noncompact manifold in R XX, and let p : RX X—X denote the
natural projection. Then, Theorem (4. 1) says that, under certain conditions,
p1Y: Y— X is a covering map.

The author wishes to espress his sincere gratitude to Professor Y. Saito for
helpful suggestions.

2. Notations and elementary properties

Throuout this paper, all manifolds considered will be assumed to be of class
C”, r=0. In this paper, a C°-manifold or a C°-diffeomorphism means a topo-
logical manifold or a homeomorphism respectively.

A dynamical system or a flow of class C”, r =0, on a manifold M is a C"-map
¢: R*XM—->M (R'; the space of real numbers) such that if we put ¢, (t) =¢
(¢, x), then

(i) ¢o(x) = x

(1) Prrs(%) = Psps(x),
and ¢, is a C"-diffeomorphism (M, 0M)— (M, M), where M is the boundary
of M.

By a pair (M, ¢) we mean a dynamical aystem ¢ on a manifold M. (M, ¢)
and (M, ¢’) are said to be C"-equivalent iff there is a C”-diffeomorphism 4 :
M—M’ having the property that 2 maps every orbit of ¢ onto an orbit of ¢’ pre-
serving the orientation. Such a map % will be called an C”-equivalence.

Let R" denote n-dimensional euclidean space and H" denote the -
dimensional half space of R, i.e.

H* = {(x,, -+, x,) €R"|x,20}.

Let X and F be C”-submanifolds, r=0, of a C”-manifold M such that dim
X=n, dim F=m and dim M=n-+m and that FCInt M or FCOM. Then, an
intersection ¥ of X with F is transversal iff the following conditions are
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satisfied ; there are neighborhoods of the origins 0, V, in R” and V, in R” or H*
according as FcC Int M or FC oM, and neighborhood U of x in M, and there
is a C"-diffeomorphism « : U—V, X V, such that,

a(UNF)=V,x{0}
AUNX)= {0} x V,

A cross-section of a dynamical system, (M, ¢), of class C” is a compact con-
nected C”-submanifold X of codimension 1 of a compact manifold M such that
0XC0M, and that

(1) X intersects every oribt

(ii) the intersection of X with each orbit is transversal

(i) if xe X, there is a £>0 with ¢,(x)= X, and

(iv) if x= X, there is a t<0 with ¢,(x)= X.

If X is a cross-section of (M, ¢), X is properly imbedded in M, i.e. X N0OM
=0X.

By (M, ¢; X) we mean a dynamical system ¢ on a manifold M with a
crosssection X.

For (M, ¢; X) we can define a map f : X—X f(x)=¢,(x) where t, is the
smallest positive ¢ satisfying ¢,(¥)X. fis a C”-diffeomorphism; we call f the
assoctated deffeomorphism of (M, ¢; X).

Conversely, suppose that a C"—diffeomorphism f of X onto itself is given.
Define a C”-diffeomorphism 7 : RX X—>RXX by 7(t, x)=(t+1, f7}(x)).
Then the infinite cyclic group {r”}= Z, operates freely on RX X and the orbit
space (RX X)/Z is a manifold, say M,. The flow y», : RX X —RX X defined
by vr:(u, x) = (u-+t, x) induces a flow ¢, of class C” on M,. We call this (M,, ¢,)
the suspension of f. M, has a cross-section X,—=¢(0x X)C M,, where ¢ : RX X—
M, is the quotient map.

Two C’—-diffeomorphisms f : M—M and g : N—N are C°—conjugate iff
there exists a C°-diffeomorphism % : M—N such that hf =gh.

The followings are easily proved, which are shown in [4] or [5] in the version
of C~. '

(2.1) The associated diffeomorphism of the suspension of C”—diffeomorphism
f 1 X=X is C"~conjugate to f.

(2.2) If (M, ¢'; X') is the suspension of the associated diffeomorphism of a
dynamical system (M, ¢ ; X) of class C”, then (N, ) and (M', ¢') are C"—equivalent.

(2.3) Let (M, ¢), (M, ¢') be the suspensions of C"—diffeomorphisms f : X—
X, f : X'=X' respectively. If f and f’ are C"—conjugate, s<r, then (M, ¢) and
(M, ¢') are C*—equivalent.

By the pair (X, f) we mean a manifold X and a C*-diffeomorphism f : X—
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X. (X, f)and (Y, g) are flow C°—equivalent iff the suspensions of f and g are C*-
equivalent.

3. Different cross-sections

In this section, we will show some sufficient conditions under which (X, f)
and (Y, g) will be flow equivalent, where f and g will be periodic homeomorphi-
sms. And we will show some examples of (X, f) and (Y, g) which will be flow-
equivalent but X and Y will not be homeomorphic or diffeomorphic.

Let X be a compact C"-manifold, if =0 let X be a polyhedral manifold.
Let f : X—X be a C"—diffeomorphism such that

(i) f(x) ==, VxeX;

(ii) fi(x) = «, for any ¢ with 0<i<mn, Vxc X.

Let (M, ¢) be the suspension of f, then

M=RxX|(t, x)~(t+1, f}(x)).
Put
Y=X/x~ f(x).

Then there exists the following commuting diagram:

RxX —— §'xX — M

)l( ? id lpl lpz

> X —Y

where, the map Rx X—S'x X is defined by (¢, x) I—(¢*/", x); the map S*
X X—M is defined by (e***/*, x) I— [(¢, x)], and [(¢, x)] is the element of M con-
taining (¢, x) of RX X; X—Y is defined by x 1—[x]; p, is defined by [(2, x)] 1—>[x]
and p, p, are natural projections. We can simply see that these maps are well
defined and the above diagram is commutative.

S'X X—M and X—Y are covering maps with fibres consisting of 7z ele-
ments. p, : S'X X —X has natural structure of trivial S’~bundle. Here, we are
using the same definitions about fibre bundles as in [6]. Using certain coordinate
neighborhoods and coordinate functions of p, : S*X X —X, we can give a struc-
ture of coordinate bundle to p, : M —Y with group Z, acting as orientation
preserving rotations of S*.

Notice that each fibre of p, : M —Y is a orbit of the flow (M, ¢). If there is
a (C°-) cross-section ¢ : Y— M of the fibre bundle p, : M—Y, by a small
change of ¢ we get a cross-section g, of class C”, which is transversal to each fibre.
¢(Y) can be considered as a cross-section of the dynamical system (M, ¢). Now,
we use the obstructuion theory to have a cross-section in [6].

Lemma3.1. Let p, : M—Y be as above. Then if H(M ; Z)=0, p,

has a cross-section.
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Proof. Since the group of the bundle p, : M — Y acts as the orientation
preserving homeomorphism on S*, by 30.3 and 30.4 in [6], the associated bundle
of coefficients B(x,(S")) in Theorem 34.2 [6] is the product bundle. Hence, H*
(Y; B(z(S")=H* Y ; Z). Since 7,(S*)=0 for n > 1, H**'(Y ; B(=,))=0 for
n > 1. Therefore, by Theorem 34.2 in [6], the only obstruction to the exstence
of a cross-section belongs to HX(Y ; Z).

This proves Lemma (3.1).

Now, we show the following theorem.

Theorem 3.2. Let f : X— X be a C"-diffeomorphism on a compact mani-
fold X satisfying f*(x)=x and fi(x)=+ x for any x € X and 0 <i<n. Then if H*
(X[f : 2)=0, (X, f) and (X[f, id) are flow C"—equivalent.

Proof. Let (M, ¢) be the suspension of f. Then, as shown above, there is
a fibre bundle p, : M — X |f such that each fibre is an orbit of ¢. By Lemma (3.1),
there exists a cross-section of the fibre bundle.

This cross-section is approximated by a cross-section ¢ of class C” which is
transversal to each fibre. This cross-section g(X/f) of fibre bundle can be consi-
dered as a cross-section of the dynamical system (M, ¢). Since the associated dif-
feomorphism of (M, ¢; q(X/f)) is the identity map, (X, f) and (X/f, id) are flow

equivalent.

ExampLE 1. dynamical systems having two cross-sections which are homeo-
morphic but not C~-diffeomorphic.

Let Diff (S”*) and Diff ,(D"*') denote the groups of orientation preserving
C~-diffeomorphisms on a sphere S” and on a disk D”** resp., and let r : Diff,
(D**")—Diff,(S™) denote the homomorphism obtained by the restriction.

Then, the group D(S*)=Diff, (S”)/Image 7 is finite abelian for =4 ([3]).

Suppose f=Diff (S*) and [f]+0 in D(S”), and let p denote the order of
[f]. Define a diffomorphism £ : §*x S*—S* X S” by (¢, x) |- (!¢ +V/?, f(x)).
Then S*x S*/ £ is diffeomorphic to the mapping torus of f, S2=1x S"/(0, x)~
(4, f(x)). f is a periodic map with period p and f* has no fixed point for any
0<i< p. Since H¥(S” ; Z)=0, Theorem (3.2) implies that (S*x.S", f) and
(S?, id) are flow C=—equivalent. S'Xx S™ and S} are homeomorphic but not diffeom
orphic. (See Lemma (6.2), [2]).

ExampLE 2. Dynamical systems having two cross-sections which are not
homeomorphic in 2-dimensional case.

Let T(m) denote a closed connected orientable 2-manifold of genus m.

Assume m=gi+1 and T(m) is in R® with ig small holes symmetrically
about one large hole as pictured in Figure 1 for the case when g=3.

Let f : T(m)— T(m) be the homeomorphism given by a rotation of 2z/i degrees
about z-axis. Then T'(m)/f=T(g+1). Here we setaresultof J. L. Tollefson [8].
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(3.3) For any integers i=1 and g=1, f : T(gi+1)—>T(gi+1) be as above.
Then, (T(gi+1), f) and (T(g-+1), id) are flow equivalent.

We can show another proof of (3.2) by using obstruction theory [6], it is as
follows. Denote M = RxXx T(gi+1)/(¢, x)~ (t+1, f~(x)). Then we have a S*-
bundle p,: M—T(g+1),as above. Let K*be atriangulation of T(g+1). Over
the 1-skeleton K*, we have easily a cross-section of p,, h: K'—M. 2-dimen-
tional obstruction! cocycle C(k), defined in [6], is in H*(K? ; Z). We can show
that C(k) is a coboundary. Hence, by Theorem 34.2 [6], there is a cross-section
over K? Therefore, as the proof of Theorem (3.2), (T(gi+1), f) and
(T(g+1), id) are flow equivalent.

By (3.3), we have

Theorem 3.4. For any two integers m, n =2, there exists a periodic dynamical
system having two cross-sections T(m) and T(n).

Proof. Let g be the g.c.m. of m—1 and n—1. If we put

m—1 n—1

T 1=

g p’g

—1=yq,

we have p, ¢=0 and
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m=g(p+1)+1
n=gg+1)+1.
Let (S*Xx T(g+1), ¢) be the suspension of the identification map on T(g—+1).
Then by (3.3), (S'X T(g+1), ¢) has cross-sections T(m) and T(n).

4. Covering theorem

The purpose of this section is to prove theorem (4.1).

Let X be an n-dimensional C”-manifold not necessarily compact and Y be
an n-dimensional C”-submanifold (may be nonconnected) of Rx X. We set
the following conditions on Y.

Cc(1). Y is a closed subset of Rx X.

C(2). Let p : RXX— X be the projection on the second factor, then
p|lY : Y—> X is locally a C"-diffeomorphism, that is, for any y= Y there are
neighborhoods V of y and U of p(y) such that V' and U are C”-diffeomorphic by
p.

C(3). For any xe X, p7'(x)N Y is a discrete subset of p~(x).

C(4). For any x& X and any ye p™'(x) N Y, there exist y;, y; in p7'(x) N
Y such that

(y:) < =(y) < =(y,)-
Where 7 denotes the projection RX X — R on the first factor.

Theorem 4.1. Suppose X, Y and p be as above satisfying conditions C(1),---,
C4). Thenp|Y :Y— X is a covering map of class C”. Furthermore, this covering
is a regular covering with covering transformation group isomorphic to Z.

p|Y : Y— Xis asubmersion by C(2). It is known that if a submersion from
Y to X is a proper map then it fibres ¥ over X. (See[7] or, if Y is compact, [1].)
But C(4) implies that in our case p| Y is not proper.

To prove Theorem (4.1) we will prepare some lemmas. X, ¥ and p in this
section will be assumed to be the same as these in Theorem (4.1).

For any subset Z of X, let Z denote a connceted component of p~(Z)N Y.

Lemma 4.2. For any subset Z of X, p(Z) is an open subset of Z.

Proof. Let z be any point in p(Z) and 2 be any point in p~(z)N Z. As
2P| Y is locally a homeomorphism, there exists a neighborhood U of Z in Y such
that U and p(U) are homeomorphic by p.

Since Z is a component of p7Y(Z), there exists a neighborhood V' of Zin Y
such that

Vnp(Z)=VnZ.
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If we take V so that V' U, V N p~*(Z) and p(V)N Z are homeomorphic by p.
Put p(V)=W. Then we have

WNZ=p(VNpZ))
= p(V N Z) p(Z).

Therefore, we have a neighborhood W N Z of Z such that
zeWNZcp(Z).
This implies that p(Z) is open in Z.

Let C be a simple arc in X, i.e. C is the image of a C"-diffeomorphism
v from I = [0, 1] into X.

Lemma 4.3. p|C : C— C is a C"—diffeomorphism.

Since p|C is locally a C”—diffeomorphism by C(2), it is sufficient to prove
that p|C : C—C is a bijection.

Sublemma 4.4. p|C : C—C is an injection.

Proof. Supppose that p|C is not an injection. Then, there exist (¢, x), (£,
x) €C—Rx X with t,+t. AsCis connected there exists a simple arc C’ in C
with (Z,, ) and (¢,, x) as the ends. That is, C’ is the image of a homeomor-
phism ’ : I—>C such that v/(0)=(t,, x) and ’(1)=(t,, ).

Consider a function y 'py’ : I—1. We have o 'py/(0)=v"'py’(1). If
v 'py'(0)=v7'py’(1) is not the maximal number of y~'py’(I), let sl be a
number such that ¢~ py’(s) is the maximal number of y~*py’(I); if ¥ py’(0)=
v~ 'py’(1) is the maximal number, let s& I be a number such that ¢~ py’(s) is the
minimal number.

Then, s(0, 1).

As p maps Y locally homeomorphic into X, there exist neighborhoods U of
9’(s)in Y and V of p/(s) in X such that U and V" are homeomorphic by p. Hence,
s&(0, 1) implies that there exists a neighborhood (s—&, s+¢€) of s in I such that
v'(s—¢, s+€&)cU. Hence, v~ 'py'(s—&, s+€) is homeomorphic to (s—¢&, s+£).
But this contradict the fact that ™' p/(s) is the maximal or the minimal.

Therefore, p|C is an injection.

Suppose that p|C : C—C is not a surjection. Since p|(C) is an open subset
of C by Lemma (4.2), there exist a and b such that
0=<a<b=1
(4.5) v([a, b))< p(C)
v(b) & p(C)
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or
0=<b<axl
(4.5 (5, a])= p(C)
v(b) & p(C).

Since p|C is an injection,
PN C=Rx{y(®}nC
is one point for any ¢ [a, ). Furthermore, by the condition C(2), the map
[a, ) > RX X,

given by
ti—ply(@#)NC,

is continuous.

Let # : RX X—R be the projection on the first factor as before.

Sublemma 4.6. Let C be a simple arc given by v : I — X, and suppose a and
b satisfy (4.5) or (4.5)'. Then

lim 7(p7'y(t)NC) = o0 or —oo.

Proof. We will prove in the case that a and b satisfy (4.5). It is sufficient,
to prove

Clp~v([a, b)) N C)C p™'v(b) = .
Suppose
Clp™v([a, B)NCYN p7'y(B) > y.

Then, ye p(C) and y< Y by the condition C(2). Since C is a connected com-
ponent of p™(C)N Y, y Cl(p~*y([a, b)) N C) implies y=C. Hence,

7(8) = p(y) € p(C).
This contradicts the above assumption that (b) & p(C). This proves (4.6).
Sublemma 4.7. p|C : C — C is a surjection.

Proof. Suppose that p|C is not a surjection onto C. Then there exist @, b
satisfying (4.5) or (4.5)'. Hence by (4.6),

I‘iril 2(p ' y(t)NC) = £ oo.

Suppose now a < b and
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lirrbl z(p'v(@)N é) = oo,
>

In the other cases, we can do similarly.
For any point y; in p~*y(b), let C; be the connected component of p™(C)N Y
containing y;. For a point y, in p~'y(b), there is c& R satisfying

asc<b,
v(le, B p(Co)-
By C(5), there exist infinite points y,, ,, ¥s, +++ in p~*y(b) such that
2(¥)>n(y), i =1,2,3, ..

By (4.4) p|C,;: C,—Xis injection, i=1, 2, 3, ..- . We put here the following as-
sertion.

AsserTION 4.8.  v([c, b)) p(C;), i=1, 2, 3, -

7(a) ¥(e) 7(b)

If (4.8) is shown, the map
[¢, 8] = C;
given by
ti—p ()N C;

is into homeomorphism for any integer =0.
But, (4.4) and (4.6) imply that the map

[c, b) > C
given by
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t—=py@)NC

is an into homeomorphism. C and C; are contained in a plane RX y(c). There-
fore

7N C<pT ()N C;<pT ()N C

for any integer =/ (see Fig. 2). But, this contradicts condition C(3).
Therefore, if (4.8) is proved the proof of Sublemma (4.7) is completed.

Proof of 4.8. Suppose that there exists s&[c, b) such that
7(s) & p(C)).
We have
b=y p(y)erp(C)),

and that y7p(C;) N [c, b] is an open set of [¢, b]. Hence, the above assumption
implies that there exists d such that

c=d<b,

and that the connected component of v~*p(C;)N [¢, b] containing b is (d, b].
Then, by (4.6),

lim 7(p7¥(£)N C))= xoo,  d<it<b.
But, this contradicts the fact that for any ¢ with d <¢<b,
2(p~ ()N C)<=(p~y()N C})<=(p ') N C).
This proves (4.8).
Therefore, the proof of Lemma (4.3) is completed.
Let I denote the closed m—cube in R™ as follows,

I™ = {(xl’ ) xm)Eleoéx"él’ Vl}
And, let
I;”-l = {(xl! ) xm)elmlx1 = t}'

Let @™ denote a C” m-cube in X”, that is the image of @ C”-embedding j from
I™ into X”, and Q7" denote the image of I7™* by j.

Lemma 4.9. For any connected component Q™ of p™(Q™NY, p|Q™ : @™
—Q"™ is a C"—diffeomorphism, m=1, ---, n.

Proof. We will prove this lemma by using an induction. For m=1 the lem-
ma is true, by Lemma (4.3).
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Here, we suppose that for any connected component @™ of p™(Q™ )N Y,
plé}"“1 Q"' >Q™ 'isa C”—diffeomorphism.

Let @™ be a fixed connected component of p~H(@")N Y.

First, we prove that p| Q™ is an injection. Let

Ir= {(xI’ ) xm) € Im[xi = O) 122} and UcCT'.
Denote
I = {(xy, -, x,) 1™ |2, U}

and Qp=j(I7). Let Qr'=j(I7*) and Q7 * be a connected component of p*
(Qr)N Y such that @7 *c@™. By the assumption of the induction, @7* and
Q7" are homeomorphic by p. Then the following property follows from condi-
tion C(2).

(*). For any teI', there exists a neighborhood U I* of ¢ such that

p1Qp : Qn—Qp

is a homeomorphism, where @7 is the connected component of p~(Q%) N Y such
that QnoQr.

We define a map
7 : Qm _)P-l(Qx)n Q’m

as follows, where @ =j(I')c Q™. For each y=@™, there exists t&I* such that
p(»)=Qr*. Let @7 be the connected component of p™(Q*"*)N Y containing
y. Then, we define » by

7(y) = pH(QINQT™

Since the mapping Q™' — Q™"}, given by p, is a homeomorphism, and since
Q7T 'N Q" is one point, 7 is well defined.

By using (*) we can easily see that 5 is continuous.

Suppose that p|@™ is not an injection. There exist y,, y,&@™ such that
Y%y, and p(y,)=p(y,). Then, by the assumption of the induction,

(k). 23 F12(y2)s p2(31)F P(2)-

Let C be an arc which joins y, with y, in @™. Since 7 is continuous, 7(C)
is a connected subset of p7}(Q')N Q™. Hence, 7(C) is included in a connected
component §* of p™(@")N Y. This contradicts Lemma (4.3).

This proves that p |Q™ is an injection.

Next, we prove that p| Q" : Q"—>Q™ is a surjection.

(¥#%). p7(Q)N@™—>Q" is a homeomorphism by the map p.

To prove this, let y=Q™ be any point and let @ be the connected compo-
nent of p7%(Q") N Y including 7(y). Since @' is connected,
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Q"o¢
Hence,
p7(@)NQ" Q"
But p|@Q' : @'—>0Q" is a homeomorphism by Lemma (4.3), and p|(p~%(Q") N Qm)
is an injection, as above. Hence, p(@")N@"=@". Therefore p|(p™(@)N4")

is a homeomorphism.
Next, recall that

Q"= U, @
To each @77, let @7* be the connected component of p™(Q7"*)N Y such that
Qr'op7(@r T NQYINQ™.

By assumption, p(@r")=Qr.

Therefore, p[@"‘ : Q™ >Q™ is a surjection.

Since pl@"‘ : Q" Q™ is locally a C”—diffeomorphism and is 1-1 and onto
map, this is a C"-diffeomorphism.

This completes the proof of Lemma (4.9).

ten

Proof of Theorem 4.1.
1°. First, we show that p| Y” : Y"—>X" is a covering map. We can take
an open covering of X"

X*=|)D,

such that each D, is Int @7, where Q% is a C"—embedded image of I" and the
interior is considered in the topology of X”. By Lemma (4.9),

Pl D)NY” : p~ (D, )N YD,

is a trivial covering for any a. Therefore, p| Y” : Y"—X" is a trival covering.
2°.  Next, we show that this covering is a regular covering with transform
ation group Z. Define a map

c:Y">Y"

by o (t, x) = (t+1,, x) for any (¢, x) in Y, where £, is the smallest positive one
satisfying (¢+-¢,, )€ YCRX X. By condition C(4), o is wel defined.
Clearly o is a C"—covering transformation of the covering Y*— Y™,

Let (¢, x), (,, x) be any two elements in a fiber of the covering, and suppose
that #,<<¢,. Let r be the number of the elements of the set

{#, x)e Y*|t,<t<t,}.
Then,
(L, x) = (L, X).
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This implies that p|Y” : Y*—X" is a regular covering and that the covering
transformation group is isomorphic to Z having o as a generator.
This completes the proof of Theorem (4.1).

5. Cross-section theorem

Throughout this section, X and Y will be compact C*~manifolds, f and g will
be C*—diffeomorphism on X and Y respectively, and we suppose that the sus-
pensions of f and g are C"—equivalent, s =7=0.

Let (M, ¢) and (M’, ¢') be the suspensions of f and g respectively, and let
h : M'—M be a C"—equivalence. Then, X and A(Y) are cross—sections of (M,
¢) of class C* and C” respectively.

Let 7 : Rx X —> RX X be a C*—diffeomorphism defined by (¢, x) —(¢+1,
(%)). Then {r™} = Z operates freely on Rx X and the orbit space (Rx X)/Z is
M. The quotient map ¢ : Rx X —M is a regular covering with covering transfor-
mation group Z.

Denote Y=g 'A(Y), it is a C"—submanifold of Rx X. Let p : RxX—X
be the projection on the second factor.

Lemma 5.1. X, Y satisfy the conditions C(1), --- , C(4) in §4.

Proof. C(1). Since Y is compact, Y'is a closed subset in M. g : (RX X, Y)
—(M, Y)is locally a C"~diffeomorphism. Hence, ¥ is a closed subset in R X X.

C(2). The flow of RX X, yr, : RXx X— Rx X is defined by yr,(u, x) X (u+
t,x). ¢:(RxX, Y)—>(M, Y) is locally a C’—diffeomorphism having the
property that ¢ maps every orbit of y» onto an orbit of ¢. Since the intersection
of Y with any orbit of ¢ is transversal, the above facts implies that ¥ has trans-
versal intersections with each orbit of y»,Rx {x}. Hence, as ¥ is a C"-submani-
fold of RX X, p| ¥ : ¥Y—X is locally a C"—diffeomorphism.

C(3). Since Y has transversal intersections with each orbit RX {x} of +r
as above, each element in p~*(x)N ¥ is an isolated point of p~*(x) N ¥. This
proves C(3).

C(4). Let yep™(x)N Y. Since Y is a cross-section of (M, ¢), there are
t >0 and ¢’ < Osuch that ¢.,o(9), pso(y) €Y. Put, ¥ (¥)=2y; and ¥/ (y)=;:-
Then, y; and y; satisfy the condition C(4).

These complete the proof of Lemma (5.1).

Theorem 5.2. Let f: X— X and g : Y —Y be C°~diffeomorphisms, where
X, Y are compact connected manifolds which may possibly have boundaries.

If (X, f) and (Y, g) are flow C"—equivalent (oo =s=r =0), then there exist
C"—coverings p: W—X and q: W—Y with the common covering space W (which
may be nonconnected) satisfying that

(1) 2 and q are regular coverings with covering transformation groups isomor-
Dphic to infinite cyclic group Z,
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(ii) there exists a C"—diffeomorphism h on W such that
poh =fop and goh = goq
Before the proof of Theorem (5.2), we set a corollary of this theorem.

Corollary 5.3. Let f: X—X and g: Y—Y be as in Theorem (5.2). If
(X, f) and (Y, g) are flow C"—equivalent, then the universal covering spaces of X and
Y are C"—diffeomorphic.

Proof. Since X, Y are C°-manifolds, the universal covering spaces XY
are considered to be of class C°. Letp : W—X, g : W—Y be the C"—coverings
obtained by Theorem (5.2), and let 7 : W—W be the universal covering (of class
C”) of W. Then por : W—X and gor : W—Y are universal coverings of class
C”. By usual covering theory, we get C’—dlffeomorphlsms W—Xand W—Y.
Therefore X and ¥ are C”~diffeomorphic.

Proof of Theorem 5.2. Let (M, ¢) and (M’, ¢') be the suspensions of fand
g respectively, & : M’—M be a C”"—equivalence and g : Rx X — M be the regular
covering as above.

Put W=q 'W(Y). Since the covering transformation group of ¢ : RXx X—-M
is isomorphic to Z, A7'q| W : W—Y is a regular covering of class C” with cover-
ing transformation group isomorphic to Z. Put A™'q| W =gq also. We will show
that ¢ : W—Y is a desirable covering.

Let p : RXx X —X be the projection on the second factor, as above. By
Lemma (5.1), X and W satisfy the conditions C(1), ---, C(4) in §4. Therefore, by
Theorem (4.1), p| W : W— X is a regular covering of class C” with covering trans-
formation group isomorphic to Z. Denoting p| W by p also, we will show that
this is another desirable covering.

The C*-diffeomorphism 7 : RX X—R X X defined by (¢, x)1— (¢-+1, f7}(x))
is a generator of the covering transformation group of the covering Rx X —M.
Hence, 7| W : W— Wis a C"—diffeomorphism and is a generator of the covering
transformation group of ¢ : W—Y. Next, as in the proof of Theorem (4.1), the
C"-diffeomorphism o : W—W is a generator of the covering transformation group
of p : W— X. o is defined by (¢, x) '— (¢+¢,, x), where ¢, is the smallest positive
real number satisfying (¢-+17,, x) W. By the definitions of 7 and &, we have the
following commutative diagram.

x<? w1,y
Vo b
o
X«—W —Y
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Hence, if we put h==oo7™", we have poh= fop and goh=gog. Therefore the
proof of Theorem (5.2) is completed.

Corollary 5.4. Let f: X—>Xand g : Y— Y be as above.

If (X, f) and (Y, g) are flow C"—equivalent, then there exist C"—coverings p : W,
—X and q : W,—Y with the common connected covering space W, such that p and
q are both trivial coverings or both regular coverings with the covering transforma-
tion groups isomorphic to Z.

Proof. Letp:W—X and ¢ : W—Y be the covering obtained by Theorem
(5.2) and W, be a connected component of W. Let v be the number of connected
component of W, if it is finite. Then, p| W, : W,—X and ¢q|W, : W,—Y are
regular subcovering of p and ¢ respectively. The covering transformation groups
of p| W, and q| W, are subgroups of Z that is the covering transformation group
of p and g. The subgroups are Z, if v is finite, or 0, if the number of connected
components of W is infinite. Therefore, the covering transformation groups of
p|W,and q| W, are isomorphic to Z or 0. This proves Corollary (5.4).

For the purpose of obtaining a result similar to Theorem (5.2) for connected
covering spaces, we can show the next theorem, which involves Corollary (5.4).

Theorem 5.5. Suppose that (X, f) and (Y, g) satisfy the same conditions as
in Theorem (5.2).

Then, there exist C"—coverings p: W,—X and q :W,— Y with the common
connected covering space W, satisfying the next conditions.

(i) p and q are both trivial covering or both regular covering with covering
transformation groups isomorphic to Z.

(ii) There exist C"—diffeomorphisms h; on W, (i=1, 2, 3) such that for certain
non-negative integers o, 3, v,
poh, = fop and goh, = g°oq,
poh, :fﬁop and gohz = g°9g,
pohy=[Yop and gohy= g'oq.

Furthermore, if p and q are the trivial covering, we can take a=B=y=1.

As a corollary of this theorem, using (2.3), we obtain the following result
which is shown in a previous paper ([2], Theorem (4. 1)).

Corollary 5.6. Suppose that there exists no surjection of =,(X) onto Z. Then
(X, f)and (Y, g) are flow C"—equivalent if and only if they are C"—conjugate.

Before proving Theorem (5.5) we prepare the following lemmas.

Let W, p, ¢, o and 7 be as in the proof of Theorem (5.2). Let ¢ be the num-
ber of connected components of W, if it is finite, and W, be a connected compo-
nent of W.
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If the number of the connected components of W is finite, p| W, and ¢q| W,
are regular subcoverings of p and g respectively. The covering transformation
groups of p| W, and q| W, are {¢"|i : integer} and {77 : integer} respectively.
Denote W;=d‘(W,), =0, -+, y-1. Then, o¥(W,)=W,, where i=k (mod. 7).
Define a map * : Z,—Z, by

Wi, = (W),
where Z, = {0, 1, -+, y-1}.

Lemma 5.7. If the number of connected components of W is finite, then

(i) 7:(0,1,2, -, y=1)1—(7(0), 7(1), 7(2), -+-, T(v-1)) is a cyclic permutation.

(i1) v and 7(0) are relatively prime.

Proof. (i) Let 7(¢, x)=(s, ) and 7(#, x)=(s’, ¥). Then ¢t<¢ if and only
if s<s’. Hence we get easily the following commutative diagram.

W, —2 5 W,,(mod. )

%

o, b

W, BN W ;1(mod. v)

This implies (i) in Lemma (5.7), for W, ,=7(W;).

(i) ¢ : W—Y is a regular covering and 7 is a generator of the covering
transformation group Z. Since W, and W,=o(W,) is connected components of
W, there is a positive integer a such that (W )=W,. This implies

W‘ra(o) = Wl
Hence
a-7(0)=7%(0)=1 (mod. 7).
Therefore, there exists a integer b such that
a-1(0)+b-y = 1.
This implies that ¢ and 7(0) are relatively prime.

Lemma 5.8 If the number of connected components of W is infinite, then for
any connected component W, of W,

o(Wo) = 7(Wy).

Proof. Since p : W— X is a regular covering with covering transformation
group Z, the assumption of this lemma implies that this covering is trivial.

Hence p : W,— X is a homeomorphism.

Therefore, the proof of this lemma is trivial, if we use Lemma (4.5) of [2]
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which says as follows.
(5.9). suppose that W, is homeomorphic to X by the map p and that (s, x)
erW,, (t, x)e1'W,. Then, s<tif and only if i <j.

Proof of Theorem 5.5. Let p, ¢, o, 7 and W be as in the proof of Theorem
(5.2). Let W, be a connected component of W. Then, Corollary (5.4) implies (z)
of this theorem.

Let v be the number of connected components of W. Denote W;=d*(W,),
i= 0, ..+, v-1, and define a map 7: Z,—~Z, by W,,=7(W;) as above.

We have following two commutative diagrams.

X < w >Y Xe«e——W —0Y
lf 17—1 id lid lo‘ g
x 2 w_ %.% .2 w 1.%

Put =7(0). Then, o*r *(W,)=W,. We remark that, by Lemma (5.7), (i),
the integer « is unique for any selection of a connected component W,. If we

put h,=0"7"!, we have next commutative diagram which implies the first part
in (ii) of this theorem;
x<? w 9.y
U, [, s
P q
X <« w, >Y

By Lemma (5.7), (ii), there are integers @ and k& such that
1 = Ba-+ky.

Here we can take 8 in non-negative integers. In fact if 8<<0,

1 = Ba(Ba-+ky)+ky
= (B'a)a+(1+Ba)ky.

Hence o7 #(W,)=W,. If we put h,=o7, we have the following commutative
diagram which implies the second part in (ii) of this theorem;

x<f w 1,y
| |n ¢

p:W,—>Xand q: W,—Y are regular subcoverings of p : W—X and ¢ :
W —Y respectively and the covering transformation group is vZ. Hence,
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(W)= W, and (W) = W,.
Therefore, (o77')(W,)=W,. If we put h,=(o77')", we have the following
commutative diagram which implies the third part in (ii) of this theorem;

x<? w 2,y

If p and q are the trivial coverings, Lemma (5.8) implies that we can a=B=
v=1.

These completes the proof of Theorem (5.5).

ReMARK. Let (M, ¢) and (M’, ¢’) be the suspensions of f: X— X and g :
Y—Y,and let & : M'->M be the C"—equivalence, as above. Let R—S* be a
covering defined by t1—e™, and let % : RX X—R denote by the natural pro-
jection. Since W= ¢ 'h(Y), we have the following commutative diagram;

h 7
W—>RxX ——>R

lthqnl

Y — M —8

where % and 7 are naturally induced maps from % and # respectively. Then we

can show
(5.10). The integer v in Theorem (5.5) may be given as the number of connec-

ted components of W if it is finite, which is equal to the order of the group

,(S")/(wh)xmy(Y).

In fact, we have the following commutative diagram;

7i(¥) ——> m(F) ——> m(W) ——> (¥)
1 T (O M [CO%
7 (R) —> my(8Y) — n(F,) —> n(R) ,

where, F, and F, are the fibres of ¢ : W—Y and R— S" respectively, and hori-
zontal sequences are exact. Since 7,(S*)—z,(F,) and =,(F,)—=,(F,) are isomorp-
hisms, z,(W) is isomorphic to z,(S*)/(zh)x=,(Y). This implies that the order
of 7,(S")/(zh)x=(Y) is equal to the number of connected components of W.

A dynamical system is said to be periodic if any orbit is closed.

Theorem 5.11. Let X and Y be two cross-sections of a periodic dynamical
system (M, @) such that there exists no surjection from =,(X) onto Z.
Then, for each orbit C of ¢, X N C and Y N C have the same number of elements.
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Proof. Let f be the associated diffeomorphism of (M, ¢; X). We may
consider (M, ¢) as the suspension of (X, f). Let ¢ : RX X—M be the covering
map as above. Let ¥ denote a connected component of ¢)(Y). By Corollary
(5.4) and the proof, p| ¥: Y—>X and g| ¥ : Y—Y are homeomorphisms, where
2 is the natural projection Rx X —>X. Put X={0}x Xc Rx X. Let C be an
orbit of . And let X N C={x,, -*-, x,}. Then,

¢7(C) = Rx{x,, ++-, 2, ) CRX X.
And

(¥nqgC)=vYnC.

Since p| ¥ and ¢| ¥ are homeomorphisms, we obtain that X Ny andY N« have
the same number of elements.

This proves Theorem (5.11).

The manifolds and maps in the following corollaries should be considered
in polyhedral category.

Corollary 5.12. Let X be a compact manifolds with H*(X ; Z)=0. Then,
there exists no nontrivial regular covering X — X such that the covering transfor-
mation group is isomorphic to a finite cyclic group and there is no epimorphism m,(X)
—Z.

Corollary 5.13. Let X be a compact manifold such that H*(X ; Z)=0 and

there exists no epimorphism 7 (X)—Z. Then, there exists no nontrivial regular
covering with covering transformation group isomorphic to a finite cyclic group.

Proof of (5.12) and (5.13). Suppose that there is a regular covering X—X
with covering transformation group isomorphic to Z,, 1 <p< co. Letf: X—X
be a generator of the covering transformation group. Let (M, ¢) denote the
suspension of f. Since H? (X ; Z)=0, as in the proof of Theorem (3.2), X is a
cross-section of (M, ¢) such that, for any orbit C, X N C is one point. (M, ¢) is
periodic. The assumptions. on 7z,(X) or =,(X) imply, by Theorem (5.11), that
X NCis one point for any orbit C of ¢. But f: X— X is a periodic map with
period p>1. This implies that X  C consists of p elements. This is a contra-
diction. This proves (5.12) and (5.13).

Corollary 5.14. Let X be a compact manifold. If H(X ; Z)=0 and =,(X)
=*1, then =,(X) can not be a finite abelian group.

Proof. Snppose that
71'1(X) e Zpo @ Zpl@ b @Zﬁﬁ'

Let X be the covering over X associated with 7,(X)D Z, @ --- B Z,,.
Then, X — X is a regular covering with covering transformation group isomor-
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phic to Z,. Since there is no surjection z,(X)—Z, by Corollary (5.13), we get
a contradiction. This proves (5.14).
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