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In this paper, we determine the additive structure of the complex bordism
group U*(BZP), where BZP is a classifying space for Zp, p a odd prime. Conner-
Floyd [1] computed the case^>=2, and solved by a goemetric method. Here we
use the Mischenko series [4] instead of the geometric method of Conner-Floyd.

The author wishes to express his thanks to Professor S. Araki for his many
valuable suggestions and discussions.

1. The order of the element [Ln~\ρ), t]

We denote by U*(X, A) and t/*(X, A) the complex bordism group and
the complex cobordism group of a CW complex pair (X> A) respectively. Let
Ln(p) be a (2/z+l)-dimensional lens space defined by a rotation Γ which acts on
a (2w+l)-sρhere S2n+1 in complex coordinate by Γ (zOi •••, zn) = (pz0, •••, pzn)
with p=exp (Iπijp). BZp is a CW complex of which the (2w+l)-skeleton is
Ln(p). The cell structure of Ln(p) is given as follows:

Ln(p)=s* U tfi U ez U p— U Pe
2n U e2n+1.

Applying the exact sequence of the bordism group to a pair (Ln+1(p), Ln(p))y it
follows immediately that

Uk (V(p))~Ut (L»+\p)) for k<2n+\ .

In this section we study the order of the element

...« V2n_x (BZP),

where i:Ln 1 (p)-+Ln(p) is the inclusion. In order to determine the order of
[Ln~x (p)y ί], we use the duality isomorphism between bordism groups and
cobordism groups, and the relation between ^-theories and cobordism theories.

Theorem 1.1 (Atiyah-Kultze [3]). If X is an n-dimensional compact U-
manifold, there is an isomorphism D:Uk(X)->Un~k(X).
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D[Mk, f] is given as follows. For a large integer r such that n-\-r—k is
even, there is an embedding map f:Mk->SrX+— {*}, which is homotopic to the
map / : M ^ I c S r Z + - { * } , where * denotes the base point. Denote by N(Mk)
the normal bundle of Mka SrX+—{*}, and there is a bundle map φ from N{Mk)
to the (n-\-r—&)/2-dimensional universal complex bundle EU((n-\-r—k)l2).
Then we can construct the map

d(f):Sr X+ -> T(N(M*)) -^-> MU((n+r-k)β),

where T(N(Mk)) and MU{{n+r—k)β) are Thorn complexes of N(Mk) and
EU((n+r-k)/2) respectively. D[Mk,f]=[d(f)].

The following theorem which connects i^-theories with cobordism theories
was given by Conner-Floyd [1].

Theorem 1.2 (Conner-Floyd). If X is a finite connected CW complex, the
homomorphism p: K{X)-> U2 (X) which maps {ξn}-n into the 1-st cobordism
Chern class cλ{ξn) of ξn is the monomorphism of K.{X) onto a direct summand of
U\X).

Let π: Ln(p)->CPn be a canonical projection. If η is a canonical complex
line bundle over CPn, τc(CPn)®lc=(n+l)η and τ(Ln(p))®l=π*(τ(CPn)®2)y

where τ(Ln(p)) and τ(CPn) are tangent bundles over Ln(p) and CPn respectively,
and lower index c denotes a complex vector bundle. Therefore Ln(p) is a
[/-manifold. Considering homomorphisms D and p of Theorems 1.1 and 1.2
for a space Ln(p), we have the following

Proposition 1.3. DfL""1^), t]=p(π*η-lc).

Proof. Let vc be the normal bundle of CPn~x in CPn. Since rc(CPn)\

where r denotes the real restriction. Moreover,

**r(τe(CP")ele)\ CPn-^π*r{{

which implies that π*rvc is the normal bundle of Ln~1(p) in Ln(p). The
total space E(τc (CPn)) of τc{CPn) can be represented as the set of all pairs
[U, V] with | |2|| = 1, 2 G C Λ + 1 and <2, 5>=0 by the standard Hermitian metric
of CΛ+1, under the identification (S, v) = (\u, Xv) for all λ e C 1 , | |λ| | = l. Now
we define the Hermitian metric F: E(τe(CPH))xE(τc(CP"))-^C1 by

F([ulf δ j , [22, 5 2 ])=<2 I ,

Then the total space of ^c is



STRUCTURE OF THE BORDISM GROUP U*(BZp) 411

E(vc)={[uy υ] G % ( C Γ ) ) : 2 G C Λ , and F([u, 5], [2, $,])=()

for each [2, δ j e £ ( τ c (CP^1))} ,

that is, E{ vc) consists of the elements [2, v], where ^=(0, •••, 0, zn). Therefore
E(π*vc) can be represented as the set of all pairs [2, v\ with | |2| | = 1 , 2 e C w and
and 5=(0, •.., 0, zn) under the identification (2, v) = (pu, pv)y p=exτp(2πίlp).
Consider the open submanifold

of Ln(p) there is a diffeomorphism

^:I"(p)

given by

o> —, ^J)=[(^o/λ, ^ . J λ ) , (0, •••, 0, zj\)], λ =
, =o

that is, Ln(p) is the tubular neighborhood of Ln~\p) in LM(/>). We define the map

f:E(π*ve)-+η\

o, v , ^ - i ] , (0, •••, 0, zn))=([z0, ..-, ^ _ J , zH), where v' is a canonical
complex line bundle over CP"'1. Let A be a standard homeomorphism between
the Thorn complex of η' and CPn. Then, for [Ln'\p\ ί\^U2n_,{Ln{p)\
we have

It follows that π=d(i). Since ρ{π*η— lc)=[7r], the proposition follows, q.e.d.

Kambe [2] showed that the order of π*(η-lc)(ΞK(Ln(p)) is pi
Then we have the following

Proposition 1.4. [L^ 1 ^) , i ] e υ2n_λ(BZp) is of order pic-ivc

2. The structure of U*(BZP).

We consider the 2n-skeleton L0

M(/>) of Ln(^>), that is,

Lo

n(p)=s1 U ^ 2 U e* U „ - U e 2n~x U ^ 2 W .

Using the bordism exact sequence for a pair (Ln(p), Lo

n(p)), we have Uk(L"(p))
), for &<2n. Therefore, for a large w

U2k+1(Ln(p))~ U2k+1{L»{p))~ U2k+1(L0

n(P)), UΛ(L*(p))~ U2k(L0»(p)).

The bordism spectral sequence {E/tt} for Lo

n(p) is trivial and if s-\-t=2k, then
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then

), E0t

2

2k**U2k. It follows immediately that U2k(Ln(p))**U2k.

Lemma 2.1. // a[L\ρ\ ί]=0 in U2J+1(Ln(ρ)) for a large n and

Proof. Since U2J+1(Ln(p))^O2J+1 (L"(p))y we can assume that a[V{p)y i\
e U2J+1 (Lo

n(p)). Consider the reduced bordism spectral sequence {St,
r

s} f°r

Lo"(P)> which is trivial. There is a filtration OaJokc:Jltk_1c:--'ClJko^Uk

(Lo

n(p)) with JJJs.ltt+1^ίts (Lo

n(p)y Ut). The multiplication

induces the following commutative diagram

O1(L0'(p)) ^
1 (f(p)) *ί

/ l i 2 , - ^ - > # (L»(p), Uυ)

where μ is the edge homomorphism.
aμ[L°(p), ί]=m2(μ®id)([L°(p), ι\®ά)=μ/om1{[L\p)iι\®ά)=μfa[L\p\ i])=0.
On the other hand μ[L\p)% ι\ is a generator of ft^L^p)). Since ϊϊλ{L"(p)) is
/>-torsion group, a^pU*. q.e.d.

Lemma 2.2. Suppose that X is an n-dimensional U-manifold. If [M1,fί],
[M2, / 2 ]e ^ ( X ) are the elements represented by embedding maps fk\ Mk-^X (k=
1, 2). If the two embeddings are transversal to each other, then D[M1,f1]D[M2,f2]=
D[Mλ M2) f\Mx M2], where Mλ M2 is intersection manifold of M1 and M2 in X.

Proof. We can suppose that M1 M2 is a submanifold satisfying ΛΓ(M1 Λf2)
=t*iiV(M1)0i*2iV(M2), where ik: Mx M2->Mk(k=ly 2) is the inclusion map and
N(M) is the normal bundle of M in X, D[M1'M2if1 \ M^M2] is constructed by
the bundle map

A
rM2) > NiMJxNiM,) >EU(s)xEU(t) > EU(s+t)

x M2-^->Mx x M2 >B U(s) x B U(t) • B U(s+1),

where Δ is a diagonal map, and s and t are the dimensions of Λ^Mj) and N(M2)
respectively. In view of the definition of multiplication in the cobordism group,
we complete the proof.

Suppose that ^Jis the canonical line bundle over CPn, it follows from
Lemma 2.2 that {c1(π*v)}"=D[LH'k{p)9 i].

Mischenko obtained the following theorem [4], which plays an important
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role to deduce some relations of the elements of U^

Theorem 2.3 (Mischenko). For a complex line bundle ξ over a CW complex
X, define a series g{cλ{ξ)) by

This satisfies, for line bundles ξ and η, the relation

Proposition 2.4. There exists aa Φ 0 mod p such that

p'lL o-^p), i\ = aβ[CP*-Ύ[L\p), ί].

Proof. The proof is by induction on a. Let η be the canonical complex
line bundle over CPP. By Theorem 2.3

and

Since U*(CPP) is torsion free, the above relation is an integral relation. Then,
by the naturality of g and (π*η)p=l,

p y ^ v Y + + i p ^ p M ^ v Y = 0 .

Using Lemma 2.2,

p\[L *-\p)y ά

Since the order of [LJ(p), i] is p for j<p— 1 and the order of [L^"1^), ί] is p2

by Proposition 1.4,

p\[L"-\p), ί\+{p-\)\xPΛL\p), ϊ\ = 0 .

Since/) is prime, the case a=ί follows. Suppose our assertion is true for b<a.
Let ξ be the canonical line bundle over CPacp~^+1. By Theorem 2.3,

Put {a(p— l)+l}l=psm, m$0 mod p. If n\ = p"n\ n'^0 mod p then
Hence

s = a if a = pr-\-pr"1-\ [-1> s<a otherwise.

u= 2 [nlpk]. Hence
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Consider the following equation

where A={a(p-l)+l}lp'-'-\
This is an integral relation. Therefore, using (π*ξ)p—l, the naturality of g
and Lemma 2.2,

P p m ™ , f ] = 0 .
2 a(p—ί)+l

Denote by o{\L\p), {]) the order of [L*(p)> ι\. Suppose that

t = a(p—l)—(pkn—l), rc=fΞθ modp ,

By Proposition 1.4,

o([Z/(/>), f|) = i>α if k= 1 and n = 1 ,

°([Lt(P)> fl) = ί w j ^ < « — * + l otherwise .

Therefore,

p'm[L'*-»p), i\+p'-ιmxp.1[L"-^-1\p), x] = 0 .

Since m ί O mod ^), using the induction hypothesis, the proposition follows,
q. e. d.

Let T(p) be the polynomial subring of U* generated by all [Y^Je U2k with
-l. We note that

Proposition 2.5. Suppose we are given a relation

with [M2t'-*»]eΓ(/)). Then [M^'-

Proof. The proof is by induction on n. Lemma 2.1 implies that the case
«=0 is true. Suppose our assertion is true for m<.n. We consider

Σ [L"(p), ί][M2«-»] = 0 ( 1 )

Applying Smith homomorphism to this equation, we have

By the induction hypothesis [Mκι'^]==p^-1^^p-1^+1[N2a''^]. Since P " " 1 ]
Lί>—1J
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for k^a(p-l) and the order of [L*(p)9 i\ is pMP-w*1 by Proposi-Γ
Lp—l

tion 1.4, the equation (1) becomes

Σ p [ ( p ) 9 ] [ 2 a w ] = 0 .

a

From Proposition 2.4,

Σ aa[Nΐl-2a^-^][CPp'x]a[L\p), i\ = 0 .
aSince aa^0 mod py it follows from Lemma 2.1 that [N2I~2acp~^]^pU^ This

completes the proof.
Let T2k(p) consist of 2&-dimensional homogenuous polynomial. Finally

we have the following

Theorem 2.6. The homomorphism

_»(ί) - U2n+1(BZP)

given by θ( Σ [M^""*5]) = Σ [Λί*"-* 3 ]^^), t] « isomorphism.

Proof. The Proposition 2.5 is precisely the statement that θ is mono-
morphism. To check that Θ is epimorphism, we compute the order of the
group

and compare it with that of U2n+1(BZP). The former ispτ, τ= 2 w
*=o ll_ρ — IJ

+ 1>, where tk is the number of partitions of k, containing no (p— 1), the

n

latter is pσ, σ= Σ skf where sk is the number of partitions of k. Now
Λ0

<r = Σ ί * = ΣΣ'»-,o-.) = Σ(max {a\j = k-a(p-
/?=0 k a j

Thus Θ is an isomorphism, q. e. d.
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