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In this paper, some results of Galois theory for commutative rings without
idempotents developed by Chase, Harrison and Rosenberg in [1], are generalized
to non-commutative rings that verify a certain condition. Some proofs are similar
to those appearing in [1].
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1. Introduction

In this section, the previous definitions, already known, are remembered.
As usual, all rings have units, all modules are unitary and ring homomorphisms
carry the unit into the unit.

Let S be a ring, G a finite group of automorphisms of S and R=SG, the fixed
subring. We say that S is a Galois extension of R with group G, if there exist
elements xi9 y{ (/=!, 2 , , n) in 5, such that:

We indicate with D=D(S, G) the crossed product of S with basis (U^^G
and with tr the trace map, that is to say, the map of S into R defined by tr(x)

= Σ «ΨO
σe#

S' shall denote the S structure as a right module, on the ring mentioned in
each case.

The application d:D^HomR(S', S"), defined by d(s uσ)(x)=sσ(x), for
each s, x in S and each σ in G, is a ring homomorphism and two-sided S-
homomorphism.

As in [1], E designates the set of all functions of G into 5, Then E is a ring
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and a two-sided 5-module in an obvious way. In addition, £ is a direct sum
of the S-submodules S vσ(σ^G), where vσ: G->5is defined by vσ(τ)=Sσ τ.

If M is a left D-module and MG is the /?-submodule, the elements of which
are m<=M such that uσ m=m, Vσ^G, the map ω: S®RMG-+M defined by
ω(sξξ>m)—s m, is an S-homomorphism.

If h: S®RS-*E is defined by h(s®t)(σ)=s σ(t), then h is a two-sided
S-homomorphism, that is an S®zS°-homomorphism (5° indicates the opposite

ring of S and Z the ring of rational integers).
The definition of separable extension is the same as in [2], that is as follows:
Let Γ-*Λ be a ring homomorphism (frequently the inclusion). Then Λ

is a two-sided Γ-module and the abelian group Λ(g)ΓΛ is a two-sided Λ-
module. Therefore Λ(g)ΓΛ is a left Λ®zΛ°-module with product defined by:

Λ;(g)/eΛ(g)zΛ
0, u®v<=Λ®ΓA , (x®y°) (u®v) = xu®vy .

The multiplication Λ®ΓΛ-^Λ is a Λ®zΛ°-homomorphism. We say that
Λ is separable on Γ if there exists a Λ®zΛ°-homomorρhism Λ->Λ®ΓΛsuch that

the composition Λ->Λ®ΓΛ-»Λ is the identity in Λ.

This is equivalent to the existence of elements #,-, y{ (ί=\y 2 , , m) in Λ

such that 2 xryi=l and Σ x-xi®yi= Σ x&yrx, V^^Λ, in Λ®ΓΛ.

2. Galois extensions

The conditions of the following proposition are those given by Chase, Harri-
son and Rosenberg for the commutative case in the theorem 1.3 of [1].

The proof is a trivial extension of it, so we shall omit it. The equivalence
between (a) and (b) has been proved by T. Kanzaki for the non-commutative
rings in [3].

Proposition 2.1. If S is a ring, G a finite group of automorphisms of S
and R=SG, the following statements are equivalent:

(a) 5 is a Galois extension of R with group G.
(b) S is finitely generated and projective as right R-module and d:D^>

S*, 5") is an isomorphism.
(c) If M is a left D-module, ω: S®RMG-^M is an isomorphism.

(d) h: S®RS^E is an isomorphism.

On the other hand, Hirata and Sugano in [2] (prop. 3.3.), prove that if
S is a Galois extension of R with group G, S is /?-separable.

We shall consider here a case where the converse holds. Let μ:

-» S be the multiplication. We say that S verifies (H ) if:

° , μ(*) = μ(z2) => μ(z) = 0 Or μ(z) = 1 .
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Equivalently, S verifies (H) if for every finite family xi9 y{ in S:

Σ xrxryryi = Σ xryt =^ Σ *ryi = ° °r Σ *, :y/ = i
ij i i i

If S verifies (H), it has no idempotents other than 0 and 1. If S is commu-

tative, (H) holds if and only if S has no non trivial idempotents, because μ is a

ring homomorphism in this case.

An example, given below, shows that there exist non commutative rings
verifying (H).

Theorem 2.2. Let S be a ring that verifies (H), G a finite group of auto-

morphisms of S and R=SG. Then S is a Galois extension of R with group G} if

and only if S is R-separable.

Proof. If S is Λ-separable, there exist xi9 y{ in S such that:

Σ^ J7* — 1 and Σ x Xiφyj = Σ Xi®yrx , Vx^S , in S®RS .

Applying to the last relation the composition Φ (l(g)cr), where Φ: S®RS
S is the multiplication, we obtain

— Σ i ) σ(χ) > f°r all ̂ ^5 and

Let e(T="Σ^xi®σ(yi)
Q^S®zS\ Using (1) it is easy to prove that μ(6σ)

= μ(e2

σ). If Σ x<<r(y*)=l, o (Λ)=Σ xiσ(yi)σ(x)=x

Therefore

3. Galois theorem,

A part of the following proposition is the proposition 3.4 of [2]. The re-

mainder one is an immediate generalization of that of the theorem 2.2 of [1].

Proposition 3.1. Let S be a Galois extension of R with group G, H a

subgroup of G and T=SH. Then S is a Galois extension of T with group H and

H is the set o/all elements of G leaving T poίntwίse fixed.

Let us suppose that tr(S)=R. Then T is R-separable and if H is normal in
G, T is a Galois extension of R with groug G/H.

The above assumption on S enable us to prove the reciprocal theorem just

by using the same technique employed by Chase, Harrison and Rosenberg (see
2.2 of [1]).

Proposition 3.2. Let S be a Galois extension of R with group G. Let

us suppose that S verifies (H) and tr(S)=R. If T is a subring of S that contains

R and it is R-separable^ then there exists a subgroup H of G such that T—SH.
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Proof. Let H be the set of the elements of G such that its restriction to
T is the identity, and 2 Xf®yt^T®RT the element that satisfies the condition

i
of separability. A similar reasoning to that of Theorem 2.2 allows us to conclude

that:
r l

(2) Σ*X:V, ) = Π10

As in [1] we define an action of G on E by σ(v)(r)=v(ry σ) for
reG, v<=E. Then EH is the set of the elements of E, which are constant on
each right coset of H in G. Since S is project!ve as right Λ-module and
h: S®RS—*E is an isomorphism, we have the injections S®RT-+S®RSH

-*S®RS~E, where the image of S®RSH is contained in EH. Now we shall
show that S®RT^EH is onto. Let v<=EH and / be a family of indices
such that (σj)j(=j contains one element, and only one, of each right coset of H
in G. We write z=^^v(σJ)σJ(xi)®yi^S®RT. By using (2) it is easy

ye/ ί

to obtain h(z)(σk)=v(σk) for all k^ L Since h(z) and v are constant on each
right coset, it follows that h(z)=v. Then S®RT=S®RSH and by applying

tr(g)l we obtain T=SH. This completes the proof.

The two above propositions give the following version of the Galois
theorem:

Theorem 3.3. Let S be a Galois extension of R with group G. If S verifies
(H) and tr(S)=R, there is a one to one correspondence between subgroups of G and
subrίngs of S that contain R and are R-separables, such that the subgroup H cor-
responds to the subrίng T if and only if T—SH.

4. An example

Let A be a commutative ring of characteristic 2 which has no non trivial
idempotents A[X, Y] the non-commutative ring of polynomials / the two-sided
ideal of A[X, Y] generated by (X\ Y\ XYX, YXY}. We write A[X, Y]/7
=A[u, v] = S, where u and v denote the classes of X and Y in the quotient,
respectively.

Since S is a free ^4-module with basis {1, u, v, uv, vu}, the equation μ(z)
= μ(z2) for z^S®zS° is translated into a system of equations, which shows

that μ(z)=Q or ^(#)=1 (we omitt here the resolution of this system but we
want to emphasize that the assumption on the characteristic of S reduces the
system). Therefore S verifies

(*) At the moment, the author is able to prove that every graded ring A= © Af where
ί=0

has no non trivial idempotents and it is. contained in the center of A, verifies condition (H).
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Now let A be a Galois extension of B with group G (A as before). It is clear
that S=A[u, v\=Aξ§Z2Z2\u, v] where Z2—Z/2Z. Therefore G is a group of
automorphisms of S (looking to each σ as cr(g)l) and the fixed subring is

R=B®zZ2[u, v]=B[u, v].
If aiy bf are the elements of A such that 2 β/σ(A, )=δlf σ, then αf (g)l, δ, ® 1,

j
satisfy the same relation. Hence it follows that S is a Galois extension of R with

group G.
Besides, by [1], there exists c^S such that tr(c)=l. Then c®l satisfies

the same relation in *S, and hence tr: S-*R is onto.
The theorem 3.3 shows that every subring of S that contains R and is

separable on Ry is of the form C[u, v] = C®ZzZ2[uί v], where C is a subring of
Ay which is 5-separable.

5. Endomorphisms, automorphisms and homomorphisms

An automorphism σ of S is called outer if xσ(s)=s x, \/ s^S=? x=0.

Proposition 5.1. Let She a Galois extension of R with group G. We suppose
that every non outer R-automorphίsm of S is in G. Then G is the group of all
R-automorphίsms of S.

Proof. Let Λ?, , y{ be the elements of S such that 2 χiσ(yi)=διt<r. The

proof of Proposition 3.3 of [2] shows that the element 2 Xi®yi^S(£)RS satisfies

the condition of separability. From relation (1) of Proposition 2.2 it follows
that 2 χiτ(yi)=0 for every outer Λ-automorphism of S.

i

Now let p be an Λ-automorphism of S which does not belong to G. We

have that λ(Σ *ί®p(jΊ ))=Σ W> with sσ=^xiσp(yi)^S. As σp is not in
i σ »

G for each σ^. G, it must be outer, hence sσ=0. Therefore Σ ^/(g)p(j;ί.)=0 and

applying I®/?"1 we obtain 2 Λ?f®J, =0, which contradicts Σ Λ? βJ' = l•

If we denote by s the application of S into S, defined by x i—> SΛ:, for each
s£ΞS, we have that ίeHom^ (S*, 5").

Let 5 be a Galois extension of R with group G. The isomorphism d: D-+
Horn/? (5", 5") allows us to write α=Σ ίσ σ, for every αeHom^ (S*, 5"), where

(Γ

sσ σ is the composition in Hom^ (S\ S').

Similarly, if s^S we denote by / the map x\-^>xs. Then /eHom^ (ΆS, "5)
and 50eHomΛ (5", S') if and only if s is in the centralizer of R in S. If s^S
and α^Hom# (5*, S"), with s' a we denote the composition inHom^ (S, S).

Lemma 5.2. Let S be a Galois extension of R with group G and a= Σ sσ*
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R(S\ S'). Then a is a ring homomorphism if and only if s<)

σ a= sσ σ for

every σ in G and Σ sσ~ l
σe0

Proof. From the following equivalences it follows trivially :

a(x y) = a(x) a(y) , Vx^Sy Yy^S , if and only if

Σ s*<r(x) σ(y) = Σ [ Σ3 *X*0] V^j), V*e 5, V J> <Ξ S , if and only if
σe<? τe0 σeσ

Σ * Mχ) u* = Σ [ Σ v(*)] v NT
<re£ refiί σ e0

The following theorem is a generalization of Corollary 3.3 of [1].

Theorem 5.3. Let Shea Galois extension ofR with group G anda = Σ s<r* σ
<r<=G

# (5", S'}. If xiy yi (i= 1, 2 , , w) «r^ ίAβ elements of S such that

Σ ^σ (jΊ )=δ^ σ αnrf ί/ ^σ= Σ oί(xi)®σ(yi)°^ S®ZS°, then sσ=μ(eσ). Further-
» ' ί

if a is a ring homomorphism each sσ is in the centralizer of R in 5, μ(eσ)=μ(el)ί

If S verifies (H), G is the set of all endomorphisms of the ring S which are R-

homomorphisms.

Finally, if each s^ is in the center of S and a is a ring homomorphism, ( yσ)σeG

is a family of pairwise orthogonal ίdempotents with sum one.

Proof. Since from the relation Σ xiσ(yi)=δι, σ it follows that Σ τ(xi)σ(yi)
i i

=δτ „., we have:

MO = Σ a(xt)σ(y{) = Σ Σ *X*, )<Kj, ) - Σ *Λ., = *, -

If a is a ring endomorphism, from lemma 5.2 we obtain that each sσ commu-

tes with R and

(3) ΣMO=i

Besides :

μfcr'O = Σ a(xi)a(xj)τ(yj)σ(yi) = Σ ̂

If S verifies (H) and a is a ring endomorphism of S which is an Λ-homomor-

phism, μ(ea) is 0 or 1. From (3) at least one of the sσ has to be equal to one. If
for σφT, S(T=SΊ=\ we have:

0=μ(e<τ er)= Σ <x(χi)sr<r(yi)=l Therefore a=ρ for some
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Finally, if each sσ is in the center of 5, from the latter lemma we obtain:

s<rσ(x)=sσa(oe)= Σ sσsΊτ(χ), V#eS, VσeG, hence sσ sτ=sσSσt7

which completes the proof.

The following corollary may be obtain as a particular case of Theorem 4. 1

of [4].
As a consequence of the former proposition we have :

Corollary 5.4. Let S be a Galois extension of R with group G and

a= Σ sσ σ^HomR (S\ S') a ring homomorphism. If G is a group of outer auto-
σ<=G

morphίsms, (sσ)σ^G is a family of pairwise orthogonal central ίdempotents zvith
sum one. If furthermore the center of S has no non trivial idempotents , G is the

set of all ring endormorphisms of S, which are R-homomorphίsms .

Proof. It is clear that G is a group of outer automorphisms if and only if,

for every σ in G, <rφ 1,

Jσ = (χ(=S:xσ(s) = sxy Ys<=S} = 0 .

Miyashita has observed in [4] that this is true if and only if S is outer G-

Galois on JR, that is if the centralizer of R in S is the center of S. The above

theorem shows that, under these conditions, each sσ is in the center of S and

then, the last part of the same theorem completes the proof.

The following result is an immediate generalization of Theorem 3.4 of [1].

Proposition 5.5. Let S and S' be rings, G a finite group of automorphisms

of S and 5", f: S-+S' a ring homomorphism which is a G-homomorphίsm. If S
is a Galois extension of R with group G, S' is a Galois extension of S'G with group

G. // furthermore S'G—R and f is a right R-homomorphίsm, then f is an

isomorphism.

Proof. If Xi,yi are in S and satisfy 2**<K.y«)=8i f f f> then /(#,-), /(jO
I

satisfy the same relation in S'. To prove the second part, it is enough to

define f':S'-+S by /'(*')= Σ *<-fr(/(y*)'*')> V*'e=S'. Then, it is easy
ί

to check that /' is the inverse of /.

Corollary 5.6. Let S and S' be rings such that SdS'. Let us suppose that

G is a finite group of automorphisms of S' , whose restriction is a group of

automorphisms of S ίsomorphίc to G and let R=S'G. Then if S is a Galois ex-

tension of R with group G, S=S'.

Proof. It is enough to consider the inclusion S^S' and to apply the

latter theorem.
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Corollary 5.7. Let S be a ring, C its center, G a finite group of automor-

phisms of S such that G restricted to C is isomorphic to itself and let us suppose

that C is a Galois extension of CG with group G. Then SGaC if and only if S

is commutative.

Proof. If 5GcC then SG=CG and from the latter corollary S=C.
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