ON RIBBON 2-KNOTS THE 3-MANIFOLD BOUNDED BY THE 2-KNOTS

Takati YANAGAWA

(Received February 24, 1969)
(Revised May 19, 1969)

1. Introduction

It is known that any locally flat, orientable, closed 2-manifold M^{2} in a 4-space R^{4} bounds an orientable 3-manifold W^{3} in R^{4}, see [1]. Nevertheless, the question "what type of 3-manifolds can be bounded" seems to be still an open question, for which we will give a partial answer in Theorem (2,3) in this paper: If the 2-manifold M^{2} is a 2-sphere of a special type of 2-knots, which will be called a ribbon 2-knot, see (2,2), it bounds a 3-manifold W^{3} homeomorphic to \# ($S^{1} \times S^{2}$) $-\dot{\Delta}^{3} .{ }^{0}$) Moreover, a little inspection on the 3 -manifold W^{3} shows that there exists a trivial system of the 2 -spheres in W^{3}, see (3,5), and we can easily prove a converse of the above theorem in Theorem (3, 3). In §4, we will define the following concepts;
$R(3):$ A $2-\mathrm{knot} K^{2}$ satisfies that $c(\{K\})=0$,
$R(4)$: A 2 -knot K^{2} bounds a 3 -ribbon in R^{4},
$R(5)$: A 2 -knot K^{2} bounds a monotone 3-ball in H_{+}^{5}.
Since it is easily seen that the concepts $R(4)$ and $R(5)$ are the natural extensions of the definition and the property of the ribbon (1-) knots, we can explain the reason why we denominate simply knotted 2-knots defined in [2] as ribbon 2-knots in this paper, after we will have accomplished the proof of the equivalence of these three concepts in Theorem $(4,5)$. In §5, we will introduce a normalform for ribbon 2 -knots and an equivalence relation between 2 -knots. The equivalence relation is a cobordism relation between 2 -knots with the strong restriction, although ribbon 2-knots are equivalent to a trivial 2-knot under the relation.

In this paper, everything is considered from the combinatorial stand point of view.

[^0]
2. Ribbon 2-knots

An orthogonal projection p of a 4-space R^{4}, containing a locally flat 2 -sphere K^{2} which will be called a 2-knot, onto an hyperplane R^{3} is called a regular projection, or simply a projection, if the locally linear map $p \mid K^{2}$ of K^{2} into R^{3} is normal. ${ }^{1)}$ The homeomorphism class of (K^{2}, R^{4}) of 2 -knots in R^{4} will be called the knot-type containing K^{2}, and will be denoted by $\{K\}$.

Definition (2.1). $c(K)$ is the minimal number of the triple points and the branch-lines ${ }^{2)}$ of $p(K)$ in R^{3}, where the projection p ranges over the set consisting of all the projections for the $2-\operatorname{knot} K . \quad c(\{K\})$ is the minimal number of $c(K)$, where K ranges over the knot-type $\{K\}$. A pair (p, K) will be called a simple pair for the knot-type $\{K\}$, if it realizes the number $c(\{K\})$.

Definition (2.2). ${ }^{3}$ A $2-\mathrm{knot} K^{2}$ will be called a ribbon $2-k n o t$, if and only if $c(\{K\})=0$.

Theorem (2.3). A ribbon 2-knot K^{2} bounds a 3-manifold W^{3} which is homeomorphic either to a 3-ball or to $\#\left(S^{1} \times S^{2}\right)-\AA^{3}$.

Proof. According to the result in [2], we can find a $2-\mathrm{knot} K^{\prime}$ belonging to $\{K\}$ and satisfying the following (1), (2) and (3):
(1). $K^{\prime} \cap R_{0}^{3}=k$ is a ribbon knot in $R_{0}^{3}{ }^{4)}$
(2). $K^{\prime} \cap H_{+}^{4}$ and $K^{\prime} \cap H_{-}^{4}$ are symmetric with respect to the hyperplane R_{0}^{3}, and necessarily each of them is a locally flat 2-ball.
(3). each saddle point transformation ${ }^{5}$ on $K^{\prime} \cap H_{+}^{4}$ increases the number of components of the cross-sections of $K^{\prime} \cap R_{t}^{3}$ as the height t increases; in other words, $K^{\prime} \cap H_{+}^{4}$ has no minimal point.

In the following three-steps, we illustrate the construction of the 3-manifold W^{3}.

First-step. Since k is a ribbon knot, there is an immersion ψ of a 2-ball $\tilde{D}=\tilde{D}_{0} \cup \widetilde{D}_{1} \cup \cdots \cup \widetilde{D}_{n} \cup \widetilde{B}_{1} \cup \cdots \cup \widetilde{B}_{n}$ on a plane into R_{0}^{3} such that
(1) $\psi(\partial \widetilde{D})=k, \psi(\tilde{D})$ is a ribbon,

1) See p. 3 of [8].
2) An arc whose end-points are branch-points is called a branchline.
3) In [2], this type of $2-\mathrm{knots}$ is defined as "simply-knotted 2 -sphere".
4) \dot{X} means the interior, and ∂X the boundary of a set X.

$$
\begin{array}{rlr}
R_{t}^{3} & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right. & \left.\mid x_{4}=t\right\} \\
H_{+}^{4} & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right. & \\
H_{4}^{4} & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right. & \left.\mid x_{4} \leqq 0\right\} \\
H^{4}(J) & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right. & \\
\left.\mid x_{4} \in J\right\}
\end{array}
$$

5) See [5], p. 136.
(2) \widetilde{B}_{i} spans \tilde{D}_{0} and \tilde{D}_{i} coherently at the segments on $\partial \widetilde{B}_{i} \cap \partial \tilde{D}_{0}$ and $\partial \widetilde{B}_{i} \cap \partial \widetilde{D}_{i}(i=1,2, \cdots, n)$,
(3) $\psi ; \tilde{D}_{0} \cup \tilde{D}_{1} \cup \cdots \cup \tilde{D}_{n} \rightarrow D_{0} \cup D_{1} \cup \cdots \cup D_{n}$ $\psi ; \widetilde{B}_{1} \cup \cdots \cup \widetilde{B}_{n} \rightarrow B_{1} \cup \cdots \cup B_{n}$
are both imbeddings,
(4) $D_{0}, D_{1}, \cdots, D_{n}$ are on a plane, and moreover we may suppose that the visible face of each D_{k} is the image of the visible-face of $\tilde{D}_{k}(k=0,1,2$, \cdots, n).
(5) the intersection of B_{i} and $D_{0} \cup D_{1} \cup \cdots \cup D_{n}$, except two segments on ∂B_{i}, consists of at most the ribbon-type segments $\alpha_{i 1}, \alpha_{i 2}, \cdots, \alpha_{i m_{i}}$, where we indexed these segments in the order from D_{0} to D_{i} on $B_{i}(i=1,2$, \cdots, n).
The segments $\tilde{\alpha}_{i \lambda}=\psi^{-1}\left(\alpha_{i \lambda}\right) \cap \tilde{B}_{i}$, and $\tilde{\beta}_{i \lambda}, \beta_{i 0}$ go across the band \widetilde{B}_{i}, and $\tilde{B}_{i \lambda}$ is the piece of \tilde{B}_{i} bounded by $\tilde{\beta}_{i, \lambda-1}\left(\lambda=1,2, \cdots, m_{i}\right)$ as in Fig. (1).

Fig. (1)
If B_{i} goes through D_{k} from its visible side to the opposite at $\alpha_{i 1}$, we perform the (-)-twist for k, otherwise the (+)-twist as in Fig. ($2 \pm$), where the knot-type of k is left fixed.

Fig. (2+)
Fig. (2-)
Now, we have a new immersion ψ^{\prime} of \tilde{D} into R_{0}^{3} such that

$$
\begin{aligned}
& \psi^{\prime}\left|\tilde{D}-\tilde{B}_{i_{1}}=\psi\right| \tilde{D}-\tilde{B}_{i 1}, \\
& \psi^{\prime}\left(\widetilde{B}_{i_{1}}\right) \cap D_{0}=\psi^{\prime}\left(\tilde{\beta}_{i_{1}}\right)=\beta_{i 1}, \quad \text { and }
\end{aligned}
$$

$\psi^{\prime}\left(\tilde{B}_{i 1}\right)$ is the shaded portion in Fig. $(2 \pm)$,
$\psi^{\prime}(\tilde{D})$ is a ribbon and $\psi^{\prime}(\partial \widetilde{D})$ is the twisted k.

Moreover, if there is $\alpha_{i 2}$, we perform the twist of the same type as before considering $\tilde{B}_{i 2}, \tilde{\beta}_{i 2}, \beta_{i 2}, \beta_{i 1}, \psi^{\prime}$ as $\tilde{B}_{i 1}, \tilde{\beta}_{i 1}, \beta_{i 1}, \beta_{i 0}, \psi$. Repeat successively these processes for $\lambda=3,4, \cdots, m_{i}, i=1,2, \cdots, n$.

Second-step. In the first-step, we have finally a ribbon $\psi^{*}(\widetilde{D})=D_{0} \cup D_{1} \cup$ $\cdots \cup D_{n} \cup B_{1}^{*} \cup \cdots \cup B_{n}^{*}$, where $B_{i}^{*} \cap\left(D_{0} \cup D_{1} \cup \cdots \cup D_{n}\right)=\beta_{i 1} \cup \cdots \cup \beta_{i m_{i}} \cup \cdots \cup$ $\alpha_{i m_{i}}$. Remove the mutually disjoint 2-balls $Q_{i \lambda}$ and $Q_{i \lambda}^{\prime}$ from $D_{0} \cup D_{1} \cup \cdots \cup D_{n}$ such that

$$
\begin{aligned}
& \stackrel{\circ}{D}_{k} \supset Q_{i \lambda} \supset \grave{Q}_{i \lambda} \supset \alpha_{i \lambda}, \\
& \dot{D}_{0} \supset Q_{i \lambda}^{\prime} \supset \dot{Q}_{i \lambda}^{\prime} \supset \beta_{i \lambda} \quad\left(\lambda=1,2, \cdots, m_{i}, i=1,2, \cdots, n\right) .
\end{aligned}
$$

Combine $\partial Q_{i \lambda}$ and $\partial Q_{i \lambda}^{\prime}$ with a tube $T_{i \lambda}$ coherently so that $T_{i \lambda} \cap T_{j \mu}=\phi$ $(i \neq j$ or $\lambda \neq \mu)$, and that $T_{i \lambda} \cap\left(\psi^{*}(\tilde{D})-\cup \underset{i, \lambda}{ }\left(\dot{Q}_{i \lambda} \cup \dot{Q}_{i \lambda}^{\prime}\right)=\partial T_{i \lambda}=\partial Q_{i \lambda} \cup \partial Q_{i \lambda}^{\prime}\right.$. Finally, we have an orientable 2-surface F_{0} such that

$$
F_{0}^{2}=\left\{\left(D_{0} \cup D_{1} \cup \cdots \cup D_{n}\right)-\cup_{i, \lambda}\left(Q_{i \lambda} \cup Q_{i \lambda}^{\prime}\right)\right\} \cup\left\{B_{1}^{*} \cup \cdots \cup B_{n}^{*}\right\} \cup\left\{\cup \cup_{i, \lambda} T_{i \lambda}\right\}
$$

see Fig. (3).

Fig. (3)
Third-step. To construct the 3-manifold W^{3} bounded by K^{\prime}, we make use of the method described schematically in Fig. (4), which was already used in the proof of the theorem in [4], p. 267~269, Fig. 5.
$W_{+}=\bigcup_{0 \leqq t} F_{t}^{2}$ and $W_{-}=\bigcup_{t \leqq 0} F_{t}^{2}$ are both homeomorphic to a solid torus perhaps with a large genus, therefore W^{3} gained by the natural identification on $F_{0}^{2}=W_{+}$ $\cap R_{0}^{3}=W_{-} \cap R_{0}^{3}$ is homeomorphic either to a 3-ball or to $\#\left(S^{1} \times S^{2}\right)-\grave{\Delta}^{3}$, since K^{\prime} is symmetric with respect to R_{0}^{3}.

This completes the proof.

Fig. (4)

3. A fusion of 2-knots ${ }^{6)}$

A collection of the mutually disjoint 2 -knots $\left\{K_{1}^{2}, K_{2}^{2}, \cdots, K_{n}^{2}\right\}$ is called a splitted 2-link, if there exists a collection of the mutually disjoint combinatorial 4-balls $V_{1}, V_{2}, \cdots, V_{n}$ such that $V_{i} \supset K_{i}(i=1,2, \cdots, n)$ in R^{4}. Especially, a splitted 2-link is called a trivial 2-link, if each component K_{i} is unknotted ${ }^{7}$ in $R^{4}(i=1,2, \cdots, n)$.

Definition (3.1). If there are a collection of the 3-balls $B_{1}, B_{2}, \cdots, B_{n-1}$ and a splitted 2-link $\left\{K_{1}^{2}, K_{2}^{2}, \cdots, K_{n}^{2}\right\}$ such that, for each $B_{i}, B_{i} \cap K_{j}=\partial B_{i} \cap K_{j}$ is a 2-ball $E_{i, j}$ for just two 2 -knots K_{j} of the 2 -link ($i=1,2, \cdots, n-1,1 \leqq j \leqq n$), and that the 2 -sphere $K=\left(\overline{\bigcup_{j} K_{j}-\bigcup_{i, j} E_{i, j}}\right) \cup\left(\overline{U_{i} \partial B_{i}-\bigcup_{i, j} E_{i, j}}\right)$ is a 2 -knot in R^{4}, then the 2 -knot K is called a fusion of the splitted 2-link.

Lemma (3.2). If a $2-$ knot K^{2} is a fusion of the splitted $2-\operatorname{link}\left\{S_{1}^{2}, S_{2}^{2}, \cdots\right.$, $\left.S_{n}^{2}\right\}$, then $c(\{K\}) \leqq \sum_{j=1}^{n} c\left(\left\{S_{j}\right\}\right)$.

Proof. Since the 2 -link is splitted, there is an ambient isotopy ξ of R^{4} under which the pair $\left(p, \xi\left(S_{j}\right)\right)$ is a simple pair for the knot-type $\left\{S_{j}\right\}$ by a projection p for all $\left\{S_{j}\right\}(j=1,2, \cdots, n)$, and moreover $p\left(\xi\left(S_{j}\right)\right) \cap p\left(\xi\left(S_{k}\right)\right)=\phi$ $(j \neq k)$. For convenience' sake, we denote $\xi\left(S_{j}\right), \xi\left(B_{i}\right), \xi\left(E_{i, j}\right)$ by $S_{j}, B_{i}, E_{i, j}$, again, where the 3 -balls $B_{i}(i=1,2, \cdots, n-1)$ belong to the collection of the 3balls in the construction of the fusion K.

Let the 2-balls $E_{i j}=B_{i} \cap S_{j}$ and $E_{i, k}=B_{i} \cap S_{k}$ be the intersection of ∂B_{i} and $\cup S_{j}$ and let α_{i} be the arc in B_{i} spanning $E_{i, j}$ and $E_{i, k}$, where $\alpha_{i} \cap \partial B_{i}=$ $\alpha_{i} \cap\left(E_{i, j} \cup E_{i, k}\right)=\partial \alpha_{i}$ and α_{i} is unknotted ${ }^{8)}$ in $B_{i}(i=1,2, \cdots, n-1)$. We may
6) The concept "fusion" is introduced in [6], p. 364 for $1-$ knots, but now we will consider an analogy of this concept for 2-knots.
7) K_{i} bounds a combinatorial 3-ball in R^{4}.
8) A circle $\alpha_{i} \cup \alpha$ bounds a 2-ball in B_{i}^{3} for an $\operatorname{arc} \alpha$ on ∂B_{i}.
suppose in addition that $p\left(\alpha_{1} \cup \alpha_{2} \cup \cdots \cup \alpha_{n-1}\right)$ contains no double points and each $p\left(\alpha_{i}\right)$ pierces the singular 2 -spheres $p\left(S_{j}\right)$ at most at its non-singular points. ${ }^{9)}$

Let U_{i}^{3} be a sufficiently fine tubular neighborhood of α_{i} in B_{i}, where $U_{i}^{3} \cap$ $\partial B_{i}=U_{1}^{3} \cap\left(E_{i, j} \cup E_{i, k}\right)$ are two 2-balls, see Fig. (5).

Fig. (5)
According to the properties of the arcs α_{i} and the tubes U_{i}^{3}, the 2-sphere $K^{\prime}=\left(\overline{\bigcup_{j} S_{j}-\bigcup \bigcup_{i, j} F_{i, j}}\right) \cup\left(\overline{\bigcup_{i} \partial U_{i}-\bigcup \overline{i, j}} \overline{F_{i, j}}\right)$ is isotopic to $\xi(K)=\left(\overline{\bigcup_{j}} \overline{S_{j}-\bigcup \bigcup_{i, j}} E_{i, j}\right) \cup$ $\left(\overline{U_{i} \partial B_{i}-\bigcup_{i, j} E_{i, j}}\right.$), where $F_{i, j}=U_{i}^{3} \cap E_{i, j}=U_{i}^{3} \cap \partial B_{i}$, and under the projection $p, c\left(K^{\prime}\right)=\sum_{j=1}^{n} c\left(S_{j}\right)$. Since the pairs $\left(p, S_{j}\right)$ are simple pairs for the knot-type $\left\{S_{j}\right\}(j=1,2, \cdots, n)$ and $K^{\prime} \in\{K\}$, we have

$$
c(\{K\}) \leqq c\left(K^{\prime}\right)=\sum_{j=1}^{n} c\left(S_{j}\right)=\sum_{j=1}^{n} c\left(\left\{S_{i}\right\}\right)
$$

Corollary (3.3). If a 2-knot K^{2} is a fusion of a trivial 2-link, then $c(\{K\})=0$.

Lemma (3.4). Let a $2-$ knot K^{2} bound a 3-manifold W^{3} in R^{4} such that W^{3} is homeomorphic to a 3-ball or to $\#\left(S^{1} \times S^{2}\right)-\dot{\Delta}^{3}$, and that, if W^{3} is not a 3-ball, W^{3} has a trivial system of 2 -spheres ${ }^{10)}$ which will be difined as below. Then, K^{2} is a fusion of a trivial 2-link in R^{4}.

Definition (3.5). A collection of the 2-spheres $S_{1}^{2}, S_{2}^{2}, \cdots, S_{2 n}^{2}$ in a 3manifold W^{3} in R^{4} which is homeomorphic to $\#\left(S^{1} \times S^{2}\right)-\dot{\Delta}^{3}$, is called a trivial system of 2 -spheres in W^{3} if it satisfies the following (1), (2) and (3):
(1) the collection $\left\{S_{1}^{2}, S_{2}^{2}, \cdots, S_{2 n}^{2}\right\}$ is a trivial 2-link in R^{4},
(2) $S_{i}^{2} \cup S_{n+i}^{2}$ bounds a spherical-shell $N_{i}{ }^{11)}$ in W^{3} and $N_{i} \cap N_{j}=\phi$ for $i \neq j$, $i, j=1,2, \cdots, n$.
9) At the non-multiple points.
10) The terminology "a trivial system" is due to R.H. Fox in his paper "Ribbon and Slice" (to appear).
11) A combinatorially imbedded $S^{2} \times[0,1]$.
(3) $W^{3}-\bigcup_{i=1}^{n} \dot{\circ}_{i}$ is the closure of a combinatorial 3-sphere removed of the mutually disjoint $2 n+1$ combinatorial 3 -balls.

Proof of (3.4). Let $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{2 n}$ be the mutually disjoint arcs in $Q=$ $W-\bigcup_{i=1}^{n} \stackrel{\circ}{N}_{i}$ such that α_{λ} spans S_{λ} and $S_{0}(\lambda=1,2, \cdots, 2 n)$, where S_{0} is a 2 -sphere in Q which bounds a combinatorial 3-ball B_{0}^{3} in $\stackrel{\circ}{Q}$, and that for sufficiently fine tubular neighborhoods U_{λ} of α_{λ} in $\dot{Q}, \overline{Q-U_{1} \cup U_{2} \cup \cdots \cup U_{2 n} \cup B_{0}^{3}}$ is a combinatorial spherical-shell. Then, a boundary 2 -sphere K^{\prime} of $\overline{Q-U_{1} \cup U_{2} U}$ $\cdots \cup U_{2 n} \cup B_{0}$ belongs to the knot-type $\{K\}$. Moreover, it is clear that the 2knot K^{\prime} is a fusion of a trivial 2-link $\left\{S_{0}^{2}, S_{1}^{2}, \cdots, S_{2 n}^{2}\right\}$ in R^{4}.

Theorem (3.6). A 2-knot K^{2} bounds a 3-manifold W^{3} in R^{4} which is homeomorphic to a 3-ball or to $\#\left(S^{1} \times S^{2}\right)-\dot{\Delta}^{3}$ and has a trivial system of 2-spheres ${ }^{12)}$, if and only if K^{2} is a ribbon 2-knot.

Proof. Remembering the third-step of the construction in the proof of (2, 3), we have easily the imbeddings of the spherical-shell N_{i} in W^{3}, see Fig. (6). Thus, we have that if K is a ribbon 2 -knot, K bounds the desired 3-manifold. The converse follows from (3.4) and (3.3).

Fig. (6)

4. Equivalence of the definitions

We introduce the following properties.
$\boldsymbol{R}(3):$ A $2-\mathrm{knot} K^{2}$ satisfies that $c(\{K\})=0$.
$\boldsymbol{R}(4)$: A 2 -knot K^{2} bounds a 3-ribbon in R^{4}.
12) If W^{3} is a 3-ball, we consider that the system is empty.
$\boldsymbol{R}(5)$: A 2-knot K^{2} bounds a monotone 3-ball in H_{+}^{5}.
Definition (4.1). An image of a 3 -ball B^{3} into R^{4} by an immersion φ will be called a $3-$ ribbon bounded by a $2-\mathrm{knot} K^{2}$, if it satisfies the following (1), (2) and (3):
(1) $\varphi \mid \partial B$ is an imbedding and $\varphi(\partial B)=K^{2}$,
(2) the self-intersection of $\varphi(B)$ consists of a finite number of the mutually disjoint 2-balls $D_{1}, D_{2}, \cdots, D_{n}$,
(3) for each D_{i}, the inverse image $\varphi^{-1}\left(D_{i}\right)$ consists of a pair of 2-balls $D_{i}^{\prime}, D_{i}^{\prime \prime}$, satisfying that

$$
D_{t}^{\prime} \cap D_{i}^{\prime \prime}=\phi, D_{i}^{\prime} \subset \dot{B}, \partial D_{i}^{\prime \prime}=D_{i}^{\prime \prime} \cap \partial B \quad(i=1,2, \cdots, n) .
$$

Fig. (7)
Definition (4.2). A 3-ball D^{3} will be called a monotone 3-ball bounded by a $2-\mathrm{knot} K^{2}$ in H_{+}^{5}, if it satisfies the following (1), (2) and (3):
(1) $K^{2}=\partial D=D \cap R_{0}^{4}$,
(2) D^{3} is locally flat and has no minimal point in H_{+}^{5},
(3) in a neighborhood of each (non-maximal) critical point $p_{i}\left(x_{1}^{(i)}, x_{2}^{(i)}, x_{3}^{(i)}\right.$, $\left.x_{4}^{(t)}, x_{5}^{(i)}\right), D^{3}$ is represented by the equation:

$$
\left\{\begin{array}{l}
\left(x_{1}-x_{1}^{(t)}\right)^{2}+\left(x_{2}-x_{2}^{(t)}\right)^{2}-\left(x_{4}-x_{4}^{(t)}\right)^{2}=x_{5}^{(t)}-x_{5} \\
x_{3}-x_{3}^{(s)}=0
\end{array}\right.
$$

For convenience' sake, we will say that
\boldsymbol{F} : A 2 -knot K^{2} is a fusion of a trivial 2-link.
Lemma (4.3). $\quad \boldsymbol{R}(4)$ is equivalent to \boldsymbol{F}.
Proof. $\quad \boldsymbol{R}(4) \Rightarrow \boldsymbol{F} . \quad$ Let V_{i}^{3} be 3-balls in B^{3} such that $V_{i} \supset D_{i}^{\prime \prime}, V_{i} \cap V_{i}=\phi$ $(i \neq j)$ and that the annulus $V_{i} \cap \partial B$ contains $\partial D_{i}^{\prime \prime}$ in its interior $(i, j=1,2, \cdots, n)$. Let $P_{1}^{2}, P_{2}^{2}, \cdots, P_{n+1}^{2}$ be the boundary 2 -spheres of $\overline{B^{3}-V_{1} \cup \cdots \cup V_{n}}$, then $\left\{\varphi\left(P_{1}^{2}\right), \varphi\left(P_{2}^{2}\right), \cdots, \varphi\left(P_{n+1}^{2}\right)\right\}$ is a trivial 2-link in R^{4}, and it is clear that K^{2} is a fusion of the trivial 2-link.
$\boldsymbol{F} \Rightarrow \boldsymbol{R}(4)$. Remembering the technique in the proof of (3.2), we have a 3-ribbon $J_{1}^{3} \cup \cdots \cup J_{n}^{3} \cup U_{1}^{3} \cup \cdots \cup U_{n-1}^{3}$ bounded by K^{2} in R^{4}, where $J_{1}^{3}, \cdots, J_{n}^{3}$ are disjoint 3-balls bounded by the 2-knots S_{1}, \cdots, S_{n} respectively and 3-balls
$U_{1}^{3}, \cdots, U_{n-1}^{3}$ are so fine that $U_{1}^{3} \cap J_{j}^{3}$ are small 2 -balls in $J_{j}^{3}(1 \leqq i \leqq n-1$, $1 \leqq j \leqq n$.

Lemma (4.4). $\boldsymbol{R}(5)$ is equivalent to \boldsymbol{F}.
Proof. $\boldsymbol{R}(\mathbf{5}) \Rightarrow \boldsymbol{F}$. Let D^{2} be a monotone 3-ball bounded by K^{2} in H_{+}^{5}. We may suppose that the coordinates of all (non-maximal) critical points of D^{3} satisfy that $x_{5}^{(t)}=1(i=1,2, \cdots, n-1)$. Then, by the property (3) in (4.2), it is not so difficult to prove the followings: for a sufficiently small positive number ε,
(1) $D^{3} \cap R_{1+\varepsilon}^{4}$ is a trivial 2-link $\left\{S_{1}^{2}, S_{2}^{2}, \cdots, S_{n}^{2}\right\}$ in $R_{1+\varepsilon}^{4}$,
(2) the equations

$$
\left\{\begin{array}{l}
\left(x_{1}-x_{1}^{(i)}\right)^{2}+\left(x_{2}-x_{2}^{(i)}\right)^{2}-\left(x_{4}-x_{4}^{(i)}\right)^{2} \leqq \varepsilon \\
x_{3}-x_{3}^{(i)}=0, \quad x_{5}=1-\varepsilon \\
\left|x_{4}-x_{4}^{(i)}\right| \leqq \sqrt{\varepsilon} \quad(i=1,2, \cdots, n-1)
\end{array}\right.
$$

give the disjoint 3-balls B_{t}^{3} in $R_{1-\varepsilon}^{4}$,
(3) $D^{3} \cap R_{1-8}^{4}$ is a fusion of a trivial 2-link $\left\{S_{1}^{\prime}, S_{2}^{\prime}, \cdots, S_{n}^{\prime}\right\}$ by the 3-balls $B_{1}^{3}, \cdots, B_{n-1}^{3}$, where trivial $2-\mathrm{knots} S_{i}^{\prime}$ are the image of S_{i}^{2} by the orthogonal projection of R^{5} onto $R_{1-\varepsilon}^{4}$.
(4) $D^{3} \cap R_{1-8}^{4}$ and K^{2} belong to the same knot-type.
$\boldsymbol{F} \Rightarrow \boldsymbol{R}(5)$. By the result (4.3), if K^{2} satisfies \boldsymbol{F}, K^{2} satisfies $\boldsymbol{R}(4)$; that is, K^{2} bounds a 3-ribbon $\varphi(B)$. Let V_{i}^{3} be 3-balls such that $\stackrel{\circ}{B} \supset V_{i}^{3} \supset \stackrel{\circ}{V}_{i}^{3} \supset D_{i}^{\prime}$ and $V_{i}^{3} \cap V_{j}^{3}=\phi(i \neq j, i=1,2, \cdots, n)$. Since φ imbeds $\overline{B^{3}-V_{1}^{3} \cup \cdots \cup V_{n}^{3}}$ into R_{0}^{4} and $\left\{\varphi\left(\partial V_{1}^{3}\right), \cdots, \varphi\left(\partial V_{n}^{3}\right)\right\}$ is a trivial $2-$ link in R_{0}^{4}, we can suspend these 2 spheres $\varphi\left(\partial V_{1}^{3}\right), \cdots, \varphi\left(\partial V_{n}^{3}\right)$ from n points of R_{1}^{4}. With a little modification, we have a monotone 3 -ball D^{3} bounded by K^{2} in H_{+}^{5}.

Remembering (3.3) and (3.4), we have that $\boldsymbol{R}(\mathbf{3}) \Leftrightarrow \boldsymbol{F}$, and with (4.3) and (4.4), finally we have the following

Theorem (4.5). $\boldsymbol{R}(3), \boldsymbol{R}(4)$ and $\boldsymbol{R}(5)$ are equivalent to \boldsymbol{F}.
We refer to the following results.
All 2-knots are "slice-knot", see [7].
There is a 2-knot which is not "simply-knotted 2-knot", see [2].
Then, we can assert that the concept "ribbon knot" is different from the concept "slice knot" for 2-knots, while we have not yet succeeded to distinguish one from another for 1-knots.

5. An equivalence relation

Let K^{2} be a ribbon $2-\mathrm{knot}$ which is knotted in R^{4}. Then, by (3.6) and (3.4), K^{2} is a fusion of a trivial 2-link $\left\{S_{0}^{2}, S_{1}^{2}, \cdots, S_{2 n}^{2}\right\}$ in R^{4}. In the following, we will use the same notations as in the proof of (3.4). We may suppose that
\boldsymbol{P}_{1} : A 2 -sphere S_{0}^{2} and the spherical-shells $N_{1}, N_{2}, \cdots, N_{n}$ are splitted in R^{4}, where $\partial N_{i}=S_{i}^{2} \cup S_{n+i}^{2}(i=1,2, \cdots, n)$.
$\boldsymbol{P}_{2}: \quad S_{\lambda}^{2} \cap H^{4}[-1,1]=\left(S_{\lambda}^{2} \cap R_{0}^{3}\right) \times[-1,1] \quad(\lambda=0,1, \cdots, 2 n)$.
$\boldsymbol{P}_{3}: N_{1} \cap R_{0}^{3}, \cdots, N_{n} \cap R_{0}^{3}$ are annuli on a plane in R_{0}^{3}.
The 3-balls $B_{1}^{3}, \cdots, B_{2 n}^{3}$ and the arcs $\alpha_{1}, \cdots, \alpha_{2 n}$ which cause the fusion have the following properties $\boldsymbol{P}_{4}, \boldsymbol{P}_{5}$ and \boldsymbol{P}_{6} :
\boldsymbol{P}_{4} : Since the 2 -link $\left\{S_{0}^{2}, S_{1}^{2}, \cdots, S_{2 n}^{2}\right\}$ is trivial, the arcs $\alpha_{1}, \cdots, \alpha_{2 n}$ are moved into R_{0}^{3} by an ambient isotopy of R^{4}. Since $\dot{\alpha}_{\lambda}$ is contained in $B_{\lambda}^{3}(\lambda=1,2, \cdots, 2 n)$, if we suppose that a finite subcomplex B_{λ}^{3} of R^{4} is in a general position with respect to the hyperplane R_{0}^{3}, there is a sufficiently narrow band b_{λ}^{2} containing α_{λ} in $B_{\lambda}^{3} \cap R_{0}^{3}$ which spans a circle $c_{0}=S_{0}^{2} \cap R_{0}^{3}$ and a circle $c_{\lambda}=S_{\lambda}^{2} \cap R_{0}^{3}(\lambda=1,2, \cdots, 2 n)$.
\boldsymbol{P}_{5} : For a sufficiently small positive number $\varepsilon, B_{\lambda}^{3} \cap H^{4}[-\varepsilon, \varepsilon]$ contains a 3 -ball U_{λ}^{3} which is level-preserving-isotopic to $b_{\lambda}^{2} \times[-\varepsilon, \varepsilon]$ leaving the 2-balls $U_{\lambda}^{3} \cap S_{0}^{2}$ and $U_{\lambda}^{3} \cap S_{\lambda}^{2}$ fixed ($\lambda=1,2, \cdots, 2 n$).
\boldsymbol{P}_{6} : In fusing $\left\{S_{0}^{2}, S_{1}^{2}, \cdots, S_{2 n}^{2}\right\}$ to get a 2 -knot K^{2}, we make use of the 3-balls $U_{1}^{3}, \cdots, U_{2 n}^{3}$ instead of the 3 -balls $B_{1}^{3}, \cdots, B_{2 n}^{3}$, and we will denote the new $2-$ knot belonging to $\left\{K^{2}\right\}$ by \widetilde{K}^{2}.

We want to simplify the cross-sections of the $2-\mathrm{knot} \widetilde{K}^{2}$ as follows.
Let θ be an orthogonal projection of R_{0}^{3} onto a plane R^{2}, and if $\theta\left(b_{\lambda}^{2}\right) \cap \theta\left(b_{\mu}^{2}\right)$ $\neq \phi(1 \leqq \lambda, \mu \leqq 2 n)$, we may suppose that U_{λ}^{3} and U_{μ}^{3} are in the position as shown in (8_{1}) in Fig. (8). Move U_{λ}^{3} and U_{μ}^{3} isotopically in R^{4} so as to be in the position in $\left(8_{2}\right)$. In the next step, lift up the tube in the level R_{8}^{3} as shown in $\left(8_{3}\right)$. Replace these in a general position again, and we have the situation in $\left(8_{4}\right)$. Thus, we have the following lemma.

 $\Rightarrow \infty$ ∞
(81)
(82)
(83)

(84

Fig. (8)

Lemma (5.1). We can exchange the over-and-under passing relation with respect to x_{3}-coordinate between b_{λ}^{2} and $b_{\mu}^{2}(1 \leqq \lambda, \mu \leqq 2 n)$ preserving the 2 - $k n o t$ type of \widetilde{K}^{2}.

We will consider how to eliminate the twists of the band b_{λ}^{2} in the following three steps.
(1) If b_{λ}^{2} contains an even number of twists, we perform a modification as follows:

Fig. (9)
This modification is an isotopy only in the subspace R_{0}^{3} in R^{4}, but in each level $R_{t}^{3}(-\varepsilon \leqq t \leqq \varepsilon)$, the similar modification can be performed for $U_{\lambda}^{3} \cap R_{t}^{3}$, therefore we can understand this modification as an isotopy of R^{4}.
(2) If b_{λ}^{2} contains only one twist, we consider an orientable 2-surface $F=\left\{\left(B_{0}^{3} \cup N_{1} \cup \cdots \cup N_{n}\right) \cap R_{0}^{3}\right\} \cup b_{1}^{2} \cup \cdots \cup b_{2 n}^{2} . \quad$ Since the fusion in the present step depends on the 3 -manifold W^{3}, and since $F \cup\left(\tilde{K}^{2} \cap H_{+}^{4}\right)$ bounds an orientable 3-manifold $\left(B_{0}^{3} \cup N_{1} \cup \cdots \cup N_{n} \cup U_{1}^{3} \cup \cdots \cup U_{2 n}^{3}\right) \cap H_{+}^{4}$ (a solid torus with a large genus), the surface F should be orientable, see Satz I, §64 in [9]. Therefore, there must be another twist on a band $b_{\mu}^{2}(\mu \sim \lambda=n)$. Hence, we consider the following replacement of F in R_{0}^{3}, see Fig. (10).

Fig. (10)
After this replacement, the twist on b_{μ}^{2} is transferred on b_{λ}^{2}. This move can be easily extended to a modification of W^{3} in R^{4}, and the band b_{ν}^{2} (, more precisely the tube U_{ν}^{3}) is left fixed through the modification, even if b_{ν}^{2} links with $N_{\lambda} \cap R_{0}^{3}$ (or $N_{\mu} \cap R_{0}^{3}$) in R_{0}^{3} as shown in Fig. (10).
(3) After the modifications in (1) and (2), each band b_{λ}^{2} contains a finite
number of cirri as in $\left(9_{2}\right)$. If we exchange the over-and-under passings of b_{λ}^{2} itself by (5.1), we may suppose that the band b_{λ}^{2} contains just one cirrus. Here, as in the proof of (5.1), we can pull down U_{λ}^{3} onto $R_{-\varepsilon}^{3}$ isotopically in R^{4} as shown in (11) and (112) in Fig. (11). In R_{-8}^{3}, we stretch this solid cylinder and pull up again so that each cross-section contains no cirrus as shown in (11_{3}) and (11_{4}).

Fig. (11)
Hence, welhave
Lemma (5.2). We can cancel the twists and the cirri of $b_{\lambda}^{2}(1 \leqq \lambda \leqq 2 n)$ preserving the 2-knot type of \widetilde{K}^{2}.

Theorem (5.3). Let K^{2} be a ribbon-2-knot, then there is a 3-manifold W^{3} and \widetilde{K}^{2} in R^{4}, which belongs to $\left\{K^{2}\right\}$, satisfying the following (1), (2), (3) and (4):
(1) $\partial W^{3}=\tilde{K}^{2}$, and W^{3} is symmetric with respect to R_{0}^{3}
(2) $W^{3} \approx B^{3}$ or $W^{3} \approx \#\left(S^{1} \times S^{2}\right)-\dot{\Delta}^{3},{ }^{13)}$
and moreover, if $W^{3} \not \approx B^{3}$,
(3) W^{3} has a trivial system of 2-spheres,
(4) $W^{3} \cap R_{0}^{3}$ is an orientable surface F, which has a basis $\left\{\alpha_{1}, \cdots, \alpha_{n}, \beta_{1}, \cdots\right.$, $\left.\beta_{n}\right\}$ of $H_{1}(F)$ such that both $\alpha_{1} \cup \cdots \cup \alpha_{n} \cup \alpha_{1}^{\prime} \cup \cdots \cup \alpha_{n}^{\prime}$ and $\beta_{1} \cup \cdots \cup \beta_{n} \cup \beta_{1}^{\prime} \cup$ $\cdots \cup \beta_{n}^{\prime}$ are trivial links in R_{0}^{3}, where both $\alpha_{i} \cup \alpha_{i}^{\prime}$ and $\beta_{i} \cup \beta_{i}^{\prime}$ bound annuli on $F(i=1,2, \cdots, n)$.

Corollary (5.4). Let K^{2} be a ribbon $2-k n o t$, there is a ribbon $2-k n o t \tilde{K}^{2}$ belonging to $\left\{K^{2}\right\}$ satisfying the following (1) and (2)
(1) \tilde{K}^{2} is symmetric with respect to R_{0}^{3},
13) \approx means to be homemorphic to.
(2) there is a locally flat $2-b a l l \tilde{D}^{2}$ in H_{-}^{4} such that a $2-k n o t\left(\tilde{K}^{2} \cap H_{+}^{4}\right) \cup \widetilde{D}^{2}$ is an unknotted 2-knot in R^{4}.

Proof of (5.3). If K^{2} is unknotted in R^{4}, the theorem is trivial. Hence we will consider the case that K^{2} is knotted in R^{4}. Let \widetilde{K}^{2} be a $2-\mathrm{knot}$ satisfying $\boldsymbol{P}_{1}, \cdots, \boldsymbol{P}_{6}$ described in the beginning of this section. Let W^{3} be a 3-manifold $B_{0}^{3} \cup N_{1} \cup \cdots \cup N_{n} \cup U_{1}^{3} \cup \cdots \cup U_{2 n}^{3}$. Then, $W^{3} \cap R_{0}^{3}=\left\{\left(B_{0}^{3} \cup N_{1} \cup \cdots \cup N_{n}\right) \cap R_{0}^{3}\right\}$ $\cup b_{1}^{2} \cup \cdots \cup b_{2 n}^{2}$. Let $\alpha_{1}, \alpha_{i}^{\prime}, \beta_{i}$ and $\beta_{t}^{\prime}(i=1,2, \cdots, n)$ be the simple closed curves on F described in Fig. (12), then by (5.1) and (5.2) they satisfy the conditions (4) in (5.3).

Fig. (12)
Proof of (5.4). If K^{2} is unknotted in R^{4}, it is obvious. If K^{2} is knotted in R^{4}, we consider the 3 -manifold W^{3} and \tilde{K}^{2} in R^{4} in (5.3). Then, the construction of the 2-ball \widetilde{D}^{2} is described in Fig. (13). Moreover if we apply the method in the proof of Theorem in [4], see Fig. 5, p. 269 in [4], it is not so difficult to construct a 3 -ball bounded by ($\left.\widetilde{K}^{2} \cap H_{+}^{4}\right) \cup \widetilde{D}^{2}$ in R^{4}.

Fig. (13)
Now, we will define an equivalence relation between 2 -knots.
Definition (5.5). Two 2-knots K_{0}^{2} and K_{1}^{2} will be called cobordant and denoted by $K_{0}^{2} \sim K_{1}^{2}$, if and only if there exists a 3-manifold M^{3} satisfying the following (1), (2), (3) and (4):
(1) M^{3} is homeomorphic to $S^{2} \times[0,1]$,
(2) M^{3} is locally flat in $H^{5}[0,1],,^{14)}$
(3) $\partial M^{3}=K_{0}^{2} \cup\left(-K_{1}^{2}\right)$, and $K_{i}^{2}=M^{3} \cap R_{i}^{4}(i=0,1)$, ${ }^{15)}$
(4) $M^{3} \cap R_{t}^{4}$ is connected for each $t(0 \leqq t \leqq 1)$.

Clearly we have
Theorem (5.6). The cobordant relation " \sim " is an equivalence relation.
Lemma (5.7). If a $2-k n o t K^{2}$ is a ribbon $2-k n o t$, then $K^{2} \sim 0^{2}$, where 0^{2} is a trivial 2-knot in R^{4}.

Proof. Let X^{3} be a compact, orientable 3-manifold in R^{5}. The ordinary cross-section of X^{3} by a hyperplane R_{t}^{4} is a compact, orientable 2-manifold. If X^{3} is represented by the next equation (*) in a neighborhood of a point $p\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}, \bar{x}_{4}, \alpha\right):$

$$
\left\{\begin{array}{c}
\left(x_{1}-\bar{x}_{1}\right)^{2}-\left(x_{2}-\bar{x}_{2}\right)^{2}+\left(x_{4}-\bar{x}_{4}\right)^{2}=x_{5}-\alpha \tag{*}\\
x_{3}-\bar{x}_{3}=0
\end{array}\right.
$$

the transformation from the ordinary cross-section $X^{3} \cap R_{\alpha-\varepsilon}^{4}$ onto the ordinary cross-section $X^{3} \cap R_{\alpha-\varepsilon}^{4}$ (for a small number $\varepsilon>0$) is a hyperbolic transformation in R^{5}.

In the following, we want to construct a 3 -manifold M^{3} which satisfies not only the conditions (1), (2), (3) and (4) in (5.5) but $M^{3} \cap R_{0}^{4}=K^{2}, M^{3} \cap R_{1}^{4}=0^{2}$. If K^{2} is unknotted in R_{0}^{4}, the existence of the 3 -manifold is clear, therefore we will suppose that K^{2} is knotted in R_{0}^{4}. The 3 -manifold will be obtained by the following six steps.
(1) Consider a $2-\mathrm{knot} \widetilde{K}^{2}$ belonging to $\left\{K^{2}\right\}$ and bounding the 3 -manifold W^{3} in (5.3), see (14) in Fig. (14).
(2) Between R_{0}^{4} and $R_{1 / 2}^{4}$, we perform the hyperbolic transformations as shown schematically in $\left(14_{1}\right),\left(14_{2}\right)$ and $\left(14_{3}\right)$. In $\left(14_{2}\right)$, we show the exceptional cross-section of M^{3} by $R_{1 / 4}^{4}$ and the cross-section by R_{0}^{3} in $R_{1 / 4}^{4}$ is similar to that by $R_{-\varepsilon}^{3}$ in Fig. (13). The cross-section by $R_{ \pm \varepsilon}^{3}$ in $R_{1 / 2}^{4}$ is similar to that by R_{-8}^{3} in Fig. (13), and the cross-section by R_{0}^{3} in $R_{1 / 2}^{4}$ is similar to that by $R_{-2 \mathrm{e}}^{3}$ in Fig. (13). This transformation satisfies the equation (*) in a sufficiently small neighborhood in R^{5} of each saddle point at R_{0}^{3} in $R_{1 / 4}^{4}$.
14)

$$
\begin{aligned}
R_{i}^{4} & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \mid x_{5}=t\right\} \\
H_{+}^{5} & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \mid x_{5} \geqq 0\right\} \\
H^{5}(J) & =\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \mid x_{5} \in J\right\}
\end{aligned}
$$

The 3-manifold M^{3} is locally flat in $H^{5}[0,1]$ if the pair ($L k\left(p, M^{3}\right), L k\left(p, H^{5}[0,1]\right)$ is a trivial sphere pair for $p \in M^{3}$ and a trivial ball pair for $p \in \partial M^{3}$.
15) Identify 2-knot (K_{i}^{2}, R^{4}) with a $2-\mathrm{knot}\left(K_{i}^{2}, R_{i}^{4}\right)$. ($-K^{2}$) is the reversely-oriented 2-knot for K^{2}.
(3) As shown in the proof of (5.3), the cross-section of the 2 -surface by R_{0}^{3} in $R_{1 / 2}^{4}$ is a trivial 1-link, say $\gamma_{0} \cup \gamma_{1} \cup \cdots \cup \gamma_{n}$ with $n+1$ components.
(4) Between $R_{1 / 2}^{4}$ and $R_{3 / 4}^{4}$, we will contract n circles $\gamma_{1}, \cdots, \gamma_{n}$ to points continuously as shown in $\left(14_{3}\right)$ and $\left(14_{4}\right)$ so that in a small neighborhood in R^{5} of each pinching point at R_{0}^{3} in $R_{3 / 4}^{4}$, the transformation is given by the equation (**):
$(* *) \quad\left\{\begin{array}{r}\left(x_{1}-\bar{x}_{1}\right)^{2}+\left(x_{2}-\bar{x}_{2}\right)^{2}-\left(x_{4}-\bar{x}_{4}\right)^{2}=\bar{x}_{5}-x_{5} \\ x_{3}-\bar{x}_{3}=0 \\ \bar{x}_{5}=3 / 4 .\end{array}\right.$.
(5) We have finally constructed a $2-\mathrm{knot} \hat{\mathrm{K}}^{2}$ in R_{1}^{4} which satisfies the following three properties:
$\left(5_{1}\right) \quad \hat{K}^{2}$ is symmetric with respect to R_{0}^{3} in R_{1}^{4},
(5 5_{2}) $\hat{K}^{2} \cap R_{0}^{3}$ is a trivial 1 -knot γ_{0} in R_{0}^{3} in R_{1}^{4},
$\left(5_{3}\right)$ If we remind the proof of (5.4), a 2 -knot K_{1}^{2} is unknotted in H_{+}^{4}, where K_{1}^{2} is a union of a 2 -ball $\hat{K}^{2} \cap H_{+}^{4}$ and a 2 -ball D^{2} which is bounded by γ_{0} in R_{0}^{3}.
(6) Then, $\hat{K}^{2}=K_{1}^{2} *\left(-K_{1}^{2}\right)^{16}$ is a trivial 2 -knot in R_{1}^{4}. By the same method as in the proof of theorem in [4], we can construct the desirable 3manifold M^{3} in $H^{5}[0,1]$ which is bounded by \widetilde{K}^{2} and the trivial $2-\mathrm{knot} \hat{K}^{2}$.

This completes the proof of (5.7).

Fig. (14)
Lemma (5.8). For an arbitrary 2-knot $K^{2}, K^{2} *\left(-K^{2}\right)$ is cobordant to a ribbon 2-knot.

Proof. A 2-knot K^{2} in R_{0}^{4} can be placed in a position as follows:

[^1](1) $K^{2} \cap R_{3 \mathrm{e}}^{3}$ is a knot k in $R_{3 \mathrm{e}}^{3}$,
(2) $K^{2} \cap H^{4}[3 \varepsilon, \infty)$ has no minimal point,
(3) $K^{2} \cap H^{4}[\varepsilon, 3 \varepsilon]$ has no maximal point,
(4) all minimal points are at the level R_{e}^{3}.

Place a $2-\mathrm{knot}\left(-K^{2}\right)$ in the symmetric position to K^{2} with respect to R_{0}^{3}, and product them as shown in (151) in Fig. (15). Then, the process from (15 $)$ to (15_{5}) follows almost the opposite course of the process from (14 ${ }_{1}$) to (145) in the proof of (5.7). The cross-section by R_{0}^{3} in $R_{3 / 4}^{4}$ is the same as that by $R_{2 \mathrm{e}}^{3}$ in R_{0}^{4}. In the final stage (15_{5}), we have a 2 -knot K_{1}^{2} in R_{1}^{4} which satisfies the followings:
(1) K_{1}^{2} is symmetric with respect to R_{0}^{3} in R_{1}^{4},
(2) $K_{1}^{2} \cap H_{+}^{4}$ contains no minimal point.

Then, the $2-\mathrm{knot} K_{1}^{2}$ is a ribbon $2-\mathrm{knot}$, see [2], [3].

Fig. 15
Concerning the knot-product "*", we have

$$
\begin{aligned}
K_{1}^{2} * K_{2}^{2} & =K_{2}^{2} * K_{1}^{2}, \quad \text { and } \\
K_{1}^{2} *\left(K_{2}^{2} * K_{3}^{2}\right) & =\left(K_{1}^{2} * K_{2}^{2}\right) * K_{3}^{2}, \quad \text { see Theorem } 1 \text { in }[10] .
\end{aligned}
$$

Lemma (5.9). If $K_{0}^{2} \sim K_{1}^{2}$ and $L_{0}^{2} \sim L_{1}^{2}$ for $2-k n o t s ~ K_{0}^{2}, K_{1}^{2}, L_{0}^{2}$ and L_{1}^{2}, then $K_{0}^{2} * L_{0}^{2} \sim K_{1}^{2} * L_{1}^{2}$.

Proof. There exist 3-manifolds M_{1}^{3} and M_{2}^{3} which satisfy the following (1), (2), (3) and (4):
(1) M_{i}^{3} is homeomorphic to $S^{2} \times[0,1](i=0,1)$,
(2) M_{i}^{3} is locally flat in $H^{5}[0,1]$,
(3) $\partial M_{1}^{3}=K_{0}^{2} \cup\left(-K_{1}^{2}\right), \quad \partial M_{2}^{3}=L_{0}^{2} \cup\left(-L_{1}^{2}\right)$,

$$
K_{j}^{2}=M_{1}^{3} \cap R_{j}^{4} \text { and } L_{j}^{2}=M_{2}^{3} \cap R_{j}^{4}(j=0,1),
$$

(4) M_{1}^{3} and M_{2}^{3} are splitted by an hyperplane Y^{4} in R^{5} which is orthogonal to the hyperplane $R_{t}^{4}(0 \leqq t \leqq 1)$.

Then, it is not difficult to see that $K_{0}^{2} * L_{0}^{2} \sim \hat{K}_{1}^{2}$, where \hat{K}_{1}^{3} is a fusion of the $2-$ knots K_{1}^{2} and L_{1}^{2} in R_{1}^{4} by a sufficiently fine tube U^{3} for which $U^{3} \cap\left(Y^{4} \cap R_{1}^{4}\right)$ is a 2 -ball D^{2}. Since K_{1}^{2} and L_{1}^{2} are splitted by a hyperplane $Y^{4} \cap R_{1}^{4}$ in R_{1}^{4}, the fusion in the present step is surely the product; that is, $\hat{K}_{1}^{2}=K_{1}^{2} * L_{1}^{2}$. This completes the proof.

As the consequence of (5.9), the set $\mathbb{(S}=($ all $2-$ knots $) / \sim$ has an abelian semigroup structure, where the group operation is inherited from the knot-product operation $*$ of 2 -knots. Since we can find the inverse element for each element of the semigroup $(\$ 8$ by (5.8), we have the final theorem in this paper:

Theorem (5.10). (\$8 is an abelian group.
In comerison with the result by M. A. Kervaire in [7], we must have a question: Does there exist a 2 -knot non-cobordant to 0^{2} in the present sense? Nevertheless, it is true that if a $2-\mathrm{knot} K^{2}$ is cobordant to 0^{2}, then there exists a locally flat 3-ball B^{3} in H_{+}^{5} satisfying the following (1) and (2):
(1) $B^{3} \cap R_{0}^{4}=\partial B^{3}=K^{2}$,
(2) B^{3} has only one maximal point but no minimal point.

Therefore, if we conjecture that "the method of the calculation of $\pi_{1}\left(R^{4}-K^{2}\right)$ in p. 133~139 in [5] is available for the calculation of $\pi_{1}\left(H_{+}^{5}-B^{3}\right)$ ", then we will be able to conclude the following:

$$
\begin{equation*}
\pi_{1}\left(H_{+}^{5}-B^{3}\right)=Z \tag{5.11}
\end{equation*}
$$

Kobe University

References

[1] H. Gluck: The embedding two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104 (1962), 308-333.
[2] T. Yajima: On simply-knotted spheres in R^{4}, Osaka J. Math. 1 (1964), 133-152.
[3] F. Hosokawa and T. Yanagawa: Correction to "Is every slice knot a ribbon knot?" (to appear).
[4] H. Terasaka and F. Hosokawa: On the unknotted sphere S^{2} in E^{4}, Osaka Math. J. 13 (1961), 265-270.
[5] R.H. Fox: A quick trip through knot theory, Topology of 3-manifolds and Related Topics, edited by M.K. Fort Jr. Prentice Hall, 1963.
[6] F. Hosokawa: A concept of cobordism between links, Ann. of Math. 86 (1965), 362373.
[7] M.A. Kervaire: Les noeds de dimension superioures, Bull. Soc. Math. France 93 (1965), 225-271.
[8] C.D. Papakyriakopoulos: On Dehn's Lemma and the asphericity of knots, Ann. of Math. 66 (1957), 1-26.
[9] H. Seifert und W. Threlfall: Lehrbuch der Topologie, Springer Verlag, 1935.
[10] H. Noguchi: Obstructions to locally flat embeddings of combinatorial manifolds, Topology 5 (1966), 203-213.

[^0]: $0)$ \# means the connected sum, and Δ^{3} a 3 -simplex and ${ }^{3}{ }^{3}$ is its interior.

[^1]: (16) $*$ means the $k n o t$-product; that is, $K^{2}=K_{1}^{2} * K_{2}^{2}$ if there exists a hyperplane P^{3} in R^{4} such that $k=K^{2} \cap P^{3}$ is a $1-$ knot bounding a 2 -ball D^{2} in P^{3} and that a $2-\mathrm{knot} D^{2} \cup\left(P^{4} \cap K^{2}\right)$ belongs to $\left\{K_{1}^{2}\right\}$ and a $2-\mathrm{knot} D^{2} \cup\left(P^{4} \cap K^{2}\right)$ to $\left\{K_{2}^{2}\right\}$, where $P_{ \pm}^{4}$ are half 4 -spaces bounded by P^{3} in R^{4}. Cf. the argument in $\S 1$ in [10].

