ON MULTIPLY TRANSITIVE GROUPS VIII

TUYOSI OYAMA

(Received May 6, 1969)

1. Introduction

Let G be a 4-fold transitive group on $\Omega = \{1, 2, \dots, n\}$, and let P be a Sylow 2-subgroup of a stabilizer of four points in G. By a theorem of M. Hall [2, Theorem 5.8.1] and a lemma of E. Witt [7, Theorem 9.4], we have that P fixes exactly four, five, six, seven or eleven points and the normalizer of P in G restricted on the set of the fixed points of P is S_4 , S_5 , A_6 , A_7 or M_{11} . (cf. H. Nagao and T. Oyama [5], Lemma 1).

The purpose of this paper is to prove the following

Theorem. Let G be a 4-fold transitive group. If a Sylow 2-subgroup of a stabilizer of four points in G fixes exactly six points, then G must be A_6 .

The above theorem of M. Hall is that if a stabilizer of four points in G is of odd order then G must be one of the following groups: S_4 , S_5 , A_6 , A_7 or M_{11} . Therefore to prove our theorem we may assume that a Sylow 2-subgroup of a stabilizer of four points in G is not identity.

2. Definitions and notations

A permutation x is called semi-regular if there is no point fixed by x. A permutation group G is called semi-regular if every non-identity element of G is semi-regular on the points actually moved by G.

For a permutation group G on Ω the subgroup of G consisting of all the elements fixing the points i, j, \dots, k of Ω will be denoted by $G_{ij\dots k}$, which we shall call the stabilizer of the points i, j, \dots, k . The totality of points left fixed by a subset X of G will be denoted by I(X), and if a subset Δ of Ω is a fixed block of X, then the restriction of X on Δ will be denoted by X^{Δ} . A G-orbit of minimal length is called a minimal orbit of G.

For subsets X, Y of a group G, $\langle X, Y \rangle$ is the subgroup of G generated by the elements of X and Y, and $N_G(X)$ is the normalizer of X in G.

3. Proof of the theorem

In the following two lemmas we assume that G is a 4-fold transitive group

Т. Очама

on $\Omega = \{1, 2, \dots, n\}$, and P is a Sylow 2-subgroup of G_{1234} . For a point t of a minimal orbit of P in Ω -I(P) let $P_t = Q$, $N_G(Q) = N$ and $I(Q) = \Delta$.

Lemma 1. Let R be a Sylow 2-subgroup of N_{ijkl} for $\{i, j, k, l\} \subseteq \Delta$. Then \mathbb{R}^{Δ} , which is a Sylow 2-subgroup of $(\mathbb{N}^{\Delta})_{ijkl}$, is semi-regular and |I(R)| = |I(P)|.

Proof. Let φ be a natural homomorphism of N_{ijkl} onto $(N^{\Delta})_{ijkl}$. Then $\varphi(R) = R^{\Delta}$. Since R is a Sylow 2-subgroup of N_{ijkl} , R^{Δ} is a Sylow 2-subgroup of $(N^{\Delta})_{ijkl}$.

Let P' be a Sylow 2-subgroup of G_{ijkl} containing R. Since Q is a normal 2-subgroup of N_{ijkl} and R is a Sylow 2-subgroup of N_{ijkl} , $P' \ge R \ge Q$ and $I(P') \subseteq I(R) \subseteq \Delta$. Since G is 4-fold transitive, P and P' are conjugate, and |I(P)| = |I(P')|. Therefore I(P') is a proper subset of Δ . For any point r of Δ -I(P'), $P'_r \ge Q = P_t$. From the assumption that t belongs to a minimal P-orbit we have

$$|P': P'_r| = |r^{P'}| \ge |t^P| = |P: P_t| = |P': Q|$$

Therefore $P'_r = Q$ and $R_r = Q$. Thus R^{Δ} is identity or semi-regular and $I(R^{\Delta}) = I(P')$. Since $\Delta = I(Q) \supseteq I(P')$ and $P'_{\Delta} = Q$, $N_{P'}(Q)^{\Delta}$ is a non-identity 2-group of $(N^{\Delta})_{ijkl}$. Therefore R^{Δ} , which is a Sylow 2-subgroup of $(N^{\Delta})_{ijkl}$, is semi-regular and $|I(R)| = |I(R^{\Delta})| = |I(P')| = |I(P)|$.

Lemma 2. In Lemma 1 if |I(P)| = 6, that is $N_G(P)^{I(P)} = A_6$, then R^{Δ} is an elementary abelian group, $N_N(R)^{I(R)} \leq A_6$ and $|\Delta| \geq 10$.

Proof. If R has an element $x=(i' j' k' l')\cdots$, where $\{i', j', k', l'\} \subset \Delta$, then x^{Δ} has no 2-cycle by Lemma 1. On the other hand, x normalizes $G_{i'j'k'l'}$ and Q. Therefore x normalizes some Sylow 2-subgroup P' of $G_{i'j'k'l'}$ containing Q. Form the assumption $x^{I(P')} \in A_{\epsilon}$. Hence $x^{I(P')}$ has a 2-cycle. Since $I(P') \subset \Delta$, x^{Δ} has a 2-cycle, which is a contradiction. Thus R^{Δ} is elementary abelian.

From Lemma 1 |I(R)| = 6. If $N_N(R)^{I(R)} \leq A_6$, then $N_N(R)$ has a 2-element x such that $x^{I(R)}$ is an odd permutation. On the other hand x normalizes some Sylow 2-subgroup P'' of $G_{I(R)}$. Since $G_{I(R)}$ contains a Sylow 2-subgroup of G_{ijkl} , P'' is a Sylow 2-subgroup of some stabilizer of four points in G, and I(P'')=I(R). Then $x^{I(R)}=x^{I(P'')}\in N_G(P'')^{I(P'')}=A_6$, which is a contradiction. Thus $N_N(R)^{I(R)}\leq A_6$.

Since |I(R)| = 6 and $\Delta \supseteq I(R)$, $|\Delta| \ge 8$. Suppose that $|\Delta| = 8$. Let $\Delta = \{i, j, k, l, r, s, u, v\}$ and $I(R) = \{i, j, k, l, r, s\}$. Then R has the following 2-element

$$a = (i) (j) (k) (l) (r) (s) (u v) \cdots$$

Since a normalizes G_{ijuv} and Q, a normalizes a Sylow 2-subgroup P''' of G_{ijuv} containing Q. It follows from $I(P'') \subset \Delta$ that $a^{I(P''')}$ is a transposition. This is a contradiction since $N_G(P'')^{I(P'')} = A_8$. Therefore $|\Delta| \ge 10$.

316

From now on we consider a permutation group G on $\Omega = \{1, 2, \dots, n\}$, which is not necessarily 4-fold transitive. In the following two lemmas we assume that G satisfies the following condition.

- (*) Let P be a Sylow 2-subgroup of any stabilizer of four points in G. Then
 - (i) *P* is semi-regular and elementary abelian,
 - (ii) $|\Omega| \ge 10$ and |I(P)| = 6,
 - (iii) $N_G(P)^{I(P)} \leq A_6$.

By Lemma 1 and Lemma 2, N^{Δ} satisfies the assumption (*). In Lemma 4 we shall show that there is no group satisfying (*). Thus if G is a 4-fold transitive group as in Theorem, then G_{1234} is of odd order, and hence G must be A_{6} .

Lemma 3. G is a doubly transitive group and $N_G(P)^{I(P)}$ is A_{ϵ} or A_{ϵ}^* , where A_{ϵ}^* is a doubly transitive group of degree 6 isomorphic to A_{ϵ} .

Proof. For any two points i_1 and i_2 let P' be a Sylow 2-subgroup of $G_{i_1i_2i_3i_4}$, where $\{i_3, i_4\} \subset \Omega - \{i_1, i_2\}$. Then we have an involution a of P', which has the following form

$$a = (i_1) (i_2) (i_3) (i_4) (i_5) (i_6) (j_1 j_2) \cdots$$

where $I(P') = \{i_1, i_2, \dots, i_6\}$. Since a normalizes $G_{i_1 i_2 j_1 j_2}$, a normalizes a Sylow 2-subgroup P'' of $G_{i_1 i_2 j_1 j_2}$. From (iii)

$$a^{I(P'')} = (i_1) (i_2) (j_1 j_2) (j_3 j_4)$$
 ,

where $I(P'') = \{i_1, i_2, j_1, j_2, j_3, j_4\}$. Hence $\langle a, P'' \rangle$ is a 2-group and fixes exactly two point i_1 and i_2 . From a lemma of D. Livingstone and A. Wagner [4, Lemma 6] G is a doubly transitive group on Ω .

Since G is doubly transitive, for any two points u and v of I(P) there is a Sylow 2-subgroup S of G_{uv} , which contains P and fixes only two points u and v. Let $T=N_S(P)$. Then $T \geqq P$ and $I(S) \subseteq I(T) \subseteq I(P)$. Suppose that $I(S) \subseteq$ I(T), then |I(T)| = 4 or 6. By (*iii*) |I(T)| = 6. Therefore I(T)=I(P). Since P is a Sylow 2-subgroup of $G_{I(P)}$, T=P, which is a contradiction. Therefore $I(T)=I(S)=\{u,v\}$. This shows that for any two points u, v of $I(P) N_G(P)^{I(P)}$ contains a 2-group, which fixes only two points u and v. Using also Lemma 6 of [3] we have that $N_G(P)^{I(P)}$ is doubly transitive. Therefore, by assumption (*iii*), $N_G(P)^{I(P)}$ is either A_6 or A_6^* , where A_6^* is a doubly transitive group of degree 6 isomorphic to A_5 (see B. Huppert [3] II, 4.7 Satz).

To prove the next lemma we need the following result in [6]: Let G be a 4-fold transitive group. If a Sylow 2-subgroup P of a stabilizer of four points in G is semi-regular and not identity, then $|I(P)| \neq 6$.

Lemma 4. There is no group satisfying (*).

Proof. Assume that G satisfies (*). We may assume that P is a Sylow

Т. Очама

2-subgroup of G_{1234} and $I(P) = \{1, 2, \dots, 6\}$. In the case $N_G(P)^{I(P)} = A_6^*$, we may assume that A_6^* is generated by $\{(3 \ 4) \ (5 \ 6), \ (1 \ 2 \ 3) \ (4 \ 5 \ 6), \ (1 \ 3 \ 5 \ 6 \ 4)\}$ (see W. Burnside [1] §166).

For any point *i* of Ω -{1, 2, 3} let *P'* be a Sylow 2-subgroup of G_{123i} . By (*ii*) *P'* fixes six points, say 1, 2, 3, *i*, *j* and *k*. Let *Q* be a Sylow 2-subgroup of G_{123} containing *P'*. Since $|\Omega|$ is even, |I(Q)| is also even. Therefore *Q* fixes at least four points, and hence *Q* fixes six points by (*ii*), which are the points of I(P'). Thus Q=P' is a Sylow 2-subgroup of G_{123} , and any point in Ω -{1, 2, 3} belongs to a G_{123} -orbit of odd length. On the other hand *P* and *P'* are conjugate in G_{123} , hence G_{123} has an element taking {4, 5, 6} into {*i*, *j*, *k*}. Thus G_{123} has exactly one or three orbits in Ω -{1, 2, 3}. If G_{123} has three orbits in Ω -{1, 2, 3}, then three points 4, 5 and 6 belong to different G_{123} -orbits, say T_4 , T_5 and T_6 respectively.

Suppose that G_{123} is transitive on $\Omega - \{1, 2, 3\}$. Since a Sylow 2-subgroup of G_{12} fixes only two points 1 and 2, G_{12} has an element taking 3 into some point of $\Omega - \{1, 2, 3\}$. Therefore G_{12} is transitive on $\Omega - \{1, 2\}$. It follows from Lemma 3 that G is 4-fold transitive on Ω . But this contradicts the theorem in [6].

From now on we assume that G_{123} has three orbits T_4 , T_5 and T_6 in Ω -{1, 2, 3}. Suppose that $N_G(P)^{I(P)} = A_6$. Then $N_G(P)$ contains an element x of the form

$$x = (1) (2) (3) (4 5 6) \cdots$$

Since $x \in G_{123}$, 4, 5 and 6 belong to the same G_{123} -orbit, which is a contradiction.

Thus we have that $N_G(P')^{I(P')} = A_6^*$, for any Sylow 2-subgroup P' of an arbitrary stabilizer of four points in G.

Suppose that P has two involutions x and y. Since P is elementary abelian by (i), we may assume by (ii) that x and y are of the following forms

$$\begin{aligned} x &= (1) (2) \cdots (6) (i j) (k l) \cdots, \\ y &= (1) (2) \cdots (6) (i k) (j l) \cdots. \end{aligned}$$

 $\langle x, y \rangle$ normalizes some Sylow 2-subgroup of G_{ijkl} . Hence the restriction of $\langle x, y \rangle$ on the set of the points fixed by this Sylow 2-subgroup is a four group and fixes two points. But a stabilizer of two points in A_{δ}^* is of order 2, which is a contradiction. Therefore P is of order 2, and any Sylow 2-subgroup of a stabilizer of four points in G is also of order 2.

Let a be an involution of P. We may assume by (ii) that a is of the form

$$a = (1) (2) \cdots (6) (i j) \cdots$$
.

Then *a* normalizes a Sylow 2-subgroup of G_{12ij} , and hence *a* commutes with some involution *b* in G_{12ij} . Since *b* fixes only six points, $b^{I(a)}$ is not identity. Since $N_G(P)^{I(P)} = A_{\delta}^*$, *b* must be of the form

$$b = (1) (2) (3 4) (5 6) (i) (j) (k) (l) \cdots$$

and then a have a 2-cycle $(k \ l)$. If a and b have two 2-cycles $(i' \ j') \ (k' \ l')$ and $(i' \ k') \ (j' \ l')$ respectively, then $\langle a, b \rangle$ normalizes some Sylow 2-subgroup of $G_{i'j'k'l'}$. Using the same argument as above we have a contradiction. Therefore if a has 2-cycles in Ω -{1, 2, ..., 6, *i*, *j*, *k*, *l*}, then b has the same 2-cycles. Since a commutes with b, ab is also an involution, and fixes two points 1 and 2. Therefore |I(ab)|=2 or 6 by (ii). If |I(ab)|=2, then

$$a = (1) (2) \cdots (6) (i j) (k l),$$

$$b = (1) (2) (3 4) (5 6) (i) (j) (k) (l),$$

and hence $|\Omega| = 10$. If |I(ab)| = 6, then

$$a = (1) (2) \cdots (6) (i j) (k l) (i' j') (k' l'),$$

$$b = (1) (2) (3 4) (5 6) (i) (j) (k) (l) (i' j') (k' l'),$$

and hence $|\Omega| = 14$. On the other hand from the assumption that A_6^* has an element (1 2 3) (4 5 6), there is an element

$$c = (1 \ 2 \ 3) \ (4 \ 5 \ 6) \cdots$$

in $N_G(P)$. Then *c* normalizes G_{123} , and since the G_{123} -orbits in $\Omega - \{1, 2, 3\}$ are T_4 , T_5 and T_6 , *c* takes T_4 into T_5 , T_5 into T_6 and T_6 into T_4 . Therefore T_4 , T_5 and T_6 are of the same length and $|\Omega - \{1, 2, 3\}|$ is divisible by 3. But $|\Omega| - 3 = 7$ or 11, which is not divisible by 3. This contradiction arises from the first assumption that there is a group which satisfies the conditions (*i*), (*ii*) and (*iii*).

Now by Lemma 2 and 4 we have that, for a 4-fold transitive group G as in the theorem, the stabilizer of four points in G is of odd order. Therefore G must be A_6 .

YAMAGUCHI UNIVERSITY

References

- [1] W. Burnside: Theory of Groups of Finite Order, Second edition, Cambridge Univ. Press, 1911.
- [2] M. Hall: The Theory of Groups, Macmillan, New York, 1959.
- [3] B. Huppert: Endliche Gruppen I, Springer, Berlin-Heidelberg-New York, 1967.
- [4] D. Livingstone and A. Wagner: Transitivity of finite permutation groups on unordered sets. Math. Z. 90 (1965), 393-403.
- [5] H. Nagao and T. Oyama: On multiply transitive groups II, Osaka J. Math. 2 (1965), 129–136.
- [6] T. Oyama: On multiply transitive groups VII, Osaka J. Math. 5 (1968), 155-164.
- [7] H. Wielandt: Finite Permutation Groups, Academic Press, New York, 1964.