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0. Introduction

A Lie group is said to be simple if its (real) Lie algebra is simple. The
purpose of our paper is to classify all connected simple Lie groups. Let G be a
simply connected simple Lie group and g its Lie algebra. Any subgroup S of
the center C of G determines a group G/S locally isomorphic to G, and con-
versely any connected Lie group locally isomorphic to G is determined in this

manner. The problem of enumerating all the nonisomorphic connected Lie
groups locally isomorphic to a given G reduces to the study of the action of the
group of automorphisms of G on the center C of G. In fact we have:

Lemma. Let C be the center of a simply connected simple Lie group G and
Sly S2 subgroups of C. Then G/S1 and G/S2 are isomorphic if and only if there is
an automorphism σ of G such that σS1=S2.

Proof. The "if" part is trivial. For the "only if" part we let σ' be an
isomorphism from G/S1 onto G/S2. We denote the natural map G-^G/Sf
by 7r, (ί=l, 2). Take open sets Uly U2 of G containing the identity of G such
that τr f | Ui(i= 1, 2) is a homeomorphism and σ'πl(U1)=π2(U2). Let σ be the
unique homeomorphism from Ul onto U2 defined by σ/π1=π2σ. Then σ is a
local automorphism of G, and can be extended to an automorphism of G, in
virtue of the simple connectedness of G and we shall denote this extended
automorphism also by σ. Since G is generated by U± the relation σ'π^^=π2σ
remains true on G. The only if part now follows from kernel π£=Sj (i=l, 2).

q.e.d.
The center C was studied by Cartan [1] and later by Dynkin and Oniscik

[2], Sirota and Solodovnikov [8], Takeuchi [9] and Glaeser [3]. The automor-

* This work was supported in part by the National Science Foundation under grants
GP 4503 and GP 6080.
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phisms of the simply connected simple Lie group G are in one to one correspon-
dence with the automorphisms of the real simple algebra g. These automor-
phisms were studied by Cartan [1] and later by Murakami [6], Takeuchi [9]
and Matsumoto [5]. We shall use the results of Dynkin and Oniscik (for

compact G), Sirota and Solodovnikov (for noncompact G) and Glaeser, which

show that one can pick a set of representatives in a Cartan subalgebra § of g

which maps onto the center C of simply connected G by the exponential map.
These representatives of C in ί) are given in terms of roots suitably imbedded

in §. For an arbitrary automorphism σ of G we have <τ exp=exp rfcr, so

in view of the fact that G is simply connected, in order to classify the subgroups
S of the center C with respect to automorphisms of G, it suffices to study the
effect of the automorphisms (in fact only of the outer automorphisms) of g on the

representatives of C in ί). This study is almost trivial for compact G because

Aut g/Inn g is of order 1 or 2 except when g is of type Z)4, where Aut g and

Inn g are the group of automorphisms and the group of inner automorphisms of

g respectively. For noncompact G we make use of Murakami's description

of Aut g/Inn g as orthogonal transformations on the Cartan subalgebra ί).
One should note that [8] and [6] are both based on Gantmacher's classification
of real simple Lie algebras, and hence, that the choice of the same Cartan sub-
algebra t) in [8] and [6] allows the two studies to be combined here.°>

1. Real forms of a complex simple Lie algebra

Let gc be a complex simple Lie algebra. The Killing form (,) on gc is

given by (x, j;)=Tr (ad#)(adj) for x, y^Qc Let f)c be a Cartan subalgebra
of gc, Δ the set of all nonzero roots of gc with respect to ί)c and Π a system

of simple roots in Δ. Let £)0 be the real part of ξ)c, i.e., f)0={Aeί)c| a(h) is real

for all αeΔ}. Then we have fyc=§Q®C. ( ,) | f) 0 is positive definite, so Π and
Δ can be imbedded in §0 by the correspondence a\-*hΛ given by (hΛ, h)=a(h)

for all Aeί)0 (and consequently for all Aef)c).

Let gc=ί)c+Σ SΛ be the eigenspace decomposition of gc with respec to ί)c.
Oύ ..0

From each gc one can choose a root vector eΛΦθ so that (ea, e_Λ)= — 1 and

NMtβ=N_oίt_β hold, where a, /5eΔ. Here NΛ>β is the structure constant given

by [eΛ, e^\=NatβeΛ+β if α, β, α+/3eΔ. We note that NΛfβ are real numbers.

We also note that we have \eΛJ e_Λ\ = —htΛ for αeΔ, by the choice of eΛ.
Let uΛ=eΛ-\-e_Λ and voύ=i(ea—e_cύ). Then the real linear space spanned

by if)0,uΛ9 v# (αeΔ) gives a compact form of gc, and as all compact forms of
gc are mapped to each other by inner automorphisms of gc, one can consider

0) After this work was completed we learned about the paper A.I. Sirota: Classification
of real simple Lie groups (in the large). Moskov. Gos. Fed. Inst. Ucen. Zap. No. 243 (1965),
345-365, in which the author carries out the same idea as ours described above. However, the
way of obtaining the automorphisms is quite different from ours.
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any compact from Qu of gc to be given in this manner.

All non-compact real forms g of gc are obtained from some compact form

6u °f 6c and some involutory automorphism J of Quί namely, if ΐ={x^Qu \ Jx=x}
and (\={x<=Qu\Jx=— x} then Q=ΐ+iq [8, §5] [4, III, §7]. We shall see next
that J can be chosen in a specific manner.

Let us start with a compact form QU of gc, a Cartan subalgebra ϊ)c of gc

and root vectors ea (αeΔ) so that QU is spanned by z£)0, UΛ, VΛ (αeΔ). Fix
a system of simple roots Πcξ)0. We say that two automorphisms of QU are
conjugate if one of them is transformed into the other by an inner automorphism
of QU. An automorphism of any real form of gc can be considered as an auto-
morphism of gc. One can show that any involutory automorphism J of QU

is conjugate to an automorphism of QU which leaves Πc£)0 invariant [6 (2),
Proposition 2], so we now assume that J leaves Πc:ί)0 invariant.

In the proof of the fact that/ can be chosen to leave Πcξ)0 invariant, one

starts with a maximal abelian subalgebra §' of ϊ and shows that the maximal
abelian subalgebra §" of QM containing £)' is uniquely determined. Because of

the compactness of Quy fy' is mapped onto i§0 by an inner automorphism S of
QU. Then SJS'1 leaves zξ)0 invariant and induces an orthogonal transformation
in ξ)0 which permutes elements of Π. So by assuming that / leaves Πcξ)0

invariant, we are also making the assumption that i§0 Π ϊ is maximal abelian in
ϊ. We make use of this fact in §4.

For involutory automorphism / of QU leaving Π invariant we define a

normal automorphism J0 of gc uniquely by the conditions i) J0\§c—J\$c and
ii) J0ea=ej^ for αeΠ. Note that/0 depends on the choice of the eΛ's. From

the construction of JQ [6(2) p. 109] one can deduce that J0(uΛ)= iUj^ 9

Jo(v<*)— dz^/cαo for tf^Δ, and hence JQ(QU)=QU. Thus/0 is an involutory auto-
morphism of QU.

Then one can still further show that an involutory automorphism J of QU

leaving Π invariant is equal to JQ exp (ad ih0), where h0 is some element in ξ)0

such thatjh0=h0 and J0 is the normal automorphism of gc determined as above
[6 (2), Proposition 3].

2. Aut g/Inn g as orthogonal transformations of E)0

The following is an outline of Murakami's results on Aut g/Inng [6]. Let

gc, ί)c, ΠcΔc£)0, {eΛ}, Qu={if)0, ua, VΛ}R be as in §1. Then if g is a real form
of gc, we can assume that g is determined from QU by J=J0 exp (ad ih0). In
particular if g is compact we let J= identity.

The groups of automorphisms of g, QU and gc are denoted by Autg,

Aut QU and Aut gc respectively and Aut g, Aut QU are considered as subgroups
of Autgc. Let JC be A u t g Π A u t g M , JC0 the connected component of JC

containing the identity and Q the subset of Aut g given by {exp ad x \ x €Ξ iq},
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where Q=ϊ-\-ic\ is the decomposition determined by J. Then AutQ=QJC and

the group Inn g of inner automorphisms of g is equal to QJC0, so Aut g/Inn g

^JC/JC0. We note that if g is compact then β— {e}.
Let oK* denote the subgroup of elements of J{ leaving f)c invariant. Then

JC=JC0JC*, so if we let JC0* = J£* Π Jf0 we have JC/ JC0 s* JC*I J£0* and

We note that any automorphism of gc leaving ί)c invariant leaves Δ in-

variant, hence induces an orthogonal transformation on £)0. Hence any σ in

JC* induces an orthogonal transformation on t)0. If cr|r)0 is the identity

then σ^JCfi. Letting £ and @ denote the group of orthogonal transformations

on ί)0 induced by automorphisms in JC* and cX* respectively, we then have

Thus we conclude that Aut g/Inn g ̂

=ι/ΛeC Λ) and set

For ?eΔ3 if (/(f ), f)Φθ, then

Theorem. (Murakami)

I. If r is an orthogonal transformation of £)0 then τe£ if and only if

(i) τj=jτ

(ii) τΔ,=Δ, (*=1, 2, 3)
αr^ satisfied.

II. -For γGΞΔ, feί <τv i# ίAe reflection o/f)0 defined by

Then @ w generated by

(i) σ Λ,
(ii) σβ,

(iii) <r/φσέ where

REMARK. (1) When we apply this theorem in the following sections we

consider r e Z as a linear transformation on ΐ)c.

(2) Let/0*Λ=μrt*/Cflo. Then we have

*Ό> = μ* exp (ία(A0)) -

This is useful because in the classification of simple real forms h0 is given

explicitly in terms of ccί(A0)(αίeΠ0) and often J0 is equal to the identity.
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3. The compact case

Consider connected simply connected compact simple Lie group G whose

Lie algebra is g. Let gc be the complexification of g. Using the notations

in § 1 and §2, we can assume / to be the identity and Q=QU to be spanned by

zfjo, UΛ and VΛ (α^Δ).

In this case Δ=Δ19 Δ2=Φ, Δ3=φ, hence £ is the set of all orthogonal

transformations of ί)0 leaving Δ invariant and @ is the set of orthogonal trans-

formations generated by σrt, αeΔ. Then ©<£, £=*β@, φn @={β}, where φ

is the subgroup of £ of all orthogonal transformations of £)0 leaving Π invariant

(cf. Satake [7], p. 292, Corollary). Thus Aut g/Inn g consists of two elements

for An(n^2), Z)M(#Φ4), E6, is isomorphic to the symmetric group on three

letters for Z)4, and consists of the identity element only for A19 Bny Cn9 E79 E89

Ft and G2.

Consider now the Cartan subgroup H (the maximal toroidal subgroup) of

G corresponding to ίj=ίϊj0. H contains the center C of G. The exponential

map on φ, exp: f)->H is epimorphic. Let T1={h^\exp h^C} and Γ0 —

{λe§|exp h—e}9 where e is the identity of G.

Theorem. (Dynkin and Oniscik [2])

(i) λeIV=*α(A)=0 (mod 2πi) for all a<=Δ.

(ii) Γ0 is the lattice in t) generated by a'=(2πil(ha9 ha))2ha, α^Δ.

Using this theorem a complete set of representatikes of ΓΊ/ΓΌ can be found

in §, which maps onto C by the exponential map [2].

σ^>dσ is an isomorphism of Aut G, the group of automorphisms of G,
onto Aut g by virtue of the simple connectedness of G. Restricted to Inn G,
the group of inner automorphisms of G, it is an isomorphism from Inn G onto

Inn g. The inner automorphisms leave the center C of G elementwise fixed.

Two subgroups of C are considered equivalent if one is transformed onto the

other by an automorphism of G. As Aut g/Inng^ £/@^φ, C^ΓΊ/ΓΌ and

σ exp=exp rfcr the equivalence of subgroups of C is determined by the action

of ί£/@^φ on ΓΊ/ΓO The structure of ΓΊ/ΓΌ is well known and we obtain
the following table.

Type of gc C^ΓΊ/Γ0 Number of inequivalent
classes of subgroups of C

An (n^l) Zn+1 Number of divisors of τz+1
Bn (n^2) Z2 2

Cn (fi^3) Z2 2
Z< 3

Z,xZ2 3*7^=2, 4 if fc^3
Z3 2
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E , Z2 2

Et Z, 1
Ft Z, 1
G2 Z, 1

Here Zn denotes the cyclic group of order n as usual.

The subgroups of cyclic groups are characteristic, so the only case to be

verified in this table is the case of D2k(k^2). In this case we must find the

explicit structure of ΓΊ/Γ,,. To find Γ1; we set f=Σ sja'ι and derive con-
ditions on the Sj's imposed by the system of congruences (ζ, αy)Ξθ (mod 2πf),

j=l, ••• ,n. Then as Γ0={αί, ••• , aή}z a set of representatives of nonzero
elements of ΓΊ/Γ0 for D2k is given as

(i) for ^=2

*, = (αί+αJ)/2 , *, = (α{+αί)/2 , ar, =

(ii) f

(cf. [2], I, 4).
For k=2, φ is the group of orthogonal transformations of f)0 determined

by the permutations on the roots a19 α3, α4. The group β̂ is transitive on

{#!, ^2, 3̂} so all subgroups of C of order 2 are equivalent. For k^3, ^~
{1, (2k— I, 2k)} , where (2&— 1, 2&) is the orthogonal transformation of §„ de-

termined by the interchange of the two roots a2k_^ and α2^. The orbits of β̂
on {^Ί, #2, #3} are {^Ί, 3̂} and {#2}. So there are two inequivalent classes of
subgroups of C of order 2.

4. The center for the noncompact case

Let G be a connected simply connected noncompact simple Lie group,
whose Lie algebra is g. Let gc be the complexification of g. Using the
notations in § 1 and § 2, we can assume g to be determined from gM by

J=JQ exp (ad ihQ). The following is an outline of Sirota and Solodovnikov's
result on the center of G [8].

Let g0 be the real form of gc, determined from gM by J0 and let g0— Ϊ0+^o

be its decomposition, where l0={χ^$u\J0χ—χ} and q0={x^Qu\JQx^=— x}.

The subalgebra I0 is semi-simple and./5 0nI 0 ig a maximal abelian subalgebra
of Ϊ0. (This depends on our choice of / which forced zί)0 Π I to be maximal

abelian in ϊ). Ϊ0®C has a system of simple roots Π0c:ϊ)0ΓU'ϊ consisting of
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(cf. Lemma 3, §11, [8]).
Let g=ϊ+/q be the decomposition of g determined by/. As ϊ is compact,

ϊ is equal to direct sum £0b, where the ideal p=[ΐ, ϊ] is semi-simple compact
and t> is the center of ϊ. Any Cartan subalgebra §' of ϊ is of the form
§'= fJ!+t>, where ί̂  is a Cartan subalgebra of p and conversely.

Let the subgroups of G corresponding to ϊ, p and t) be denoted by K, P
and V respectively. Here P is simply connected compact semi-simple and
we have K=PV. Let H± be the maximal torus in P corresponding to f^.
Then the subgroup H' of K corresponding to ί)' is of the form Hr=H1V.
The center C of G is contained in K (cf. [4], p. 214, Theorem 1.1) and the
center decomposes into C^V, where Cl is the center of P. As P is compact,
CΊcf/Ί, so we have CdH'. The exponential map on ί)', exp: §'-^H'y is
epimorphic. Let now ξ)' = zϊ) o nϊ (cf. §1), and let T1={h^/\ exp AeC} and

Theorem. (Sirota and Solodovnikov [8])

(i) Γ^ΓΛajnr,
where Γ^gJ^ (h e iί)0 \ a(h) = 0 (mod 2πi) for all a e Δ} .

For λeί)'=zί)on ϊ, we have

AeΓ^α^ΞΞO (mod 2πi) for all a

(ii) Γ0=Γ0(p),
where Γ0(p)={Ae§1 1 exp A=e}.

This theorem enables us to pick a complete set of representatives of ΓΊ/ΓΌ
in §' which maps onto the center C of G.

Let us consider how Aut G acts on C. As in §3, because of the simple
connectedness of G, the map σ\-^dcr gives isomorphisms Aut G= Aut g and
Inn G= Inn g. Furthermore we have σ exp = exp dσ and Aut Q=JC* Inn g
(§2). As Inn G acts trivially on C, in order to study the action of Aut G on

C, it suffices to study the action of JC* on ΓΊ/Γ0. One should note that JC*
leaves Δ, zξ)0 and f) r invariant (§2), and hence leaves T1 and Γ0 invariant. Thus
it suffices to consider the action of ί£@ on ΓΊIV

REMARK. (1) For a simple algebra g, if /„ is the identity, then Ϊ0=QU.
If gc is one of the classical simple algebras, then the types of g for which /0

is not the identity, are AIn, AΠn and half of DIny DIn being divided into two
parts according to whether J0 is the identity or not. For these three types, to
obtain the system Δ0 of all non zero roots of Ϊ0® C one takes the system {a \ a=
(α+/(α))/2, αeΔ} and excludes those a such that a=J(a) and ^+/oeα>— 0.
This exclusion actually occurs only for AIn (n even), and the a to be excluded
are those given by a=±(\i — \j) where i-\-j=n-{-2 (cf. §5, 6).

Note also that if /0— identity, then if)0Γ\t=if)Q so rank ϊ=rankgc.
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REMARK. (2) In I=ψ0b, dimt)=l or 0. The system Δp of all roots

of t>®C is given by {όt\&=(a+J(a))l2, αeΔ— Δ2} (Δ2 was defined in §2).
Using the theorem of Dynkin and Oniscik (§3), one sees that Γ0 is generated by

r = (2*f7(Λa, Λa))2Aa ,

where hs is given by (Ag, h)=a(h) for all

One should note that /^^Ί^cφ. Let t>, ®C be a simple factor of
Actually p®C is simple or the direct sum of two simple algebras, (cf. §6) The

Killing form ( , ) of gc restricted to p, ®C is invariant and non-degenerate,

hence, is a constant multiple of the Killing form < , > on \>f®C. For a root

a of $i®C one can define &a e ik (Ί £f ® C such that <k%, hy = όt(h) for all

k ΓΊ \>f ® C. Then we have

which justifies the use of (*) above in the application of the theorem of Dynkin

and Oniscik.

The center C of G is cyclic if the Lie algebra g of G is a real form of an

exceptional complex simple algebra except for one real form of E7 for which
C^ZgXZ,. But in this case Autg/Inng consists of the identity only (cf.

Takeuchi [9]) so we can conclude that the subgroups of the center C of G are

characteristic if the Lie algebra g of G is a real form of an exceptional complex
simple algebra.

In the rest of this paper we will deal with the cases where g is a real form

of a classical algebra of type A, By C and D.

5. The structure of £/@ for the classical simple algebras

In [6, (1)] Murakami shows how one can determine the structure of

Aut g/Inn g^£/@ when gc is of type A, using his characterization of X and @

given in §2. We shall employ his argument to determine the structure of ί£/@
when gc is of type B, C and D. The argument for type A is repeated here for
the sake of completeness.

Let £ be the set of all orthogonal transformations of fj0 leaving Δ invariant

and @ be the set of orthogonal transformations generated by σΛ, αeΔ. Then

@<3£, S=φ@, φίΊ ©={*?}, where *β is the subgroup of £ of all orthogonal
transformations of ξ)0 leaving Π invariant [7]. @ is the Weyl group of gc.

The structures of ίΣ and @ for the classical simple algebras are well known. The

theorems of Murakami (cf. §2) show that ScS and @c@, and enable us to

determine the coset structure of ί£/@ from the structures of $ and @.

In what follows, the dual space of ΐ)0 is identified with ί)0 via ( , ) | f)0 and
most of the time we use the same symbol for an element in ί)0 and the cor-

responding element in the dual space of ί)0.
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5.1. If cjc is of type An, a system of simple roots Π is given by

a\ — \ — \2> a2 — λ,2 — X3, •" > an — ^n — λ«+ι

and a system of roots Δ is given by

±(λ,-λy) =

5.1.1. If cj is of type AIny n odd, n^3, then one can let
=τr, and αt.(/*0)=0 for ίΦ(w+l)/2. We then have1)

from which we derive

/0(λ,-λy) = χ._\y

Remembering that w+2 is odd, we thus have

Δj = empty

Δ2 = {±(λ§.-λy) I i+j - n+2}

Δ3 - {±(λί-λy)|ί+;Φ«+2} .

For λf— λyeΔ3 we note that ί, y, w+2— /, n-\-2—j are all distinct and hence
(λf— λy,7o(λf— λy))=0. Thus by Murakami's theorem in §2 @ is generated by
0V0cλ<.-λpσ-λ._λy where λ, — λyeΔ8. These σ,oCλ._λj0σλ._λy interchange λf. and λy,
λM+2_, and λw + 2_y but leave λ^ fixed, where ΛΦ/,y, w+2— /, n-\-2—j. We have
£— @-fyo(g. We know that §5^5, where 5 is the symmetric group on w+1
letters, the isomorphism i/r:®^*? being given by ί(λί) = λψsco f°Γ ^^@
and all ί. We shall identify @ with 5 and write s(i) for τ/rί(ί). As — /Oe@ we
can write £=©+(— l)(g. Note that — leίE. For je@, we have

— ί) — w+2 for all i ,

From this we see that £Π @==@+σλα_λw+2 α@, for any l^Λ^n+l. 2> Thus we
have

5.1.2. If g is of type AIny n even, τzΞ>2, then we can let/oΦE1 and A0— 0.
Using what was said for J03=E in 5.1.1 and remembering that n is even and
hQ=0 now, we have

1) The derivation of the second equation requires computation similar to that in 5.4.2.
2) cf. Appendix
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Δ! — empty

For λf — λyGΔ3, we have (λ,— λy, /0(λ, — λy)) = — (λ, , λM+2_, )— (λy, λn+2_y),
hence

We have (λ,— λCM+2V2)+/0(λt— λ(M+2V2)=λί-λM+2_f. for all ί. Hence @ is gener-
ated by <r λ._ λ w + 2 _ . (i^ιι/2) and cτλί_λyσ,oCλ._λp (/, ;Φ(w+2)/2 and ί+jΦw+2).
We have S=@+/0@=-@+(-l)@. Note that -leΞ£. For ίe@^5, we
have

sJ0 = J0s ̂  s(i)+s(n+2-i) = n+2 for all / ,

thus SΠ @-@2> and S=@+(—
5.1.3. If g is of type AΠn, n odd, τz^3, then we can let/oΦS and A0=0.

Using what was said for J^E in 5.1.1, and remembering that n is odd and
A0=0 now, we see that

Δ2 = empty

Δ 8= {±(λί-λy)|ί+yΦn+2}

and (λ,— λy, J0(λ>i — λy)) = 0 for λ f— λy e Δ3. @ is generated by erλ._λy

(ί+y=n+2) and σλί._λ.σ.7oCλt._λ.} (ί+yφn+2). We have 2-@+/0@^@+(-ί)@
and — leίΣ as before. For se@=5, we have again

sJ0 = J0s ^ s(i)+s(n+2—i) = n+2 for all i ,

so as before we again have £Π @=@2> and £=©+(—
5.1.4. If g is of type AIΠn, n^>l, then we can let J0=E, am(hQ)=π,

ai(hQ)=0 for ί^m. For each m, l^m^[(w+l)/2], we have a real form of gc

of type An. Distinct values of m determine nonisomorphic real forms. Using
vΛ=μa exp (ia0(h0)) (cf. §2), we see that

! = {±(λ, — \j)\i<j^ or

Δ3 = empty.

Wehave@=@1x@2. Here, if mφl and W Φ 1 , then @x is generated by σ λ ._ λ y ,
i<j^m, and is isomorphic to the symmetric group on m letters, 1, ••• , m, while,
if zφl , then @2 is generated by σλ λ., m<i<j, and is isomorphic to the
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symmetric group on n— m-\-\ letters, m-\-l9 ,n+l. The isomorphisms
ψ>r(r=l, 2) are given by s(\ί)=\ψrs^ for s^&r. For m=l, ©!={!}. For

w=l, @ι==@2={i}. For wφl , we have S:-@+/0@=@+(-l)@ and -
e®^*?, we have

i) ίf

where σΛo=<rλl_λm+1σλ2_λra+2 σλ|/ι_λ)i+1. Hence

©+(-!)© if w+lφ2»z

For«=l, ί£=@ 2^5= symmetric group on two letters, and @={1}. Thus

£ = {i, ^λl-Λ2} -
5.2. If cjc is of type Bn a system of simple roots Π is given by

and a system of roots Δ is given by

±(λ,-λy) -

±(λ,+λy) -

5.2.1. If cj is of type ^/M, n^2y then one can let J0=E, otm(h0) = π,
ai(h0)=0 for z'Φm. For each m, l^m^n, we have a real form of QC of type
£„. Distinct values of m determine nonisomorphic real forms. We see that

for i<,j^m or m<i<j and ±λf for z

Δ2 - Δ-Δ,

Δ3 = empty

Hence @ = <S)l

+&1 X ®2@2, where @j and @2 are as in 5.1.4, except that the
indices for @2 run from w+l to n now, and where ^+= [d \ d(\i)=8i\i ,
f, =±l for ί^iw, £f =l for m<i9Ώ6i=l} and ®2={έ/|έί(λf.)=£f λί) f. =l for

i^m, 8f=±l for w<t). For m=n—l, @2={1}, for m=n, ®2=@2=-{l}. For
jw=l, ®1

+=-@1={l}. We have S=@=®@0, where® is the subgroup of the
elements d such that έ/(λf )=£f λί» f, =±l, @o is tne subgroup generated by
σ λ._ λ. and is isomorphic to the symmetric group on n letters. We have ®ΔXC Aί

so®c£ and @0 Π 3;=®! X @2. Hence
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where pk=d^(S) such that d(\k)=—\k and d(λ, )=λz for ί

5.3. If gc is of type Cn a system of simple roots Π is given by

#ι — λ-i — ̂ 2> "' > tfn-i — λ,*-ι ^« > α« — 2XW

and a system of roots Δ is given by

±(λ,-λy) - i^+ . + α^) (i <y)

±(λ, +λy) = ±((λ;-Xw)+(λy-λw)+2λw)

= ±(KH ----- r-α«-ι)+(αyH ----- h««-ι)+α») (*=/ allowed here)

5.3.1. If g is of type C/M, w^3, then we can let J0 = E, an(h0) = π,

=0 f°r i Φ w. Then we have

Δ, = {±(λί- λy)}

Δ2 = {±(λί+λy)}

Δ3 = empty

We see that @ is isomorphic to the symmetric group on n letters. We have

Z=&=&&0 and £n®={l, -1}. Hence £=@+(_l)@.
5.3.2. If gn is of type C//w, w^3, then we can let J0= E, Oίtn(h0)=πy

<Xi(ho)=Q for iήpm. For each my l^m^[n/2], we have a real form of gc of
type Cn. Distinct values of m determine nonisomorphic real forms. We see
that

Δ! = {±(λf—λy), ±(\i+\j)\i^j£m or m^i^j}

Δ2 - Δ-Δ,

Δ3 = empty

Hence we get @=®1@1X®2@2=®(@1χ@2), where the subgroups are as in

5.2.1. except that the elements of 3̂  do not have the restriction Π£, =l, which

those of 3V have. For m=l we let ®1 = @1 = {1}. Here S-@-®@0 and

so we have

if n=2m,

where <r«0=<r^-im+1<ri2-xm+2-<r*m^n. Hence

5.4. If gc is of type Dn a system of simple roots Π is given by
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and a system of roots Δ is given by

±(λ,+λy) =

5.4.1. If Q is of type DIn9 n^4, and J0=E then we can let am(h0)=π,
0 for ί^pm. For each m, 1 ̂ m^[n/2]9 we have a real form of gc of type

Dn. Distinct values of m determine nonisomorphic real forms. We see that

f— λy), ±(λ/+λy)| ^i<jm or m<

Δ2 = Δ — Δ!

Δ3 = empty

Hence as in 5.2.1 we get @=<£)1

+&1 x ®2

+@2, where ®2

+ is the subgroup of ®2 of
elements satisfying Π£, =l. If m=l, we let ®1

+=@1={1}.

(i) For n^5 we have S— @+pw@, where the notation pn was introduced
in 5.2.1. Furthermore β5=®+β50, where ®+ is the subgroup of 35 of elements
satisfying TL£i=l. Thus $=:®@0. As ®d£, to determine ί£ we only have
to consider ί£ Π @ and see that

if »=2w

where σ^ was given in 5.3.2. Hence

@+Pι(S+P-@+PιP«@ if

l > i @ if

(ii) For n=4 we have Z=S^&9 where 5C3) is the group consisting of
elements keeping a2 fixed and permuting a19 a3y α4. We have @ = ®+@0 as
above. We consider the cases m=l and m=2 separately.

(a) If ιiί=l, then

Let rfe®+, ίe@0 and suppose

Note that \1 + \2 = α1+α2+α2+α3+αt and \1-|-X3 = α1+α2+α3+^4. As
ΛΔi contains X!+X2 and/or X!+X3, and as all <τ^*SC3) leave both of these fixed,
we have σ^ΔjΦΔj for all σe5(3> Hence if σέfoΔ1 = Δ1 for σ^^), rfe®+

and ^e@0, then ί^@2 and <τ=l or σ-(α3, α4), where by σ(αi9 αj) we shall denote
the element of 5(3) which permutes αrf and αy and leaves αΛ (k=j=i,j) fixed.
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Note that σ(<Xj, α4) =ρ4. If we now denote the element Je® such that
=— λ, , d(\j)=—\j and d(\k)=\k for k^=iyj9 by p^ , then we can write

(b) If ιιι= 2, then

so SCs)Δ1=Δ1, hence S^cίE. It is clear that ®+d2:. We observe that

£ Π 6 = (©, X ©J+σ^®! X @2)

where σ^0=σλl_λsσλ2_λ4. Hence we conclude that

5.4.2. If g is of type DIny n^4, and J0^E then we can let Oίm(h0)=πί

ai(h0)= Ofor / Φ m i f /WΦO, and let A0=0if w=0. For each m, 0<^m^[(n— 1)/2],

we have a real form of gc of type Z)M. Distinct values of m determine non-

isomorphic real forms. In order to determine Δt (/ = l,2, 3) we shall first
compute the value of μa (cf. §2). By [6, (1) p. 128] μa must satisfy

(ml) μaμ_Λ = 1

(m2) μΛ+β = (Λ^/0cQ>),/0(β)/Λ^Q})

(m3) //Λ|. = 1.

We find for i<j<k

(el) [eλi-λj,eλ._λκ] = eλ._λk

( e 2 ) [eλ..λ., *λ.+λj - eλ.+ χ.

(e 3) [>λί.-λ,, %+λJ = eλ|.τλy

(«4) |>λ.+λ,, eλj_λk] = eλ.+x. .

For i<j—l we have by (m2)

So using (el), (^2) and (m3) we have

μλ.-x, = 1 fori<j ( I )

For i<n—\ we have from (τw2)

Mλ t +λM=(Λ^.7 o C λ.-λ M_1 > J-o ( λ r t_1 + λ w)/ΛΓλ._λ Λ_1 > λ M_1 + λ n)^λ._λ M_1^λ M_ l + λ M

so using (el), (#2), (m3) and (1) we get

μ\i+\j = 1 fori<n (2)
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For i<j<n we have from (mΐ)

Using (e3)y (04), (1) and (2) we conclude that μλ.+ λy=l. Finally we use (ml)

and have μΛ=l for all αeΔ. Now we find

Δ! = {±(λf— λy), ±(λ/+λy)|ί<y^iff or

Δ a =

Note that (λ, — λw, λz +λw)=0 and that

\k if

— λt if

Now we see that @— ®+(@1x@3), where as before ®+ is the group of elements
d such that rf(λt )=£Λό £f.= ±l for l<Zi<Zn with Πff=l, while @j is the

group generated by σ λ ._ λ . for l^i<j^m and @3 is the group generated by

crλ._λ. for m<i<j<n. If w=0 or 1 then ©!={!}. If τz=4 and m=2 then

(i) For n^5 as in 5.4.1 we have £=®@0. As ®Δj—Δα we have

Furthermore

\ίn— 1Φ2/W

if n— l = 2m

where <r*1=<r\1-\m+ί<r\2-\m+2'"<r\m-\n-1 Hence

if n--{Z ~ ~ - - iίn-\=2m.

(ii) For n=4 as in 5.4.1 we have $,=S<iJib=S<i$ ®+@0. We have two
separate cases: m=0 and 1.

(a) If m=0 then

Δ! - {±(λ,-λy), i^ +

We note that the following three elements of Δn

are all fixed by any cre5(3). Thus if σdsAl=Al for cre5(3), ί/e®+ and
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then ώΔj contains ±(λ!+λ2), ±(^!+X3), ±(λ2— X3), hence
The remaining three positive elements of A1 not listed above are

λx— λ2 = aly λj— X3 = c^+α,,, X2+X3 =

so the condition σΔ1=Δ1 implies σ=l or cτ=σ(α3, α4). Hence we have

(b) If m=\ then

Δ! - {±(X2-X3), ±(X2+X3)} = {±α2, ±K

For σ^iScg) we note that cr(X2— X3)=X2— X3, so if σds^^^ for

rfe®+ and se@ then ΛΔj contains ±(λ2— λ3), an(l tnus ίe®s and σ=l or
cr(α3, α4). Hence

5.4.3. If g is of type DIIIny n^ι5, then we can let JQ=E, an(h0)=πί

=0 for i=t=w. Then we see that

,— λy)}

Δ2 - (±(λ, + λy)}

Δ3 = empty

We have &=&0^S. As in 5.4.1 we have £=®©0. As XnΦ={l, -1} we
have

6. The structure of Ϊ0 and ϊ. The action of £/@ on r\/ro.

In this section we determine the action of ί£/@ on T1/T0 when gc is
a classical simple algebra, using the structure of TljT0 given by Sirota and
Solodovnikov in [8] and the explicit coset decomposition of ί£/@ determined
in §5. In order that this section be self-contained, we shall elaborate on some
details that were omitted in [8]. In particular we shall indicate how to derive
the structures of p®C and Ϊ0®C. In some cases we choose representatives of
ΓVΓo different from those in [8].3>

In §4 we have seen that Γ0 is generated by rγ=(2πi/(hoύ, hΛ))2h^ αeΔq.
Note that if J0=E, then we have j=a'=(2πil(hΛ, hΛ))2ha. This is the case
if g is one of the following types: AIΠn, BIn, CIny CΠn, DIn withJ0=E, DIΠn.

6.1.1. If g is of type AIn (denoted In in [8]), n odd, w^3, then I0(g)C is

3) We have corrected the errors in [8] that were pointed out by H. Freudenthal in
Zentralblatt 102, 21-22.
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of type C(w+lV2, and ϊ— p is of type Z)CM+1)/2. In fact we know by [8], §11,

Lemma 3, that I0(g)C is semi-simple and that Tl0={al9 ••• , αc«-ι)/2> <^c«+ιy2}
is a system of simple roots for it. The Killing form ( , ) of gc restricted to

Ϊ0®C is invariant and nondegenerate. If f0®C were not simple, then Π0

would decompose into disjoint proper subsets, orthogonal to each other with

respect to the restriction of ( , ) to Ϊ0®C. But computation shows that this

is not the case, so we conclude that Ϊ0®C is simple and that ( , )|Ϊ0®C is a

constant multiple of the Killing form of Ϊ0®C. Then

shows that Ϊ0®C is of type C(M+l)/2. To determine the structure of ϊ, we

note that Δ— Δ2=Δ3 because Δ^φ, and hence that the root system of

is given by {α | α^Δ3} (cf. §4, Remark (2)). Then we find that

Πp = {$CM_ι)/2> ^Cn-3)/2> " ) <*l> β}

is a system of simple roots for £®C, where

-β = α1+2α2+...+2αCM_1)/2+αCn+lV2 .*>

As rank £®C^rank Ϊ0®C we conclude that &={()} and ϊ— p. Furthermore
an argument similar to that for f0, using the restriction of the Killing form of gc

to Ϊ®C, will show the simplicity of ϊ(g)C and then we can determine its type.

We let Ύj=(2πi/(hs.y h/Sj))2hs. (J=19 - , (n+l)/2) and note that

-(2πil(hβ, hβ))2hβ = 71+272+ +2γc«-ιV2+2τc,

(which we shall write —

Then we have

To obtain I\ we have first ri={?|(?, d!y)=0 (mod 2τrί), ;= 1, — ,(n + l)/2}.

Writing ?=Σ V// we can fin(i conditions imposed on Sj(j—l, ••• ,(/z+l)/2)
in order that felY From this we see that

Γi = {Tι> •" > Ύc«+D/2> z}z

where

* - (71+73+-+7cn-3V2+Tcn+1v2)/2 if (n+l)/2 odd

4) Fora=oίi-\ \~&j-i (i<.j)

ii) If i^(n + l)/2<j — 1 (and ί<w + 2—7) then &= — β— &l— 2&2 ί
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* = (71+7s+ +7cκ-1v2)/2 if (n+l)/2 even.

Thus the center C is given by

e^Z. if(ιH-l)/2odd

' l u ι ' • — ••' •-- -••- if(n+l)/2even

where ar1=7c«+D/2-
The outer automorphisms to consider are —1 and σ= 0"λ(w+1)-λ(n+3/2) The

action of —1 on C is clear. The action of σ on C is determined by the
following relations. For (n+l)/2 odd, we have

and for (w+l)/2 even, we have

σz—z = γcn+D/2 = #ι

We consider two subgroups of C equivalent if one transforms to the other by
an automorphism of G. Using the action of ί£/@ on ΓΊ/ΓΌ we determine
the number of inequivalent classes of subgroups of the center C and list it in
the following table. Here and in the following tables the asterisks * mark the
cases where there are classes containing more than one subgroup of C.

order o f subgroup 1 2 4 Total
(n+l)/2odd 1 1 1 3
(»+l)/2even 1 2* 1 4

6.1.2. If g is of type AIn, n even, n^2, then as A0=0 we have J=J0 and
hence 1=^0- Consequently ϊ is semi-simple and rj = {0} and f =p. The system
of roots for t0®C=ϊ(g)C=p(g)C is given by {α|αeΔ3} (because \=φ in this
case) and we see that Π0— Πp={d?1, α2, ••• , an/2} is a system of simple roots.5>
Using the Killing form of gc restricted to ϊ®C and arguing as in 6.1.1, we
conclude that I®C is simple. Then

(&19 #ι)= = (#cn-2y2> #cn-2)/2) — 2(#M/2, an/2)

shows that ϊ®C is of type Bn/2.
Letting γy=(2τri/(Aa^ hSj))2hSj 0=1, — , «/2), we have

Γ0 = Tι, ••• , Ύ(n-2)/2>

and as in 6.1.1 from T1={ξ \ (ζ, «y)=0 (mod 2τrί), J=l, — , ̂ /2} we get

5) For α =«,- + —+αy-ι (ι<y)

i) If ί^y-l^fi/2 then«=έBH
ii)
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Γx = {Ύ!, ••• , Ύc«-2)/2> (7«/2)/2}z -

Thus the center C of G is given by

where #2=(γn/2)/2. The only outer automorphism to consider is —1 and the

action on C is trivial.

6.1.3. If g is of type AHn (denoted /„ in [8]), n odd, ra^3, then h0=Q,

hence J=J0 and Ϊ=I0, so ί) = {0} and ϊ=p. The system of roots for 10®C

=f®C=p®C is given by {α|αeΔ} (in this case Δ2=φ). Using the same

argument as above we conclude that Π0=Πp={c?1, ••• , <2Cn+1)/2}
6> i§ a simple

system of roots, and that I(g)C is simple. Then

shows that ϊ®C is of type CCM+1)/2.

Letting yy=(2ar;/(Aay, hs.))2hΆj (/=!, •-. , (w+l)/2), we have

Γo = {Tιι " 9 Ύcn+ivJz

As in 6.1.1 we derive from Γ^fcK?, ay)^0 (mod 2τr/), j=l, ••• ,(n+l)/2}

that

where

* = (Ύi+ΎaH ----- h7c«-3)/2+Ύcn+ιV2)/2 if (n+l)/2 odd

» - (Ύι+Ύ3+ +Ύcn-ι)/2)/2 if (n+l)/2 even

Thus the center C of G is given by

The only outer automorphism to consider is — 1 and its action on C is trivial.

6.1.4. If g is of type AIHn (denoted A% in [8]), rc^l, then J0=E, hence

IO=QU. We have Π0 = {αι» — » α«) We have I = ϊ>ιθt>2θ^ where b = ιRh0,
and t>!®C and p2®C are simple of types Am_1 and An_tn respectively, except

that ^={0} if m=l, and p1=^2={0} if w=l. To verify this, we first note that

Δ3 being empty the root system of £<g)C is given by Δ t, which is empty if n— 1

and which is the disjoint union of two subsystems {zLpW — \/)|/, j =m} an<i

6) For a=a1-i
i) Ifί^ —l^(w + l)/2 then «=«,- +•• +δy_ 1

ii) If ί^(w + l)/2^y-l (and i^w + 2-j) then

α =&i -\ {-&„+1 - y + 2α« + 2 - y H
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{±(λf — λy)|m</<;} if n>l. Thus {a19 — , αm_J and [am+19 ••• , αj are

systems of simple roots for simple algebras ^®C and £2®C such that p=ιpθt>2

One should also note that the Killing form on p(g)C is the restriction of that for

gc. From ai(h0)=Q for iφw and the structure of p we see that [hQ9 t>]=0.

We now let Ύj= (2πil(hΛJJ hΛ.))2hΛj ( j= 1 , - , n). For n= 1 , we have Γ0= {0}
and T1{71/2}z and the center C is given by

The action of £ on C is given by crλl_λ2 (<γl/2)=—rγ1l/2. For w>l, we have

1 0 == \Yi9 > Twz-lJ Ύ w+i > ) ΎnίZ

From Γ1={ζΊ(f, αy) = 0 (mod 2πi),j=l, ••• , w} we obtain

where u} = (1/^+1) Σ kjf,. Here we could replace u^ by u2 = (l/n-{-l)
n

J just as well. Then the center C is given by

where d=(m, n+ί) and %19 z2 are given by

^ = (mld)u2—(n—m-\-\ld)ul

z2 = M^+AfjjMjs (Mj, M2eZ satisfying M

Here we have chosen ^ and z2 so that if we write #, =Σ ̂  y then ίm=0 for ̂
and ίm=J/(w+l) for %2.

If τz+lφ2wthe only outer automorphism to consider is —1. The action

of —1 is clear. If n+l=2my then n—mjrl=m=d and we have

Ξ (_2/(n+ 1)) Σ *7* (mod Γ.) .
fe -|->M

We can let M1=19 M2=0. Then we have zz =u^ We only have to consider the
action of —1 and σ* . The action of —1 is clear. As for σ# we have

= (-2/(n +1)) Σ k7k = *> (mod Γ0).

To find σvι0(#2), consider

Uι+u2 =<γm (modΓ0)

Because σ* (αm) = — (αH h#w) we have
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tfVoK + W2) = — (u, + U2) (mod Γ0) .

We also have

0V0(*ι) = σ^(u2—^ι)=^ι = ^2— «ι (mod Γ0) ,

hence

K+^-K-wO) = -«2 = -*ι— *2 (mod Γ0) .

For n=l, each non-negative integer gives a subgroup of C and distinct integers
give subgroups which are inequivalent under automorphisms of G. For

the subgroups of C ^Γj/ΓΌ are of the form

where a, b± and b2 are non-negative integers such that if αφ 0, then a \ d, O^
if α=0, then Q^b^d, and if £2=0, then ^=0. If rc+lφ2ra, then the only
outer automorphism to consider is — 1, so for each choice of (a, bly b2) we have
a subgroup of C, distinct triples defining subgroups which are inequivalent
under automorphisms of G. If n+l — 2my then we have to consider σ*Q along

with — 1 and the subgroups of C given by (a, bly b2) and (a, ft/, i2') are sent
onto each other by σ^ if and only if

1) a = a' Φ 0 , b2 = b2' and b,-b2 = -b,' (mod a)

or 2) α = a' = 0 , b 2= b2 and ^— b2 = —b,' (mod rf) .

6.2.1. If g is of type BIn (denoted B*m in [8]), w^2, then JQ=E and we

have Ϊ0— §u and Π0={α1, ••• , an}. For m=l, we have ϊ=p0b, where p®C is
simple of type Bn_ly while Ό=iRhQ. In fact as the system of roots for £®C is

Δ1={d=(λί±λy), l<i<j] ±\A, !<&} we see that {α2, — , α J is a system
of simple roots for p®C, and thus by the argument in 6.1.1 we can derive the
simplicity and the type of p®C. Then from αz (A0)=0, iΦ 1, we conclude that

[A0,p] = 0. For l<m<ny ϊ^p jθfe where ft <g) C and p2®C are simple
and of types Dm and Bn_m respectively. This can be seen by observing

that Δ! decomposes into two disjoint subsystems {d=(λz ±\ )U<7 =m) and
{±pW±λy) I m < i<j} U {±λz I m < /}, orthogonal to each other with respect to
the Killing form on cjc, then picking systems of simple roots (αw_! , ••• , a2 , a1 , β},

where — /3=λ1+λ2=α1+2α2H ----- h2αw,7 ) and {am+19 ••• , a w _ 1 ? αj for the
subsystems and finally applying the argument in 6.1.1 for each subsystem.
From rank ^4- rank £2=w=rank ϊ we conclude b={0}. For m=n, we get ϊ=ψ,
where £®C is simple and of type Dny by the same agrument as in 6.1.1.

Let 7j=(2πil(hΛj9 hΛj))2hΛ. (j=l, ••• , n) and Ύβ=(2πi/(hβ, hβ))2hβ. Then

7) Ifi<j^m then
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-7β=71+272+-+27n_1+7«. From Γ^fcK?, αy)=0 (mod 2*i), ;=!,••• ,n}
we get

Γi = {7ι> 72> ••• , 7,,-ι > 7n/2}z -

If m= 1, then Γ0={γ2, ••• , yw}z so the center C is given by

cs* ιyr0 - <*1+r0>x<*I+r0> s* zxz2 ,

where ZI=ΎI and z2=γJ2. If l<m<n then ^={7^ — >7m-ι> 7™+ι> — ι
7«> 70}z={7ι, ••' > Ύ«-ι, 2γw, γm+1, — , γjz, hence the center C is given by

C - I\/Γ0 - <*,+Γ0> x <*2+Γ0> - Z2 x Z2

where ^=7m and zz=jnβ. If m= w then ^={7^ ••• , 7^, 7β}z={Ύι, — ,

7«-ι> Ί^z and tnus tne center C is given by

where z2=<γn/2. The outer automorphism to be considered is p^ We have

Pl#2 = ^2

p15'l — ̂  if 7W > 1 .

If m— 1, then atn=al and

Pι«ι = PiPW— X2) = -λj— λ2 = — («ι+2(α2H ----- h<^n)) ,

hence

PΛ = PiΎi = ~7ι+2(72H ----- h7n-ι)-Ύn = — #ι (mod Γ0) .

For m=l, the subgroups of C are of the form

or Zx 1 .

Here it is a non-negative integer, a and i2 take values 0 and 1. If α=0, then
either 61=62=0 or fe^O. If β=l, then b2=0. Each of these subgroups is
stable by p1 , so they are all inequivalent under the automorphisms of G. For

m>\y the subgroups of C are all pointwise fixed by automorphisms of G.
6.3.1. If a is of type CIn (denoted ICn in [8]), w^3, then J0=E and Ϊ0=QU

and Π0={αf1, ••• , an}. We have ϊ=!p0b, where p(g)C is simple and of type
An_ι and Ό=iRh0. To show this we just have to observe that the system of

roots Δ— Δ2=Δ1={±(λ — Xy)}(Δ3 is empty) of p(g)C has a system of simple

roots {«!,•••, tfrt-ι} and apply the argument in 6.1.1. We again see that
[A0, ^)]=0 from αf (A0)=0, for / Φ Λ .

Let γ. = (2πi/(hΛ.y fιΛ.))2hΛ. (j=l, ,n). We have Γ0= {71, - , 7*_ι}*
and from Γl={ξ\(ξ, a^) = 0 (mod 2τrί), ^=1, ••• , n} we get
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where

z — (γl4-γ3-^...-^γw)^2 if n odd

z = (7ι+γ3H hΎ«-ι)/2 if n even.

Hence the center C is given by

I <*+Γ0>X<#1+Γ0>^Z2xZ if n even

where ^=7,,.
The outer automorphism to consider is — 1, so the action is clear. Hence,
if n is odd, then each non-negative integer gives a subgroup of C, inequivalent
under automorphisms of G, and if n is even, then the enumeration of subgroups
is the same as in the case of BIn, m=l (6.2.1) and the subgroups are all
inequivalent under automorphisms of G.

6.3.2. If g is of type CΠH (denoted C*m in [8]), n^3, then J0=E and

Ϊ0=QU and Π0={α1, ••• , an}. We have 1=^0^, where ^®C and {>2®C are
simple and of types Cm and Cn_m respectively. In fact, the root system
Δ! of p®C decomposes into two subsystems {±(X,— \j)\ί^j<m} and
{±(λf— \j)\m<i^j}. The two subsystems are orthogonal to each other with

respect to the Killing form of gc. The first one has {tfm_ι, ••• , a19 β} where
—β=2aί-\ ----- \-2an_1+any as a system of simple roots, while the second one
has {am+l , ••• , an_19 an}, as a system of simple roots. We derive the simplicity
using the argument in 6.1.1 and the types follow from

(α1? a,) = — = (αn_1? αn_ x) = (an, an)/2 = (β, β)/2 .

Letting j.=(2πil(hΛj, hΛj))2hΛj and jβ = (2πil(hβ, hβ))2hβ we have -γβ =

TiH ----- hT«-ι+7« We have then

Γ 0 — {Ύm-ι> *•• > 7 ι ι Ύβ, Ύm+ι, ••• > Ύ n - l > Ύn}z= {7l > — > TnJZ

and as ΓΊ is exactly the same as in 6.3.1, i.e., F!= {OΊ, ••• , 7»,^}z>
— )/2, we see that the center C is given by

The only outer automorphism to consider is σ*Q and it occurs only when n=2m.
The action of σ^ on # is trivial in this case. At any rate the center is pointwise

fixed by all automorphisms of G.
6.4.1. If g is of type DIH, n^4, and J0=E (denoted Dlm in [8]), then

IO=QU and UQ={aly ••• , αj. We let l^m^[n/2]. If m>l, then 1=^=
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where p!®C and £2®C are simple and of types Dm and Dn_m respectively,8)

and if m=l, then ϊ=p®t>, where $®C is simple and of type Dn_ί. To see

the structure of ϊ, we observe that the root system Δj. of £®C decomposes into

two subsystems {±(λf ±λy)|i<7<^m} and {±(\i±\j)\m<ί<j}9 orthogonal

to each other with respect to the Killing form of gc, and that the first subsystem

is empty if m=l. For m>l letting y8=—(λ1+X2) we see that {am_19 •••, a19 β}

is a system of simple roots for the first subsystem,9) while {αw+1, ••• , an-ί9 an}

is a system of simple roots for the second. The rest of the argument goes as

before. For m=l9 the empty first subsystem is replaced by Ό=ιRh0. We

have [h0, £]—0 from αz (λ0)=0 for / Φ l .

Letting Ύj.=(2πil(hΛj,' hΛj))2hΛj (j=l, - ,n) and <γβ=(2πil(hβy hβ))2hβ we
have Ύβ=Ύι+2(Ύ2+...+Ύn_2)+Ύn_ι+Ύnt From Γ1={f |(f, ay)=0 (mod^rί),

7=1, ••• , w} we obtain Γj—{γ l y ••• , 7 W _ 2 , ,̂ SΊ}̂ , where

^ - (r«-ι+Ύ.)/2
_ ί (7ι+Ύ3+-+7.-2)/2+(7li.1-7«)/4 if n odd

#ι — "i
I (Ύi+ΎsH h7«-3)/2+γw_ι/2 if 7ί even

For ;w=l we have Hp={α2, ••• , an}y hence Γ0={γ2, ••• , γw}^ and thus the center

C is given by

c - ιyr0 - <^+r0> x <χ+r0> ̂  z2 x z .

For jw>l we have U^={am_lί — , α x, /3} U {αm+1, — , «„-!, «w}, hence Γ0—

{Ύm-i, '•• i Ύ i , Ύβ, Ύm+i, — , r»-ι, 7»}z= {Ti, — , 7«-ι., 2γw, γm+1, — , γΛ}z
Thus we can write ΓΊ={#, ,̂ ^4, Γ0}z, where ^4=7W. If n is odd the center
C is given by

If w is even and m is odd the center C is given by

c ̂  ιyr0 = <^+r0> x <^+r0> ̂  z4 x z2 .

If n is even and m is even the center C is given by

c ̂  ιyr0 - <^+r0> x <*+r0> x <^4+r0> « z2 x z2 x

(i) For ft 2^ 5, if nφ2m, then we have to consider the action of px and pny

while if n=2my then we have to consider the action of p19 pn and σΛ().

(a) If n^5 and m=l9 then

8) Except p! is not simple for m=2, and p2 is not simple for n= 4, m = 2.
9)
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If furthermore n is odd, then

/2 = -Ύ2 ----- 7n-2=0 (mod Γ0)

and if n is even, then

pί(^)+^+^=(pίΎί+Ύ1+Ύn-l+Ύn)/2=0 (mod Γ0) .

For pn, regardless of the parity of ny we have

Pn(z) = z

ft.(*ι)-*ι = -(7.-ι-7»)/2ΞΞ* (mod Γ0) .

The subgroups of C^T1/T0 are of the form

Here b2 is a non-negative integer and a and bl take values 0 and 1. If a=Q, then
either b1=b2=0 or b2>0. If β=l, then ^=0. The subgroups given by the

triple (a, b19 b2) are stable under the automorphisms except for those given by

(0, 0, b2) and (0, 1, b2), where b2 is odd, which map onto each other by pn.

(b) If n^5, n odd and w>l, then

γw if w odd

0 if m even

J O if m odd

™ * * 2 I —7m if m even

0 if m odd
(mod Γ0)ar. if w even

ί
ι = i

L

7^ = ̂  if w odd
Λ ., (modΓ0)0 if m even

The number of inequivalent classes of subgroups of the center C under the

automorphisms of G are given in the following table.

order o f subgroup 1 2 4 8 Total
number of classes 1 3 2* 1 7

(c) If w^5, n even, m>l and m odd, then

= — (72 H ----- \-7m-i) — (Tm+iH ----- hΎn-2)

ΞΞO (modΓ0)
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pn(z) = z

Moreover, if n=2m, then z1 = (fγ1+7Λ-\ ----- hT^H ----- h7n-ι)/2 Taking note
especially that σ1to(am)=—(aί-\ ----- h^-i), we find that

and finally

2 = 7».= 25r1 (mod Γ0) .

The number of inequivalent classes of subgroups of C under the automorphisms
of G are given in the following table.

order o f subgroup 1 2 4 8 Total
n^2m 1 3 2* 1 7
n = 2m 1 2* 2* 1 6

(d) If n^5y n even, m>\ and m even, then

+*Ξ=0 (mod Γ0) (as in (c))

l(z<) = Z4

(mod Γ0) , pn(z) = * , pw(^4) = z< .

Moreover, if n=2m, then noting that σ1tQ(am)^=—(al-\ ----- \-ocn_l) and that

o lCQ(an)=atn._1+2(am-{ ----- hαn-2)+«w-ι+α», we obtain

oΊt0(^ι) = #ι , σιeo(ar) = 5r+^4 , σ«0(z*)= —** (mod Γo)

The number of inequivalent classes of subgroups of C under the automorphisms
of G are given in the following table.

order o f subgroup 1 2 4 8 Total
n^2m 1 4* 4* 1 10
n=2m 1 3* 3* 1 8

(ii) Let us consider the case for w=4 now
(a) If n=4 and m=lj then the automorphisms to be considered are pi a

and p4. The center is given by

where 3r=(73+74)/2 and ^ι=(7ι+73)/2. We have

Pι.2# = ^ pι,2^ι= — ̂ i (mod Γ0)

p4^ = 2- p4^ = ̂  + z (mod Γ0)
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As in (i) (a) the subgroups of C are of the form

<^+Γ0>X<M+MιΓ0>-22X^ or I x Z .

They are stable under the automorphisms of G, except those given by (0, 0, b2)
and (0, 1, i2), where b2 is odd, which map onto each other by ρ4.

(b) If n = 4 and m = 2, then the automorphisms to be considered are

Pι,4> °"*0 and those of S^. The center is given by

where ^ι=(τ1+γ3)/2, %=(73+74)l2 and #4=γ2. The action of the automor-

phisms of G is given, mod Γ0, by the following:

σ«Qz=z4+z σ^z4=z4

σ(a, , a^z^z.+z σ(a, , a3)z4 = z4

σ(a, , α4χ = * σ(a19 a4)z = z, σ(a, , a4)z4 = z4

The number of inequivalent classes of subgroups of the center C under the
automorphisms of G are given in the following table.

order o f subgroups 1 2 4 8 Total
number of classes 1 2* 2* 1 6

6.4.2. If g is of type DIny n^4 and J^E (denoted Dlm+l in [8]), then

is simple and of type Bn-l and f— Ϊ0 for m=0, while ϊ^p— Pι®t>2 f°Γ

/w^l, where ^®C and t>2®C are simple of types Bm and Bn_m_l respectively.
Here note that Q<^m^[(n— 1)/2]. We have found that μΛ=l for all α^Δ in
5.4.2. Hence the root system of Ϊ0®C is {α|α^Δ}. The simple system of
roots H0={a19 ••• ,α w _ 2 , αM_J, where άi=a£ for /=!, ••• ,n—2 and α^.!̂
(αw_1+αM)/2, does not decompose into two mutually orthogonal subsystems
with respect to the Killing form of gc so we know that Ϊ0®C is simple, and
we verify the type by observing that

(a^a,) = ••• = (αw_2, an_2) = 2(αM_1, an_,) .

To determine the structure of ί we note that the system of roots for !<g)C is
{<2|αeΔ1UΔ3} = {d=(λ ί±λy)|ί<</^m or m<i<j<n}\J{±\i\i<n^. For
w^l, we can decompose this into two subsystems, orthogonal to each other
with respect to the Killing form of gc. {αm_α, oι.m_2, ••• , a19 β} is a system of
simple roots for one of the subsystems, while {am+1, ••• , α w _ 2 , α^.j} is a system
of simple roots for the other. Here β=—\1= — (aί-\-a2-{ ----- h#Λ-2+<2»-ι)
Πp is the union of the two systems of simple roots. The two subsystems give
the two subalgebras \)ί and p2 and the simplicity and type of each J>f (g)C are
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obtained by applying the argument of 6.1.1 on each subsystem.
Letting Ύj=(2ml(haj, hs.))2hs. (j=l, - ,n-l) and Ύβ=(2πil(hβ, hβ))2hβ

we have Ύβ=-2(<γ1+γΛ+ +<γH_2)-<γn_1. From iγ={r |f, £y)=0 (mod 2πi),
j=lj...yH-l} We get Γ^fa, - , γM_ 2, 7H-J2}Z. If »ι=0, we have Γ0=

{%, ••• , Ύn- άz If "*^1> we have

U

Hence the center C is given by

if m=0
*7 . ryr £

where z=<γn_J2 and ^4=-γw.
(i) For w^5, the outer automorphisms that we have to consider are pw

if n— 1Φ2/W, and pw and σΛl if w—l = 2m. We have

pnz = z , pM2:4 = #4,

and if n—l=2m, then

σ^—z= z4, σ^^Ξ ar4 (mod Γ0) .

The number of inequivalent classes of subgroups of the center C under the

automorphisms of G are given in the following table.

order o f subgroup 1 2 4 Total

- i f i=0 1 1 0 2
w^l, n — Iφ2m 1 3 1 5
w^l, n—l = 2m 1 2* 1 4

(ii) For n=4, the only outer automorphism we have to consider is σ(a^ α4).

We have, for m=l, z^fγ3/2 and £4=% and both are fixed by σ(α3, α4).

Hence all subgroups of the center C are stable under the automorphisms of G.
Thus, if m=ly then there are three subgroups of order 2, inequivalent under the

automorphisms of G.

6.4.3. If Q is of type DIΠn (denoted JDn in [8]), n^5, thenJ0=E, 10=QU

and Π0= {#!,•••,#„}• We have I=!p®t), where p(g)C is simple and of type

AH_ί. The root system for p (g) C is Δ1 = {±(λί —λy)}(Δ8 is empty) and

Πp={α1, ••• , <^M_ι} is a system of simple roots for Δx. We have Ό=iRhQ and

Letting γ~(2πi/(hΛ.9 haj))2hΛj (j=l, — , w), we have Γ0—{%, — , ̂ .Jz

and Γ1={fγlί ••• , 7n_2, #, ^Jz as m 6.4.1. The center C of G is given by
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if n odd

^ Z2 X Z if n even

where # and ̂  are as defined in 6.4.1. The only outer automorphism we have
to consider is — 1. If n odd, then each non-negative integer gives a subgroup of
C. If n even, then each triple (a, bly b2) gives a subgroup of C. Here £2 is a
non-negative integer and a and ^ take values 0 and 1; if a=Q, then either
b1=b2=0 or £2>0 if 0=1, then 61=0. All subgroups of the center C are stable
under the automorphisms of G.

7. Table of number of inequivalent classes of subgroups

We shall now collect the results of §6 on the subgroups of the center C. In
the table below N(r) means that the subgroups of order r of the center C of
noncompact G are partitioned into N inequivalent classes under the automor-

phisms of G. As before, the asterisk * indicates the non-trivial action of Aut
G. In particular, by ΛΓ(r)* we mean that amongst the N inequivalent classes of
subgroups of order r some contain more than one subgroup of C, and by coun-
table* we mean that amongst the countably many inequivalent classes there are
some that contain more than one subgroup of C.

AIn n
(n+1) 12 odd
(n+l)!2 even

n even, n^2
AIIn n odd, n^3

AIIIn n=l
n>\

C

Z2xZ2

ZdxZ

ί<m<n

CIn n odd, /z^3
n even, n^3

CΠn n^3
DIn, J=Et

(i) «^5
»=1
ι»>l, n odd

Z 2xZ

Number of inequivalent
classes of subgroups of C

1(1) 1(2) 1(4)

1(1) 2(2)* 1(4)
1(1) 1(2)

1(1) 1(2)

countable

n +1Φ 2m countable
n-\- l = 2m countable*

countable
1(1) 3(2) 1(4)
1(1) 1(2)
countable
countable
1(1) 1(2)

countable*

1(1) 3(2) 2(4)* 1(8)
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m>ly m odd, n even Z2xZ±

1(1) 3(2) 2(4)* 1(8)
n=2m 1(1) 2(2)* 2(4)* 1(8)

m>l, m even, n even Z2χZ2xZ2

rcφ2m 1(1) 4(2)* 4(4)* 1(8)
n= 2m 1(1) 3(2)* 3(4)* 1(8)

(ii) n=\
m=l Z2xZ countable*

m=2 Z2xZ2xZ2 1(1) 2(2)* 2(4)* 1(8)

Din, JQ* E

(i) n^S
m=0 Z2 1(1) 1(2)
m^l Z2xZ2

ra-lφ2m 1(1) 3(2) 1(4)

ιt-l = 2m 1(1) 2(2)* 1(4)
(ii) w=4

m=l Z2 1(1) 1(2)
w=0 Z2xZ2 1(1) 3(2) 1(4)

DIΠn n odd Z countable

n even Z X Z countable
2

Appendix

In 5.1.1, 5.1.2 and 5.1.3 we made use of the following lemma which we shall
now prove.

Lemma. Let S be the symmetric group on n+ 1 letters and H the subgroup

of S defined by H={sίΞS\s(i)+s(n+2—i)=n+2 for all ί=l, — , n+1}. Then

H is generated by the following permutations :

1) (i, j) (n-\-2—i, n-\-2—j\ where l^i<j ^n-\-ly i-\-j=£n-\-2 and if n even,

2) (i, w+2— ί), where

It suffices to have all of 1) and one (ί, n+2—i) in 2) to generate H.

Proof. Consider a fixed i,l^i^n+l9 and a fixed s^H. When s is written
as a product of disjoint cycles, let a be the cycle containing / and b be the cycle
containing i'=n-\-2—i. Then either a and b are disjoint or a=b.

If a and b are disjoint, then a and b have the same length, say k, and we have

a = (i, s(i), /(i), - , ί*-1^) = (t, <i))(ί (ί),

ft = (Γ, ί(i'), - , ί*-1 '̂)) = (*", ΦV))(Φ"), **(»•')) - (**"V). *fe"(O)
Hence the product ̂ i can be written as the product of permutations in 1), namely
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those of the form ( '̂'(t). ̂ ('Wί*'). *''(*"))> /=1, - , k-l.
If a=b, then choose the smallest t such that έ(i)=i'. Then we have

si(i')=i and the action on / by s and its powers is

i -* ί(t) -»• j*(i) -* ---- > ί'-XO -» i' -* 4(1') -* ---- > ί*-1^') -* i

where all terms are distinct in this sequence, except the first and the last are the

same. We see that a can be written as

a = (i, <0. - , ̂ "(O. *"> *('")> - > ^"(O)

so again the cycle a is a product of permutations in 1) and 2).

The last claim is proved by noting that if j-{-j'=n-}-2, then (z,

(ϊJ')(i,n(i,J)(i'>J'} q e d.
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