ON THE GROUP ALGEBRAS OF METABELIAN GROUPS OVER ALGEBRAIC NUMBER FIELDS I

Tоsнініко YAMADA

(Received August 26, 1968)

1. Introduction

In a previous paper [5], we investigated the group algebra $\boldsymbol{Q}[G]$ over the rational number field \boldsymbol{Q} and Schur indices of a metacyclic group G. Here G is assumed to contain a cyclic normal subgroup A of order m with a cyclic factor group G / A of order s such that $(m, s)=1$. We showed that every simple component of $\boldsymbol{Q}[G]$ is explicitly written as a cyclic algebra. Consequently, the formulae for the Schur indices of all the irreducible representations of G were obtained.

In this paper, we pursue the same matter for a metacyclic group which does not necessarily satisfy the condition $(m, s)=1$, or more generally for a metabelian group G with an abelian normal subgroup A such that G / A is cyclic. In the first place, we refine the well known fact that every irreducible representation of a metabelian group is monomial (Theorem 1). By this Theorem 1, we find all the irreducible representations of a metabelian group G which is a semi-direct product of an abelian normal subgroup A and a cyclic subgroup $\langle\sigma\rangle$, and satisfies a certain condition. (This condition is fulfilled if G is metacyclic.) If an irreducible representation U of the above metabelian group G satisfies the assumption (h) of Theorem 2, then the enveloping algebra $\operatorname{env}_{\boldsymbol{Q}}(U)$ of U is expressed as a cyclic algebra. In Theorem 3, we give the formula for the Schur index of the above irreducible representation U.

To some extent, our argument is applicable to a non-split extension G of an abelian normal subgroup by a cyclic group. For simplicity, we shall discuss the case that G is metacyclic ($(55$). Finally we consider several examples and determine group algebras and Schur indices of them (§6).

Notation and Terminology As usual $\boldsymbol{Z}, \boldsymbol{Q}, \boldsymbol{C}$ denote respectively the ring of rational integers, the rational number field, the complex number field. For a set $M, \# M$ is the cardinality of $M .\langle\omega, \sigma, \cdots\rangle$ is the group generated by ω, σ, \cdots. An irreducible representation of a finite group G always means an absolute one. If ψ is a representation of a subgroup H of G, ψ^{G} denotes the
representation of G induced from ψ. If χ is a character of $G, \boldsymbol{Q}(\chi)$ denotes the field obtained from \boldsymbol{Q} by adjunction of all values $\chi(g), g \in G$. For a natural number n, the multiplicative group of integers modulo n is denoted by $\boldsymbol{Z} \bmod ^{\times} n$, and for $r \in \boldsymbol{Z},(r, n)=1, r \bmod ^{\times} n$ always means an element of $\boldsymbol{Z} \bmod ^{\times} n$. If K is an extension field of k, then $N_{K / k}$ is the norm of K over k. If K is a Galois extension of $k, \mathbb{B}(K / k)$ is its Galois group.

2. Irreducible representations of metabelian groups

In the first place we quote from [3, p. 348] Blichfeldt's theorem.
Theorem. Let G be a finite subgroup of $G L(M)$ for some finite dimensional vector space M over an algebraically closed field K such that char $K X[G: 1]$, and let M be an irreducible $K[G]-m o d u l e$. Suppose that G contains an abelian normal subgroup A not contained in the center of G. Then there exist a proper subgroup H^{*} of G which contains A, and an irreducible $K\left[H^{*}\right]$-submodule L of M, such that $M=L^{G}$.

Remark. It is not stated in [3] that H^{*} can be taken so as to contain A.
The following theorem implies that, in order to give all the irreducible representations of a metabelian group G, we may fix a maximal abelian normal subgroup A such that G / A is abelian, and find all the subgroups H such that $G \supset H \supset A$, and decide all the linear characters of H.

Theorem 1. Let G be a metabelian group with an abelian normal subgroup A such that G / A is abelian. Let K be an algebraically closed field whose characteristic does not divide $[G: 1]$. Then for every irreducible K-representation U of G, there exists a linear character ψ of a certain subgroup H which contains A, such that $U=\psi^{G}$.

Proof. Since any subgroup or homomorphic image of a metabelian group is metabelian, we use induction about the order of G. Since the result is clear if G is abelian, we may assume that G is not abelian and that the theorem is true for any metabelian group of smaller order than $\# G$. Let M be any irreducible $K[G]$-module. The mapping $g \mapsto g_{L}$, where g_{L} is the linear transformation $m \mapsto g m$ of M, is a homomorphism of G onto a metabelian subgroup G_{L} of $G L(M)$, and M is an irreducible $K\left[G_{L}\right]$-module. The image A_{L} of A is an abelian normal subgroup of G_{L} such that G_{L} / A_{L} is abelian. If $g \mapsto g_{L}$ has a non-trivial kernel, then $\left[G_{L}: 1\right]<[G: 1]$, and by the induction hypothesis, there exist a subgroup H_{L} of G_{L} containing A_{L}, and a one-dimensional $K\left[H_{L}\right]$-submodule P of M such that $M=P^{G_{L}}$. If H is the subgroup of G consisting of all $h \in G$ such that $h_{L} \in H_{L}$, then $H \supset A$. It is easily seen that P is a onedimensional $K[H]$-module and $M=P^{G}$.

We may therefore assume that $g \mapsto g_{L}$ is an isomorphism of G onto G_{L}, and we shall identify G with G_{L}. Let C be the center of G. If $A \nsubseteq C$, then by Blichfeldt's theorem, there exist a proper subgroup F of G containing A, and an irreducible $K[F]$-submodule W of M such that $M=W^{G}$. Since F / A and A are both abelian and $[F: 1]<[G: 1]$, the induction hypothesis implies that there exist a subgroup $H \supset A$ and a one-dimensional $K[H]$-submodule V of W such that $W=V^{F}$. Then we have $M=V^{G}$. Now we assume $A \subset C$. Since $[G, G] \subset A$, any subgroup containing C is normal in G. As G is not abelian, we can find a subgroup $E \supset C$ such that E / C is cyclic and not equal to $\langle 1\rangle$. Then E is an abelian normal subgroup not contained in the center, and G / E is abelian. Therefore we find a subgroup $H(\supset E \supset A)$ and a one-dimensional $K[H]-$ submodule V of M such that $M=V^{G}$. The theorem is proved.

Now let us consider a metabelian group G which is the semi-direct product of an abelian normal subgroup A and a cyclic subgroup $\langle\sigma\rangle$ of order s :

$$
\begin{equation*}
G=A \cdot\langle\sigma\rangle . \tag{1}
\end{equation*}
$$

If $\left\{p_{1}, \cdots, p_{n}\right\}$ is the set of primes dividing the order of A, then

$$
\begin{equation*}
A=\left\langle\omega_{11}\right\rangle \times \cdots \times\left\langle\omega_{1 c(1)}\right\rangle \times \cdots \times\left\langle\omega_{n 1}\right\rangle \times \cdots \times\left\langle\omega_{n c(n)}\right\rangle, \tag{2}
\end{equation*}
$$

where the order of $\omega_{i j}$ is $p_{i^{i j}}^{a_{i j}}(1 \leqslant i \leqslant n, 1 \leqslant j \leqslant c(i))$. In the following we assume that

$$
\begin{equation*}
\sigma^{-1} \omega_{i j} \sigma=\omega_{i j}^{r}{ }_{i j} \quad(1 \leqslant i \leqslant n, 1 \leqslant j \leqslant c(i)) . \tag{3}
\end{equation*}
$$

Let $u_{i j}$ be the order of $r_{i j} \bmod ^{\times} p_{i}^{a_{i j}}$ and u be the L.C.M. of $u_{i j}(1 \leqslant i \leqslant n$, $1 \leqslant j \leqslant c(i))$. Then $A \cdot\left\langle\sigma^{u}\right\rangle$ is a maximal abelian normal subgroup of G, so that by Theorem 1, any irreducible representation U of G is induced from a linear character ψ of some subgroup $H_{t}=A \cdot\left\langle\sigma^{t}\right\rangle, t \mid u . \quad H_{t}$ is a normal subgroup of G and

$$
\left[H_{t}, H_{t}\right]=\prod_{i, j}\left\langle\omega_{i j}^{r_{i j}^{t}-1}\right\rangle .
$$

If we set

$$
\begin{equation*}
d_{t i j}=\left(r_{i j}^{i}-1, p_{i^{i j}}^{a^{i}}\right), \tag{4}
\end{equation*}
$$

all the linear characters of H_{t} are given by

$$
\begin{equation*}
\psi_{\alpha_{11} \cdots \alpha_{1 c(1)} \cdots \alpha_{n 1} \cdots \alpha_{n c}(n) \beta}^{(t)}, \quad 0 \leqslant \alpha_{i j} \leqslant d_{t i j}-1, \quad 0 \leqslant \beta \leqslant \frac{s}{t}-1, \tag{5}
\end{equation*}
$$

such that

$$
\begin{cases}\psi_{\alpha_{11} \cdots \alpha_{1 c(1)} \cdots \alpha_{n 1} \cdots \alpha_{n c(n) \beta}}^{(t)}\left(\omega_{i j}\right)=\exp \frac{2 \pi \sqrt{-1} \alpha_{i j}}{d_{t i j}} & \binom{1 \leqslant i \leqslant n}{1 \leqslant j \leqslant c(i)} \tag{6}\\ \psi_{\alpha_{11} \cdots \alpha_{1 c(1)} \cdots \alpha_{n 1} \cdots \alpha_{n c(n) \beta}}^{(t)}\left(\sigma^{t}\right)=\exp \frac{2 \pi \sqrt{-1} t \beta}{s} .\end{cases}
$$

For simplicity, we write them as

$$
\begin{equation*}
\psi_{\alpha_{\beta}}^{(t)}=\psi_{\alpha_{11} \cdots \alpha_{1 c(1)} \cdots \alpha_{n 1} \cdots \alpha_{n c(n) \beta}}^{(t)} . \tag{7}
\end{equation*}
$$

The representation of G induced from $\psi_{\alpha_{\beta}}^{(t)}$ is denoted by $U_{\alpha_{\beta}}^{(t)}$:

$$
\begin{equation*}
U_{\alpha_{\beta}}^{(t)}=\left(\psi_{\alpha_{\beta}}^{(t)}\right)^{G} . \tag{8}
\end{equation*}
$$

It is readily verified that

$$
\begin{align*}
& U_{\alpha \beta}^{(t)}\left(\omega_{i j}\right)=\left(\begin{array}{cccc}
\zeta_{t i j}^{\alpha_{i j}} & & & 0 \\
& \zeta_{t i j}^{\alpha_{i j} r_{i j}} & & \\
& & \ddots & \\
0 & & \ddots & \\
0 & & & \zeta_{t i j}^{\alpha_{i j} j_{i j}^{t-1}}
\end{array}\right), \quad \zeta_{t i j}=\exp \frac{2 \pi \sqrt{-1}}{d_{t i j}}, \tag{9}\\
& U_{\alpha \beta}^{(t)}(\sigma)=\left(\begin{array}{cccccc}
0 & \cdots \cdots \cdots \cdots \cdots & \xi_{t}^{\beta} \\
1 & & & & & 0 \\
\ddots & & & & & \\
& \ddots & & & & \vdots \\
& & \ddots & & & \\
& & \ddots & & & \vdots \\
& & & \ddots & & \vdots \\
0 & & & \ddots & \vdots \\
0 & & & & 1 & 0
\end{array}\right), \quad \xi_{t}=\exp \frac{2 \pi \sqrt{-1} t}{s}, \tag{10}\\
& U_{\alpha \beta}^{(t)}\left(\sigma^{t}\right)=\xi_{t}^{\beta} \cdot 1_{t}, \tag{11}
\end{align*}
$$

where 1_{t} is the identity in the full matrix algebra $M_{t}(\boldsymbol{C})$.
Proposition 1. $U_{\alpha \beta}^{(t)}$ is irreducible if and only if for every $\mu \neq 0(\bmod t)$, there exist i and j such that

$$
\begin{equation*}
\zeta_{t i j}^{\alpha_{i j}} \neq \zeta_{t i j}^{\alpha_{i j} j_{i j}^{\mu}} . \tag{12}
\end{equation*}
$$

Proof. For any element $x=\omega \sigma^{\mu}$ of G where $\omega \in A$,

$$
\begin{gathered}
x^{-1} \omega_{i j} x=\sigma^{-\mu} \omega_{i j} \sigma^{\mu}=\omega_{i j}^{r_{i j}^{\mu}}, \\
x^{-1} \sigma^{t} x=\omega_{1}^{-1} \sigma^{t} \omega_{1}, \quad \omega_{1}=\sigma^{-\mu} \omega \sigma^{\mu} \in H_{t},
\end{gathered}
$$

so that

$$
\begin{aligned}
& \psi_{\alpha \beta}^{(t)}\left(x^{-1} \omega_{i j} x\right)=\zeta_{i j}^{\alpha_{i j} r_{i j}^{\mu}} \\
& \psi_{\alpha \beta}^{(t)}\left(x^{-1} \sigma^{t} x\right)=\psi_{\alpha \beta}^{(t)}\left(\sigma^{t}\right)
\end{aligned}
$$

Then by [5, Lemma 2] we have
$U_{\alpha \beta}^{(t)}$ is irreducible
\Leftrightarrow for every $\quad x \notin H_{t}, \quad \psi_{\alpha \beta}^{(t)} \neq\left(\psi_{\alpha \beta}^{(t)}\right)^{(x)}$
\Leftrightarrow for every $\quad \mu \not \equiv 0(\bmod t)$, there exist i and j such that $\zeta_{t i j}^{\alpha_{i j}} \neq \zeta_{t i j}^{\alpha_{i j} r_{i j}^{\mu}}$. q.e.d.
Proposition 2. Let $U_{\alpha \beta}^{(t)}$ and $U_{\alpha^{\prime} \beta^{\prime}}^{(t)}$ be irreducible. Then $U_{\alpha \beta}^{(t)}$ and $U_{\alpha^{\prime} \beta^{\prime}}^{(t)}$ are inequivalent if and only if $\beta \neq \beta^{\prime}$ or for every $\mu(0 \leqslant \mu \leqslant t-1)$ there exist i and j such that $\zeta_{t i j}^{\alpha_{i j} j_{i j}^{\mu}} \neq \zeta_{t i j}^{\alpha_{i j}}$.

Proof. By [5, Lemma 3], we have
$U_{\alpha \beta}^{(t)}$ and $U_{\alpha^{\prime} \beta^{\prime}}^{(t)}$ are inequivalent
\Leftrightarrow for every $\quad x \in G,\left(\psi_{\alpha \beta}^{(t)}\right)^{(x)} \neq \psi_{\alpha^{\prime} \beta^{\prime}}^{(t)}$
\Leftrightarrow for every $x \in G, \psi_{\alpha \beta}^{(t)}\left(x^{-1} \sigma^{t} x\right) \neq \psi_{\alpha^{\prime} \beta^{\prime}}^{(t)}\left(\sigma^{t}\right)$, or $\psi_{\alpha \beta}^{(t)}\left(x^{-1} \omega_{i j} x\right) \neq \psi_{\alpha^{\prime} \beta}^{(t)}\left(\omega_{i j}\right)$ for some i and j
$\Leftrightarrow \xi_{t}^{\beta} \neq \xi_{t}^{\beta^{\prime}}$ or for every μ, there exist i and j such that $\zeta_{t i j}^{\alpha_{i j} j_{i j}^{\mu}} \neq \zeta_{t i j}^{\alpha_{i j}^{\prime}}$. q.e.d.
Proposition 3. Let t and t^{\prime} be any divisor of u, such that $t \neq t^{\prime}$. Then $U_{\alpha \beta}^{(t)}$ and $U_{\alpha^{\prime} \beta^{\prime}}^{\left(t^{\prime}\right)}$ are not equivalent.

Proof. Since $\left[G: H_{t}\right]=t$ and $\left[G: H_{t^{\prime}}\right]=t^{\prime}$, the assertion is obvious.

3. The structure of group algebra $Q[G]$

The purpose of this section is to prove
Theorem 2. Let G be the metabelian group discussed in the latter part of §2. (The defining relations are given by §2, (1)-(3).) Let $U_{\alpha \beta}^{(t)}(t \neq 1)$ be any irreducible representation of G and $\chi_{\alpha \beta}^{(t)}$ its character. Set

$$
\begin{equation*}
K=\boldsymbol{Q}\left(\xi_{t}^{\beta}, \zeta_{t i j}^{\alpha_{i j}}, 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant c(i)\right) \tag{1}
\end{equation*}
$$

Assume that there exists an automorphism τ of K over \boldsymbol{Q} such that

$$
\begin{equation*}
\tau\left(\xi_{t}^{\beta}\right)=\xi_{t}^{\beta}, \tau\left(\zeta_{t i j}^{\alpha_{i j}}\right)=\zeta_{t i j}^{\alpha_{i j} r_{i j}}, 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant c(i) . \tag{h}
\end{equation*}
$$

Then the enveloping algebra of $U_{\alpha \beta}^{(t)}$ over \boldsymbol{Q} is isomorphic to the cyclic algebra of center $\boldsymbol{Q}\left(\chi_{\alpha \beta}^{(t)}\right)$:

$$
\operatorname{env}_{\boldsymbol{Q}}\left(U_{\alpha \beta}^{(t)}\right) \simeq\left(\xi_{t}^{\beta}, K, \tau\right)_{Q\left(x_{\alpha \beta}^{(t)}\right)}
$$

Example I. Notation being the same as before, let G be such that $a_{i 1}=\cdots=a_{i c(i)}$ and $r_{i 1}=\cdots=r_{i c(i)}$ for all $i(1 \leqslant i \leqslant n)$, and that $\left(p_{1} p_{2} \cdots p_{n}, s\right)=1$. Then every (not one dimensional) irreducible representation of G satisfies the assumption (h). In particular, every metacyclic group G with cyclic normal subgroup A and cyclic factor group G / A such that $([A: 1],[G: A])=1$ comes under this case.

Example II. Let G be a hyperelementary group (at a prime p) generated by $\omega, \omega_{1}, \cdots, \omega_{l}, \sigma$ with defining relations:

$$
\begin{aligned}
\omega^{m}= & 1, \sigma^{-1} \omega \sigma=\omega^{r}, \sigma^{p b}=1, \omega^{p_{i}}=1(1 \leqslant i \leqslant l),(m, p)=1, \\
& \left\langle\omega, \omega_{1}, \cdots, \omega_{l}\right\rangle \text { and }\left\langle\omega_{1}, \cdots, \omega_{l}, \sigma\right\rangle \text { are abelian. }
\end{aligned}
$$

Then every irreducible representation of G satisfies the assumption (4).
Theorem 2 can be proved almost in the same way as [5, Theorem 2], so that we give the proof concisely. At first, note that the order of the automorphism τ of K is equal to t. Indeed, since $U_{\alpha \beta}^{(t)}$ is irreducible, Proposition 1 implies that for any $\mu \neq 0(\bmod t)$, there exist i and j such that $\tau^{\mu}\left(\zeta_{t i j}^{\alpha_{i j}}\right) \neq \zeta_{t i j}^{\alpha_{i j}}$. On the other hand, by (4) of §2 we have $\tau^{t}\left(\zeta_{t i j}^{\alpha_{i j}}\right)=\zeta_{t i j}^{\alpha_{i j}{ }^{\tau}{ }_{i j}}=\zeta_{t i j}^{\alpha_{i j}}$ for all i and j. Hence the order of τ is t. For simplicity, set

$$
\begin{equation*}
U=U_{\alpha \beta}^{(t)} \quad \text { and } \quad \chi=\chi_{\alpha \beta}^{(t)} . \tag{2}
\end{equation*}
$$

Lemma 1. Let $U \mid H_{t}$ denote the restriction of U to the subgroup H_{t}. Then the enveloping algebra $\operatorname{env}_{\boldsymbol{Q}}\left(U \mid H_{t}\right)$ is a (commutative) field, and in fact,

$$
\begin{equation*}
\operatorname{env}_{\boldsymbol{Q}}(U \mid H) \simeq K \tag{3}
\end{equation*}
$$

Proof. Denote by $\left[\theta_{1}, \theta_{2}, \cdots, \theta_{t}\right]$ the diagonal matrix of degree t with the diagonal elements $\theta_{1}, \theta_{2}, \cdots, \theta_{t}$. Then it follows from the assumption (G) that $\operatorname{env}_{\boldsymbol{Q}}\left(U \mid H_{t}\right)$ is just the set:

$$
\begin{equation*}
\operatorname{env}_{\boldsymbol{Q}}\left(U \mid H_{t}\right)=\left\{\left[\theta, \theta^{\tau}, \cdots, \theta^{\tau-1}\right] ; \theta \in K\right\} \tag{4}
\end{equation*}
$$

This proves our lemma.
As H_{t} is a normal subgroup of $G, \chi(g)=0$ for every $g \notin H_{t}$. Hence we have

$$
\begin{equation*}
\boldsymbol{Q}(\chi)=\boldsymbol{Q}\left(\theta+\theta^{\tau}+\cdots+\theta^{\tau t-1} ; \theta \in K\right) \tag{5}
\end{equation*}
$$

From this we see easily that the field K is cyclic extension of $\boldsymbol{Q}(\chi)$ of degree t whose Galois group is generated by τ. By the isomorphism of K onto $\operatorname{env}_{\boldsymbol{Q}}\left(U \mid H_{t}\right)$, the subfield $\boldsymbol{Q}(\chi)$ is mapped onto $\boldsymbol{Q}(\chi) \cdot 1_{t}$, so that

$$
\begin{equation*}
\left[\operatorname{env}_{\boldsymbol{Q}}\left(U \mid H_{t}\right): \boldsymbol{Q}(\chi) \cdot 1_{t}\right]=t \tag{6}
\end{equation*}
$$

Meanwhile it is well known that $\left[\operatorname{env}_{\boldsymbol{Q}}(U): \boldsymbol{Q}(\chi) \cdot 1_{t}\right]$ is equal to the square of the degree of U :

$$
\begin{equation*}
\left[\operatorname{env}_{\boldsymbol{Q}}(U): \boldsymbol{Q}(\chi) \cdot 1_{t}\right]=t^{2} \tag{7}
\end{equation*}
$$

Therefore, $\operatorname{env}_{\boldsymbol{Q}}\left(U \mid H_{t}\right)$ is a maximal subfield of $\operatorname{env}_{\boldsymbol{Q}}(U)$. The generating automorphism T of $\operatorname{env}_{\boldsymbol{Q}}\left(U \mid H_{t}\right)$ over $\boldsymbol{Q}(\chi) \cdot 1_{t}$, which corresponds to τ, is evidently given by

$$
\begin{equation*}
T:\left[\theta, \theta^{\tau}, \cdots, \theta^{\tau t-1}\right] \mapsto\left[\theta^{\tau}, \theta^{\tau 2}, \cdots, \theta\right], \quad \theta \in K \tag{8}
\end{equation*}
$$

On the other hand, it is easily verified that

$$
\begin{equation*}
U(\sigma)^{-1}\left[\theta, \theta^{\tau}, \cdots, \theta^{\tau t-1}\right] U(\sigma)=\left[\theta^{\tau}, \theta^{\tau 2}, \cdots, \theta\right] . \tag{9}
\end{equation*}
$$

Hence

$$
\begin{equation*}
U(\sigma)^{-\nu} \Theta U(\sigma)^{\nu}=T^{\nu}(\Theta), \quad \Theta \in \operatorname{env}_{\boldsymbol{Q}}\left(U \mid H_{t}\right), 0 \leqslant \nu \leqslant t-1, \tag{10}
\end{equation*}
$$

and so $1_{t}, U(\sigma), \cdots, U(\sigma)^{t-1}$ are linearly independent over the field $\operatorname{env}_{\boldsymbol{Q}}\left(U \mid H_{t}\right)$. Recall that

$$
\begin{equation*}
U(\sigma)^{t} \in \operatorname{env}_{\boldsymbol{Q}}\left(U \mid H_{t}\right) . \tag{11}
\end{equation*}
$$

Thus we see that $\operatorname{env}_{\boldsymbol{Q}}(U)$ is the cyclic algebra with the defining relation (10):

$$
\begin{aligned}
\operatorname{env}_{\boldsymbol{Q}}(U) & =1_{t} \cdot \operatorname{env}\left(U \mid H_{t}\right)+U(\sigma) \cdot \operatorname{env}\left(U \mid H_{t}\right)+\cdots+U(\sigma)^{t-1} \cdot \operatorname{env}\left(U \mid H_{t}\right) \\
& =\left(U\left(\sigma^{t}\right), \operatorname{env}_{\boldsymbol{Q}}\left(U \mid H_{t}\right), T\right)_{\boldsymbol{Q}(x) \cdot 1_{t}} \\
& \simeq\left(\xi_{t}^{\beta}, K, \tau\right)_{\boldsymbol{Q}(x)} .
\end{aligned}
$$

This completes the proof of Theorem 2.

4. The Schur index

We shall calculate with the Schur index of the irreducible representation $U_{\alpha \beta}^{(t)}$ of the metabelian group G which appeared in Theorem 2. For this it suffices to compute the orders of norm residue symbols

$$
\begin{equation*}
\left(\frac{\xi_{t}^{\mathfrak{\beta}}, K / k}{\mathfrak{p}}\right)=\left(\xi_{t}^{\mathfrak{\beta}}, K_{\mathfrak{\beta}} / k_{\mathfrak{p}}\right) \tag{1}
\end{equation*}
$$

at all places \mathfrak{p} of

$$
\begin{equation*}
k=\boldsymbol{Q}\left(\chi_{\alpha \beta}^{(t)}\right), \tag{2}
\end{equation*}
$$

where $K_{\mathfrak{F}} / k_{\mathfrak{p}}$ represents the isomorphy type of the completion of K / k for $\mathfrak{P} \mid \mathfrak{p}$. Recall that

$$
\begin{equation*}
\zeta_{t i j}^{\alpha_{i j}}=\exp \frac{2 \pi \sqrt{-1} \alpha_{i j}}{d_{t i j}}, \quad d_{t i j}=\left(p_{i}^{a_{i j}}, r_{i j}^{t}-1\right) . \tag{3}
\end{equation*}
$$

If we set

$$
\begin{equation*}
\frac{d_{t i j}}{\left(d_{t i j}, \alpha_{i j}\right)}=p_{i=}^{b_{i j}}, \tag{4}
\end{equation*}
$$

(5) $\quad a_{i}=\operatorname{Max}\left\{b_{i 1}, b_{i 2}, \cdots, b_{i c(i)}\right\}=b_{i j_{i}}$ for some $j_{i}\left(1 \leqslant j_{i} \leqslant c(i)\right)$,

$$
\begin{equation*}
r_{i}=r_{i j_{i}}, \tag{6}
\end{equation*}
$$

then it follows that

$$
\begin{gather*}
K=\boldsymbol{Q}\left(\xi_{t}^{\beta}, \exp \frac{2 \pi \sqrt{-1}}{p_{1}^{a_{1}}}, \cdots, \exp \frac{2 \pi \sqrt{-1}}{p_{n}^{a_{n}}}\right), \tag{7}\\
\tau\left(\xi_{t}^{\beta}\right)=\xi_{t}^{\beta}, \quad \tau\left(\exp \frac{2 \pi \sqrt{\overline{-1}}}{p_{i}^{a_{i}}}\right)=\exp \frac{2 \pi \sqrt{-1} r_{i}}{p_{i}^{a_{i}}}, \quad 1 \leqslant i \leqslant n .
\end{gather*}
$$

Recall that

$$
\begin{equation*}
\xi_{t}^{\beta}=\exp \frac{2 \pi \sqrt{-1} \beta t}{s} \tag{9}
\end{equation*}
$$

So ξ_{t}^{β} is a primitive $v_{t, \beta}$-th root of unity, where

$$
\begin{equation*}
v_{t, \beta}=\frac{s / t}{(s / t, \beta)} \tag{10}
\end{equation*}
$$

(Case I) $\mathfrak{p} X p_{1} p_{2} \cdots p_{n}$. Then \mathfrak{p} is not ramified in $K_{\mathfrak{p}} / k_{\mathfrak{p}}$, so

$$
\begin{equation*}
\left(\xi_{t}^{\beta}, K_{\mathfrak{\beta}} / k_{\mathfrak{p}}\right)=1 \tag{11}
\end{equation*}
$$

(Case II) $\mathfrak{p} \mid p_{i}$ for some $i(1 \leqslant i \leqslant n)$. Set

$$
\begin{equation*}
p=p_{i}, \quad v_{t, \beta}=p^{b} z, \quad(p, z)=1 \tag{12}
\end{equation*}
$$

Then for some primitive p^{b}-th (resp. z-th) root of unity $\eta_{p^{b}}$ (resp. η_{z}),

$$
\begin{equation*}
\xi_{t}^{\beta}=\eta_{p^{b}} \eta_{z} \tag{13}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left(\xi_{t}^{\mathfrak{\beta}}, K_{\mathfrak{F}} / k_{\mathfrak{p}}\right)=\left(\eta_{p^{b}}, K_{\mathfrak{F}} / k_{\mathfrak{p}}\right) \cdot\left(\eta_{z}, K_{\mathfrak{F}} / k_{\mathfrak{p}}\right) \tag{14}
\end{equation*}
$$

Consequently the order of ($\xi_{t}^{\mathfrak{\beta}}, K_{\mathfrak{F}} / k_{\mathfrak{p}}$) is that of ($\eta_{p^{b}}, K_{\mathfrak{F}} / k_{\mathfrak{p}}$) multiplied by that of $\left(\eta_{z}, K_{\mathfrak{p}} / k_{\mathfrak{p}}\right)$. Let $e_{\mathfrak{p}}$ be the ramification exponent of $K_{\mathfrak{F}} / k_{\mathfrak{p}}$ and Π be a prime element of $K_{\mathfrak{F}}$. Set $\psi=N_{K_{\mathfrak{F}} / k_{\mathfrak{p}}}(\Pi), N_{k / Q}(\mathfrak{p})=q$, and $N_{K / Q}(\mathfrak{P})=q^{h}, q$ being a power of p. Then by the same argument as in [5, §4] we have $N_{K_{\mathfrak{P}} / k_{\mathfrak{p}}}\left(K_{\mathfrak{\beta}}^{\times}\right)=\left\{\psi^{n} \eta_{q-1}{ }^{c \lambda} N_{K_{\mathfrak{P}} / k_{\mathfrak{p}}}(\gamma) ; n \in Z, 1 \leqslant \lambda \leqslant \frac{q-1}{c}, \gamma:\right.$ principal unit of $\left.K_{\mathfrak{B}}\right\}$ where

$$
\begin{equation*}
c_{\mathfrak{p}}=c=\left(e_{\mathfrak{p}}, q-1\right) \tag{15}
\end{equation*}
$$

Note that $c_{\mathfrak{p}}$ is the exponent of tame ramification of $K_{\mathfrak{p}} / k_{\mathfrak{p}}$. Since $\mathfrak{p} \nmid z$, we may assume $\eta_{z}=\eta_{q-1}{ }^{(q-1) / z}$. Then for an integer $x, \eta_{z}^{x} \in N_{K_{\mathfrak{\beta}} / k_{\mathfrak{p}}}\left(K_{\mathfrak{\beta}}^{\times}\right)$if and only if $c /\left(c, \frac{q-1}{z}\right)$ divides x. Hence the order of the norm residue symbol $\left(\eta_{z}, K_{\mathfrak{F}} / k_{\mathfrak{p}}\right)$ is equal to

$$
\begin{equation*}
\frac{c_{\mathfrak{p}}}{\left(c_{\mathfrak{p}}, \frac{q-1}{z}\right)} . \tag{16}
\end{equation*}
$$

It now remains to compute the order of $\left(\eta_{p^{b}}, K_{\mathfrak{P}} / k_{\mathfrak{p}}\right), \mathfrak{p} \mid p .\left(^{*}\right) \quad$ Hereafter for a positive integer x, η_{x} denotes a primitive x-th root of unity. Set

$$
\Omega= \begin{cases}\boldsymbol{Q}_{p}\left(\eta_{p}\right) & p \neq 2 \\ \boldsymbol{Q}_{2}\left(\eta_{4}\right) & p=2, b \geqslant 2\end{cases}
$$

Then, if $p \neq 2$ or $p=2, b \geqslant 2$, it follows that

$$
k_{\mathfrak{p}} \supset \boldsymbol{Q}_{p}\left(\eta_{p^{b}}\right) \supset \Omega \supset \boldsymbol{Q}_{p},
$$

so that

$$
\begin{equation*}
\left(\eta_{p^{b}}, K_{\mathfrak{P}} / k_{\mathfrak{p}}\right)=\left(N_{\mathbf{Q} / \boldsymbol{q}_{p}}\left(N_{k_{\mathfrak{p}} / \Omega}\left(\eta_{p^{b}}\right)\right), K_{\mathfrak{P}} / \boldsymbol{Q}_{p}\right) . \tag{17}
\end{equation*}
$$

Clearly $N_{k_{p} / \Omega}\left(\eta_{p^{b}}\right)$ is equal to $\eta_{p}^{\nu}\left(\right.$ resp. $\left.\eta_{4}^{\nu}\right)$ for some ν in the case $p \neq 2$ (resp. $p=2, b \geqslant 2$). As

$$
N_{\boldsymbol{Q}_{p}\left(\eta_{p}\right) / \boldsymbol{Q}_{p}}\left(\eta_{p}\right)=1, \text { resp. } N_{\boldsymbol{Q}_{2}\left(\eta_{4}\right) / \boldsymbol{Q}_{2}}\left(\eta_{4}\right)=1
$$

we have, in the case $p \neq 2$ or $p=2, b \geqslant 2$,

$$
\begin{equation*}
\left(\eta_{p^{b}}, K_{\mathfrak{F}} / k_{\mathfrak{p}}\right)=\left(1, K_{\mathfrak{F}} / \boldsymbol{Q}_{p}\right)=1 \tag{18}
\end{equation*}
$$

Lastly the case $p=2, b=1$ remains. That is, we must compute the norm residue symbol

$$
\begin{equation*}
\left(-1, K_{\mathfrak{F}} / k_{\mathfrak{p}}\right), \quad \mathfrak{p} \mid 2 \tag{19}
\end{equation*}
$$

The field K can be expressed as

$$
\begin{equation*}
K=\boldsymbol{Q}\left(\exp \frac{2 \pi \sqrt{-1}}{2^{a}}, \exp \frac{2 \pi \sqrt{-1}}{w}\right),(2, w)=1 \tag{20}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathscr{S}(K / \boldsymbol{Q})=\left(\boldsymbol{Z} \bmod ^{\times} 2^{a}\right) \times\left(\boldsymbol{Z} \bmod ^{\times} w\right), \tag{21}
\end{equation*}
$$

and the automorphism $\tau \in \mathbb{G}(K / \boldsymbol{Q})$ is of the form:

$$
\begin{equation*}
\tau=\left(\rho_{1} \bmod ^{\times} 2^{a}, \rho_{2} \bmod ^{\times} w\right) . \tag{22}
\end{equation*}
$$

Of course $\rho_{1} \bmod ^{\times} 2^{a}$ and $\rho_{2} \bmod ^{\times} w$ are uniquely determined by (8). If $a \geqslant 3$, then the group $\boldsymbol{Z} \bmod ^{\times} 2^{a}$ is not cyclic. On the other hand K / k is cyclic, so
(*) The author is indebted to Professor Y. Akagawa for kind advice in the following argument.
that $\boldsymbol{Q}\left(\eta_{2^{a}}\right) \cap k \neq \boldsymbol{Q}$. This implies that the degree $\left[k_{p}: \boldsymbol{Q}_{2}\right]$ is divisible by 2 . Consequently in the case $a \geqslant 3$, we have

$$
\begin{equation*}
\left(-1, K_{\mathfrak{F}} / k_{\mathfrak{p}}\right)=\left(1, K_{\mathfrak{F}} / \boldsymbol{Q}_{2}\right)=1 \tag{23}
\end{equation*}
$$

If $a=2, \rho_{1} \equiv 1\left(\bmod 2^{2}\right)$, then $k \supset \boldsymbol{Q}\left(\eta_{4}\right) \supset \boldsymbol{Q}$, and so $\left[k_{\mathfrak{p}}: \boldsymbol{Q}_{2}\right]$ is divisible by 2 . Consequently

$$
\begin{equation*}
\left(-1, K_{\mathfrak{F}} / k_{\mathfrak{p}}\right)=1 \tag{24}
\end{equation*}
$$

We come to the case $a=2, \rho_{1} \equiv-1\left(\bmod 2^{2}\right)$. Let the order of $\rho_{2} \bmod ^{\times} w$ be $2^{\nu} \cdot l,(2, l)=1$. If $2^{\nu} \neq 1$, then it can easily be shown that $\mathfrak{p}(\mathfrak{p} \mid 2)$ is not ramified in K / k, so that

$$
\begin{equation*}
\left(-1, K_{\mathfrak{F}} / k_{\mathfrak{p}}\right)=1 \tag{25}
\end{equation*}
$$

If $2^{\nu}=1$, then $[K: k]=2 l$, and the ramification exponent of $\mathfrak{p}(\mathfrak{p} \mid 2)$ in K / k is equal to 2 . Meanwhile the degree $\left[K_{\mathfrak{B}}: \boldsymbol{Q}_{2}\right.$] is $2 f$, where f is the smallest positive integer satisfying

$$
\begin{equation*}
2^{f} \equiv 1(\bmod w) \tag{26}
\end{equation*}
$$

If f is even, it follows that $\left[k_{\mathfrak{p}}: \boldsymbol{Q}_{2}\right]$ is also even, so that

$$
\begin{equation*}
\left(-1, K_{\mathfrak{P}} / k_{\mathfrak{p}}\right)=\left(1, K_{\mathfrak{F}} / \boldsymbol{Q}_{2}\right)=1 \tag{27}
\end{equation*}
$$

If f is odd, it follows that $\left[k_{p}: \boldsymbol{Q}_{2}\right]$ is also odd, so that

$$
\begin{equation*}
\left(-1, K_{\mathfrak{F}} / k_{\mathfrak{p}}\right)=\left(-1, K_{\mathfrak{F}} / \boldsymbol{Q}_{2}\right) . \tag{28}
\end{equation*}
$$

However, as $-1 \notin N_{\boldsymbol{Q}_{2}\left(\eta_{4}\right) / \boldsymbol{Q}_{2}}\left(\boldsymbol{Q}_{2}\left(\eta_{4}\right)^{\times}\right)$, we have

$$
\begin{equation*}
-1 \notin N_{K_{\mathfrak{F}} / \mathbf{Q}_{2}}\left(K_{\mathfrak{F}}^{\times}\right) . \tag{29}
\end{equation*}
$$

Therefore, in this case, the order of $\left(-1, K_{\mathfrak{F}} / k_{\mathfrak{p}}\right)$ is equal to 2 .
Now we shall compute explicitly the ramification exponent $e_{\mathfrak{p}}$ and the absolute norm $N_{k / Q}(\mathfrak{p})$ for every $\mathfrak{p} \mid p, p=p_{i}(1 \leqslant i \leqslant n)$. We have the expressions:

$$
\begin{gather*}
K=\boldsymbol{Q}\left(\exp \frac{2 \pi \sqrt{-1}}{p^{a}}, \exp \frac{2 \pi \sqrt{-1}}{w}\right),(p, w)=1, \tag{30}\\
\mathscr{G}(K / \boldsymbol{Q})=\left(\boldsymbol{Z} \bmod ^{\times} p^{a}\right) \times\left(\boldsymbol{Z} \bmod ^{\times} w\right), \tag{31}\\
\tau=\left(r \bmod ^{\times} p^{a}, r \bmod ^{\times} w\right) . \tag{32}
\end{gather*}
$$

Of course, a, w, and $r \bmod ^{\times} p^{a} w$ are uniquely determined from (7), (8). Let

$$
\begin{equation*}
t_{w}=\text { the order of } r \bmod ^{\times} w . \tag{33}
\end{equation*}
$$

Then it can easily be shown that

$$
\begin{equation*}
e_{\mathfrak{p}}=\frac{t}{t_{w}} \tag{34}
\end{equation*}
$$

Let

$$
\begin{align*}
& \tilde{f}=\text { the order of } p \bmod w^{\times}, \tag{35}\\
& f=\#\left[\left\langle r \bmod ^{\times} w\right\rangle \cap\left\langle p \bmod ^{\times} w\right\rangle\right] . \tag{36}
\end{align*}
$$

Then it is verified without difficulty that the relative degree of \mathfrak{p} in K / k is equal to f, so that the absolute degree of \mathfrak{p} is equal to \tilde{f} / f. Hence we have

$$
\begin{equation*}
N_{k / Q}(\mathfrak{p})=p^{\tilde{f} / f} \tag{37}
\end{equation*}
$$

(For the above argument, see [5, §4].) Thus we have completely decided the order of $\left(\xi_{t}^{\beta}, K_{\mathfrak{P}} / k_{\mathfrak{p}}\right)$ for every finite prime $\mathfrak{p} \subset k$.

Finally we consider infinite prime spots \mathfrak{p}_{∞} of k. In the same way as in [5, §4], the following results are easily obtained. If $\xi_{t}^{\beta}=-1$ and k is real, then the local index at any \mathfrak{p}_{∞} of the cyclic algebra $\left(\xi_{t}^{\beta}, K, \tau\right)_{k}$ is equal to 2 . Otherwise, the local index at any \mathfrak{p}_{∞} of k is equal to 1 . The condition $\xi_{t}^{\beta}=-1$ amounts to $2 \beta=\frac{s}{t}$, and k is real if and only if $2 \mid t$ and $r_{i}^{t / 2} \equiv-1\left(\bmod p_{i}^{a_{i}}\right)$, $1 \leqslant i \leqslant n$, where a_{i} and r_{i} are defined by (5) and (6).

Summarizing the results, we have
Theorem 3. Let G be the metabelian group and $U_{\alpha \beta}^{(t)}$ be the irreducible representation of G which appeared in Theorem 2. Denote by $\Lambda_{\mathfrak{p}}$ the local index at \mathfrak{p} of $\operatorname{env}_{Q}\left(U_{\alpha \beta}^{(t)}\right)$, where \mathfrak{p} is a place of $k=\boldsymbol{Q}\left(\chi_{\alpha \beta}^{(t)}\right)$. Then we have the following results.
(I) If \mathfrak{p} is a prime ideal such that $\mathfrak{p} X p_{1} p_{2} \cdots p_{n}$, then

$$
\Lambda_{\mathfrak{p}}=1
$$

(II) $\mathfrak{p} \mid p_{i}$ for some $i(1 \leqslant i \leqslant n)$. Set $p=p_{i}, v_{t, \beta}=p^{b} z,(p, z)=1$. Then we have

$$
\Lambda_{\mathfrak{p}}=\frac{c_{\mathfrak{p}}}{\left(c_{\mathfrak{p}}, \frac{q-1}{z}\right)},
$$

except the case that $\mathfrak{p} \mid 2, v_{t, \beta}=2 z,(2, z)=1, K=\boldsymbol{Q}\left(\exp \frac{2 \pi \sqrt{-1}}{4}, \exp \frac{2 \pi \sqrt{-1}}{w}\right)$, $(2, w)=1, \tau=\left(-1 \bmod ^{\times} 4, \rho \bmod ^{\times} w\right)$, the order of $\rho \bmod ^{\times} w$ is odd, and the order of $2 \bmod ^{\times} w$ is odd. For this exceptional case, we have $\Lambda_{p}=2$. In the above,

$$
c_{\mathfrak{p}}=\left(e_{\mathfrak{p}}, q-1\right), \quad e_{\mathfrak{p}}=\frac{t}{t_{w}}, \quad q=N_{k / \mathfrak{Q}}(\mathfrak{p})=p^{\tilde{f} / f}
$$

where t_{w}, \tilde{f} and f are given by (30)-(36).
(III) For any infinite prime spot \mathfrak{p}_{∞} of k, we have

$$
\Lambda_{\mathfrak{p}_{\infty}}=1
$$

except the case that $2 \beta=\frac{s}{t}, 2 \mid t, r_{i}^{t / 2} \equiv-1\left(\bmod p_{i}^{a_{i}}\right), 1 \leqslant i \leqslant n$, where a_{i} and r_{i} are defined by (5) and (6). In this case we have, for any $\mathfrak{p}_{\infty}, \Lambda_{\mathfrak{p}_{\infty}}=2$.

Thus we have found the Schur index of the irreducible representation $U_{\alpha \beta}^{(t)}$ of G, as it is the L.C.M. of all the local indices Λ_{p}.

5. Non-split cyclic extension

Until now, we have assumed that G is a split extension of an abelian normal subgroup A by a cyclic group. The methods used are applicable to non-split extension to some extent. ("Non-split" means "not necessarily split".) Here we shall discuss the case that G is metacyclic. It has been shown in [5, §2] that, if G is a split extension of a cyclic normal subgroup with a cyclic factor group, then all the irreducible representations of G are explicitly obtained and their number is counted. Now by virtue of Theorem 1, we can definitely give all the irreducible representations of any non-split extension G.

Proposition 4. Let $G=\langle\omega, \sigma\rangle$ be a metacyclic group with defining relations

$$
\begin{equation*}
\omega^{m}=1, \quad \sigma^{-1} \omega \sigma=\omega^{r}, \quad \sigma^{s}=\omega^{h} . \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
(m, r)=1, m \mid h(r-1), u=\text { order of } r \bmod ^{\times} m, u \mid s . \tag{2}
\end{equation*}
$$

Let U be any irreducible representation of G. Then there exist a positive divisor t of u and a linear character ψ of the subgroup $H_{t}=\left\langle\omega, \sigma^{t}\right\rangle$ such that $U=\psi^{G}$.

Proposition 5. Notation being as in Prop. 4, all the linear characters of H_{t} are given by $\psi_{\alpha \beta}^{(t)}, 0 \leqslant \alpha \leqslant d_{t}-1,0 \leqslant \beta \leqslant \frac{s}{t}-1$, such that

$$
\begin{equation*}
\psi_{\alpha \beta}^{(t)}(\omega)=\exp \frac{2 \pi \sqrt{-1} \alpha}{d_{t}}, \quad \psi_{\alpha \beta}^{(t)}\left(\sigma^{t}\right)=\exp \frac{2 \pi \sqrt{-1} \alpha h}{\frac{s}{t} d_{t}} \exp \frac{2 \pi \sqrt{\overline{-1} \beta}}{\frac{s}{t}} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{t}=\left(m, r^{t}-1\right) \tag{4}
\end{equation*}
$$

The induced representation $U_{\alpha \beta}^{(t)}=\left(\psi_{\alpha \beta}^{(t)}\right)^{G}$ is irreducible if and only if

$$
\begin{equation*}
\alpha r^{\mu} \equiv \alpha\left(\bmod d_{t}\right), \quad 1 \leqslant \mu \leqslant t-1 . \tag{5}
\end{equation*}
$$

Proposition 6. Let $U_{\alpha \beta}^{(t)}$ and $U_{\alpha^{\prime} \beta^{\prime}}^{(t)}$ be irreducible. Then $U_{\alpha \beta}^{(t)}$ and $U_{\alpha^{\prime} \beta^{\prime}}^{(t)}$ are inequivalent if and only if we have

$$
\begin{equation*}
\left(\alpha-\alpha^{\prime}\right) h+\left(\beta-\beta^{\prime}\right) d_{t} \neq 0\left(\bmod \frac{s}{t} d_{t}\right), \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
\alpha r^{\mu} \neq \alpha^{\prime}\left(\bmod d_{t}\right), \quad 0 \leqslant \mu \leqslant t-1 . \tag{7}
\end{equation*}
$$

Proposition 7. Let t, t^{\prime} be distinct divisors of u. Then $U_{\alpha \beta}^{(t)}$ and $U_{\alpha^{\prime} \beta^{\prime}}^{\left(t^{\prime}\right)}$ are inequivalent for any $\alpha, \beta, \alpha^{\prime}, \beta^{\prime}$.

The proofs of Prop. 4-7 are performed in the same way as in §2, so that they are omitted. Here we note that the matrix representation $U_{\alpha \beta}^{(t)}$ is given by

$$
\begin{align*}
& U_{\alpha \beta}^{(t)}(\omega)=\left(\begin{array}{lllll}
\zeta_{t}^{\alpha} & & & & 0 \\
& \zeta_{t}^{\alpha r} & & & \\
& & \ddots & & \\
& & & \ddots & \\
0 & & & \ddots & \zeta_{t}^{\alpha r t-1}
\end{array}\right), \quad \zeta_{t}=\exp \frac{2 \pi \sqrt{-1}}{d_{t}}, \tag{8}\\
& U_{\alpha \beta}^{(t)}(\sigma)=\left(\begin{array}{lllll}
0 & \cdots \cdots \cdots & \rho_{t}^{\alpha h+\beta d_{t}} \\
1 & & & 0 \\
& \ddots & & & \vdots \\
& \ddots & & & \vdots \\
0 & & & 1 & 0
\end{array}\right), \quad \rho_{t}=\exp \frac{2 \pi \sqrt{-1}}{\frac{s}{t} d_{t}} . \tag{9}
\end{align*}
$$

Now we shall consider group algebras and Schur indices.
Proposition 8. Notation being the same as before, assume that $u=s$. Namely, the centralizer of $\langle\omega\rangle$ in G coincides with $\langle\omega\rangle$ itself. Then the enveloping algebra of the irreducible representation $U_{a 0}^{(s)}$ induced from a linear character $\psi_{a 0}^{(s)}$ of $\langle\omega\rangle$ is isomorphic to the cyclic algebra with center $\boldsymbol{Q}\left(\chi_{\alpha 0}^{(s)}\right)$:

$$
\operatorname{env}_{\boldsymbol{Q}}\left(U_{\alpha 0}^{(s)}\right) \simeq\left(\zeta_{m}^{\alpha h}, \boldsymbol{Q}\left(\zeta_{m}^{\alpha}\right), \tau\right), \quad \zeta_{m}=\exp \frac{2 \pi \sqrt{\overline{-1}}}{m}
$$

where $\chi_{a 0}^{(s)}$ is the character of $U_{a 0}^{(s)}$ and τ is an automorphism of $\boldsymbol{Q}\left(\zeta_{m}^{\alpha}\right) / \boldsymbol{Q}$ defined by

$$
\tau\left(\zeta_{m}^{\alpha}\right)=\zeta_{m}^{\alpha r} .
$$

Proposition 9. Denote by $\Lambda_{\mathfrak{p}}$ the local index of $\operatorname{env}_{\mathbb{Q}}\left(U_{a 0}^{(s)}\right)$ at a place \mathfrak{p} of $k=\boldsymbol{Q}\left(\chi_{\alpha 0}^{(s)}\right)$, and set

$$
d_{\alpha}=\frac{m}{(m, \alpha)}, \quad v_{\alpha}=\frac{m}{(m, \alpha h)} .
$$

Then we have the following results.
(I) If a finite prime \mathfrak{p} of k does not divide d_{a}, then

$$
\Lambda_{\mathfrak{p}}=1
$$

(II) If $\mathfrak{p} \mid d_{a}$, we put $v_{a}=p^{b} z,(p, z)=1, \mathfrak{p} \mid p$.

Then we have

$$
\Lambda_{\mathfrak{p}}=\frac{c_{\mathfrak{p}}}{\left(c_{\mathfrak{p}}, \frac{q-1}{z}\right)}
$$

except the case $p=2, b=1,2^{2}$ is the highest power of 2 dividing $d_{\alpha}, r \equiv-1(\bmod 4)$,, the order of $r \bmod ^{\times} \frac{d_{\infty}}{2^{2}}$ is odd, and the order of $2 \bmod ^{\times} \frac{d_{\infty}}{2^{2}}$ is odd. In this exceptional case we have $\Lambda_{p}=2$. In the above, $c_{p}=\left(e_{p}, q-1\right), e_{p}=\frac{s}{t^{\prime}}, q=p^{\tilde{f I f}}, t^{\prime}$ is the order of $r \bmod ^{\times} \frac{d_{\infty}}{p^{a}}, \tilde{f}$ is the order of $p \bmod ^{\times} \frac{d_{\alpha}}{p^{a}}, f=\#\left[\left\langle r \bmod \times \frac{d_{\alpha}}{p^{a}}\right\rangle \cap\right.$ $\left\langle p \bmod ^{\times} \frac{d_{\infty}}{p^{a}}\right\rangle$, and p^{a} is the highest power of p dividing d_{α}.
(III) For any infinite prime \mathfrak{p}_{∞} of k, we have

$$
\Lambda_{\mathfrak{p}_{\infty}}=1
$$

except the case $\alpha h \equiv \frac{m}{2}(\bmod m), 2 \mid s$ and $r^{s / 2} \equiv-1\left(\bmod d_{\infty}\right)$. In this case we have, for any \mathfrak{p}_{∞} of $k, \Lambda_{\mathfrak{p}_{\infty}}=2$.

The proofs of Propositions 8, 9 are almost the same as those of Theorems 2,3 , so that they are omitted. Here we only note that $\exp \frac{2 \pi \sqrt{-1} \alpha h}{m}$ is fixed by the automorphism τ, as follows from the fact $m \mid h(r-1)$.

Remark 1. Going back to Prop. 5, let $U_{\alpha \beta}^{(t)}$ be irreducible. We assume that there exists an automorphism τ of $\boldsymbol{Q}\left(\zeta_{t}^{\alpha}, \rho_{t}^{\alpha h+\beta d}\right) / \boldsymbol{Q}$ such that

$$
\tau\left(\zeta_{t}^{\alpha}\right)=\zeta_{t}^{\alpha r}, \quad \tau\left(\rho_{t}^{\alpha h+\beta d} t\right)=\rho_{t}^{\alpha h+\beta d} t
$$

where ζ_{t} and ρ_{t} are defined by (8) and (9), respectively. Then the enveloping algebra of $U_{\alpha \beta}^{(t)}$ is isomorphic to the cyclic algebra with center $\boldsymbol{Q}\left(\chi_{\sigma \beta}^{(t)}\right)$:

$$
\operatorname{env}_{\boldsymbol{Q}}\left(U_{\alpha \beta}^{(t)}\right) \simeq\left(\rho_{t}^{\alpha h+\beta d_{t}}, \boldsymbol{Q}\left(\zeta_{t}^{\alpha}, \rho_{t}^{\alpha h+\beta d_{t}}\right), \tau\right)
$$

Hence the Schur index of $U_{\alpha \beta}^{(t)}$ can be computed.
Remark 2. About the metacyclic groups satisfying the assumption in Prop. 8, we quote the following fact from [3, §47].

Proposition 10, Notation is the same as in Prop. 4. Assume that the
centralizer of $\langle\omega\rangle$ in G is exactly $\langle\omega\rangle$ itself. Then, every irreducible representation of G is either one-dimensional or equivalent to one induced from a linear character of $\langle\omega\rangle$ if and only if, for each i and $j, 1 \leqslant i \leqslant m, 1 \leqslant j \leqslant s-1$,

$$
\begin{equation*}
r^{j} i \equiv i(\bmod \mathrm{~m}) \quad \text { implies } \quad r i \equiv i(\bmod m) . \tag{*}
\end{equation*}
$$

In particular, when s is a prime, the condition (*) is fulfilled.

6. Examples

1) The dihedral group D_{m}. The defining relations are

$$
\omega^{m}=1, \quad \sigma^{-1} \omega \sigma=\omega^{-1}, \quad \sigma^{2}=1
$$

We use notation of Prop. 5. The one-dimensional representations of D_{m} are $\psi_{0 \beta}^{(1)}(\beta=0,1)$ if m is odd, and $\psi_{\alpha \beta}^{(1)}(\alpha=0,1, \beta=0,1)$ if m is even. Here

$$
\begin{aligned}
& \psi_{o \beta}^{(1)}(\omega)=1, \quad \psi_{0 \beta}^{(1)}(\sigma)=(-1)^{\beta}, \quad \text { if } m \text { is odd } \\
& \psi_{\alpha \beta}^{(1)}(\omega)=(-1)^{\infty}, \quad \psi_{\alpha \beta}^{(1)}(\sigma)=(-1)^{\beta}, \quad \text { if } m \text { is even. }
\end{aligned}
$$

The other (inequivalent) irreducible representations of D_{m} are induced from linear characters of $\langle\omega\rangle$ and given by $U_{\alpha 0}^{(2)}\left(1 \leqslant \alpha \leqslant \frac{m-1}{2}\right)$ if m is odd, and $U_{\alpha 0}^{(2)}\left(1 \leqslant \alpha \leqslant \frac{m-2}{2}\right)$ if m is even. In both cases, each $U_{\alpha 0}^{(2)}$ is defined by

$$
U_{a 0}^{(2)}(\omega)=\left(\begin{array}{cc}
\zeta_{m}^{\alpha} & 0 \\
0 & \zeta_{m}^{-\infty}
\end{array}\right), \quad \zeta_{m}=\exp \frac{2 \pi \sqrt{-1}}{m}, \quad U_{\alpha 0}^{(2)}(\sigma)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

The enveloping algebra of $U_{\alpha 0}^{(2)}$ is isomorphic to the quaternion algebra:

$$
\operatorname{env}_{\boldsymbol{Q}}\left(U_{\alpha 0}^{(2)}\right) \simeq\left(1, \boldsymbol{Q}\left(\zeta_{m}^{\alpha}\right), \tau\right), \quad \tau\left(\zeta_{m}^{\alpha}\right)=\zeta_{m}^{-\infty}
$$

Hence the Schur index of $U_{\alpha 0}^{(2)}$ is equal to 1 .
Remark. In [4, §11], the Schur indices of any dihedral group whose order is 2-power, are discussed.
2) Let G be a split extension of a cyclic normal subgroup $\langle\omega\rangle$ by a cyclic group. Assume that the centralizer of $\langle\omega\rangle$ in G coincides with $\langle\omega\rangle$ itself. Then the Schur indices of the irreducible representations of G induced from linear characters of $\langle\omega\rangle$ are all equal to 1 . (See Prop. 10).
3) The generalized quaternion group Q_{m}. In this case, we have for the generators ω, σ,

$$
\omega^{2 m}=1, \quad \sigma^{-1} \omega \sigma=\omega^{-1}, \quad \sigma^{2}=\omega^{m}
$$

(The integer m is not necessarily 2-power [3, p. 23]) The one-dimensional representations of Q_{m} are $\psi_{\alpha \beta}^{(1)}(\alpha, \beta=0,1)$ such that

$$
\psi_{\alpha \beta}^{(1)}(\omega)=(-1)^{\alpha}, \quad \psi_{\alpha \beta}^{(1)}(\sigma)=(-1)^{\beta} \exp \frac{2 \pi \sqrt{-1} \alpha m}{4}
$$

The other (inequivalent) irreducible representations of Q_{m} are induced from linear characters of $\langle\omega\rangle$ and given by $U_{a 0}^{(2)}(1 \leqslant \alpha \leqslant m-1)$ such that

$$
U_{\alpha 0}^{(2)}(\omega)=\left(\begin{array}{cc}
\zeta_{2 m}^{\alpha} & 0 \\
0 & \zeta_{2 m}^{-\alpha}
\end{array}\right), \quad \zeta_{2 m}=\exp \frac{2 \pi \sqrt{-1}}{2 m}, \quad U_{\alpha 0}^{(2)}(\sigma)=\binom{0(-1)^{\omega}}{1} .
$$

The enveloping algebra of each $U_{\alpha 0}^{(2)}$ is isomorphic to the quaternion algebra with the center $\boldsymbol{Q}\left(\chi_{\alpha 0}^{(2)}\right)=\boldsymbol{Q}\left(\zeta_{2 m}^{\alpha}+\zeta_{2 m}^{-\alpha}\right)$:

$$
\operatorname{env}_{\boldsymbol{Q}}\left(U_{a 0}^{(2)}\right) \simeq\left((-1)^{\alpha}, \boldsymbol{Q}\left(\zeta_{2 m}^{\alpha}\right), \tau\right), \quad \tau\left(\zeta_{2 m}^{\alpha}\right)=\zeta_{2 m}^{-\alpha} .
$$

Hence, if α is even, the Schur index of $U_{\alpha 0}^{(2)}$ is equal to 1 . However, if α is odd, the local index of $\operatorname{env}_{\boldsymbol{Q}}\left(U_{\alpha 0}^{(2)}\right)$ at every infinte prime spot of $\boldsymbol{Q}\left(\chi_{\alpha 0}^{(2)}\right)$ is equal to 2 , as follows from the fact that the center $\boldsymbol{Q}\left(\chi_{\alpha 0}^{(2)}\right)$ is totally real. Consequently, if α is odd, the Schur index of $U_{\alpha 0}^{(2)}$ is equal to 2 .

Remark. The Schur indices of the generalized quaternion groups of 2 -power orders are discussed in [4, §11].
4) Let G be a metacyclic group with two generators ω, σ satisfying

$$
\omega^{52}=1, \quad \sigma^{-1} \omega \sigma=\omega^{3}, \quad \sigma^{6}=1
$$

(Note that $[\langle\omega\rangle: 1]$ and $[G:\langle\omega\rangle]$ are not relatively prime. This example appears in [3, p. 340].) We can easily find all the irreducible representations of G.

degree	number	representation
1	12	$\psi_{\alpha \beta}^{(1)}, \alpha=0,1, \beta=0,1,2,3$
2	3	$U_{10}^{(2)}, U_{11}^{(2)}$
3	16	$U_{10}^{(3)}, U_{11}^{(3)}, U_{20}^{(3)}, U_{21}^{(3)}$
6	4	$U_{10}^{(6)}$

In this table the second row, for instance, means that the number of the irreducible representations of degree two is equal to 3 and the representations $U_{10}^{(2)}$ and $U_{11}^{(2)}$ are the representatives of the algebraically conjugate classes of the irreducible representations. Here, the definitions of $U_{\alpha \beta}^{(t)}$ and $\psi_{\alpha \beta}^{(1)}$ are the same as those of Prop. 5. We can easily show that the Schur index of every irreducible representation of G is equal to 1 .
5) Let G be a hyperelementary group (at 3), whose 3-Sylow group is abelian of type ($3,3,3^{2}$), with defining relations

$$
\begin{aligned}
& \omega^{7}=1, \quad \sigma_{1}^{3}=\sigma_{2}^{3}=\sigma^{3^{2}}=1, \quad \sigma^{-1} \omega \sigma=\omega^{2}, \\
& \omega \sigma_{i}=\sigma_{i} \omega, \quad \sigma \sigma_{i}=\sigma_{i} \sigma \quad(i=1,2) .
\end{aligned}
$$

The inequivalent not one dimensional irreducible representations of G are given by $U_{\alpha \omega_{1} \alpha_{2} \beta}\left(\alpha=1,3,0 \leqslant \alpha_{1}, \alpha_{2}, \beta \leqslant 2\right)$ such that

$$
\begin{aligned}
U_{\alpha \alpha_{1} \alpha_{2} \beta}: & \omega \mapsto\left(\begin{array}{cc}
\zeta_{7}^{\alpha} & 0 \\
& \zeta_{7}^{2 \omega} \\
0 & \zeta_{7}^{4 \alpha}
\end{array}\right), \quad \sigma_{i} \mapsto \zeta_{3}^{\alpha} \cdot 1_{3}, \quad i=1,2, \\
& \sigma \mapsto\left(\begin{array}{lll}
0 & 0 & \zeta_{3}^{\beta} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad \zeta_{7}=\exp \frac{2 \pi \sqrt{-1}}{7}, \quad \zeta_{3}=\exp \frac{2 \pi \sqrt{-1}}{3} .
\end{aligned}
$$

If $\beta=0$, then the Schur index of every $U_{a \omega_{1} \alpha_{2}(}\left(\alpha=1,3,0 \leqslant \alpha_{1}, \alpha_{2} \leqslant 2\right)$ is equal to 1. However, if $\beta=1$ or 2 , the enveloping algebra of $U_{\alpha \alpha_{1} \alpha_{2} \beta}$ is isomorphic to the cyclic algebra with the center $\boldsymbol{Q}\left(\zeta_{3}, \sqrt{\overline{-7}}\right)$:

$$
\operatorname{env}_{\boldsymbol{Q}}\left(U_{\alpha \alpha_{1} \alpha_{2} \beta}\right) \simeq\left(\zeta_{3}, \boldsymbol{Q}\left(\zeta_{3}, \zeta_{7}\right), \tau\right), \quad \tau\left(\zeta_{7}\right)=\zeta_{7}^{2}, \quad \tau\left(\zeta_{3}\right)=\zeta_{3}
$$

From this we can conclude that for any $\alpha(\alpha=1,3), \alpha_{1}, \alpha_{2}\left(0 \leqslant \alpha_{1}, \alpha_{2} \leqslant 2\right)$, $\beta(\beta=1,2)$, the Schur index of $U_{\omega \alpha_{1} \alpha_{2} \beta}$ is equal to 3 .
6) (Brauer) We fix a positive integer $s \geqslant 2$. Let p be a prime such that $p \equiv 1(\bmod s)$ and $\left(\frac{p-1}{s}, s\right)=1$. (There exist infinitely many primes satisfying this condition.) Let $j,(j, p)=1$, be an integer whose order $\left(\bmod ^{\times} p\right)$ is equal to s. Determine a positive integer r from the congruences: $r \equiv 1(\bmod s), r \equiv j$ $(\bmod p)$. Let G be a metacyclic group with two generators ω, σ, satisfying

$$
\omega^{p s}=1, \quad \sigma^{-1} \omega \sigma=\omega^{r}, \quad \sigma^{s}=\omega^{p} .
$$

We consider the irreducible representation U of G defined by

$$
U(\omega)=\left(\begin{array}{lllll}
\zeta & & & & \\
& \zeta^{r} & & & \\
& 0 \\
& \ddots & & & \\
& & \ddots & & \\
& & & \ddots & \\
0 & & & & \ddots \\
0 & & & & \zeta^{r s-1}
\end{array}\right), \quad U(\sigma)=\left(\begin{array}{ccccc}
0 \cdots \cdots & \cdots & \\
1 & & & & \\
& \ddots & & & \\
& \ddots & & & \vdots \\
& & \ddots & & \vdots \\
& & & \ddots & \vdots \\
0 & & & 1 & 0
\end{array}\right)
$$

where $\zeta=\exp \frac{2 \pi \sqrt{-1}}{p s}$. The enveloping algebra of U is known from Prop. 8:

$$
\operatorname{env}_{\boldsymbol{Q}}(U) \simeq\left(\zeta^{p}, \boldsymbol{Q}(\zeta), \tau\right), \quad \tau(\zeta)=\zeta^{r}
$$

By Prop. 9, it is readilv verified that the Schur index of U is equal to s. Thus
for each positive integer $s \geqslant 2$, there exists an irreducible representation U whose degree and Schur index are both equal to s.

This result was found by Brauer [2, §5]. Berman [1] has shown the same result by giving another examples, which are also metacyclic groups.

Tokyo Metropolitan University

References

[1] S.D. Berman: On Schur's index, Uspehi Mat. Nauk 16 (1961), 95-100.
[2] R. Brauer: Untersuchungen uiber die arithmetischen Eigenschaften von Gruppen linearer Substitutionen, II, Math. Z. 31 (1930), 737-747.
[3] C.W. Curtis and I. Reiner: Representation Theory of Finite Groups and Associative Algebras, Interscience, New York, 1962.
[4] W. Feit: Characters of Finite Groups, Benjamin, New York, 1967.
[5] T. Yamada: On the group algebras of metacyclic groups over algebraic number fields, J. Fac. Sci. Univ. Tokyo 15 (1968), 179-199.
[6] T. Yamada: On the group algebras of metabelian groups over algebraic number fields II, J. Fac. Sci. Univ. Tokyo 16 (1969), 83-90.

