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1. Introduction

In a previous paper [5], we investigated the group algebra Q[G] over the
rational number field @ and Schur indices of a metacyclic group G. Here G is
assumed to contain a cyclic normal subgroup 4 of order m with a cyclic factor
group G/A of order s such that (m, s)=1. We showed that every simple
component of Q[G] is explicitly written as a cyclic algebra. Consequently, the
formulae for the Schur indices of all the irreducible representations of G were
obtained.

In this paper, we pursue the same matter for a metacyclic group which does
not necessarily satisfy the condition (m, s)=1, or more generally for a metabelian
group G with an abelian normal subgroup 4 such that G/4 is cyclic. Inthe
first place, we refine the well known fact that every irreducible representation of
a metabelian group is monomial (Theorem 1). By this Theorem 1, we find all
the irreducible representations of a metabelian group G which is a semi-direct
product of an abelian normal subgroup A4 and a cyclic subgroup <o), and
satisfies a certain condition. (This condition is fulfilled if G is metacyclic.) If
an irreducible representation U of the above metabelian group G satisfies the
assumption (}) of Theorem 2, then the enveloping algebra envg(U) of U is
expressed as a cyclic algebra. In Theorem 3, we give the formula for the Schur
index of the above irreducible representation U.

To some extent, our argument is applicable to a non-split extension G of an
abelian normal subgroup by a cyclic group. For simplicity, we shall discuss the
case that G is metacyclic (§5). Finally we consider several examples and
determine group algebras and Schur indices of them (§6).

Notation and Terminology As usual Z, @, C denote respectively the ring
of rational integers, the rational number field, the complex number field. For
a set M, #M is the cardinality of M. <o, o,-:-> is the group generated by
w, o, --. An irreducible representation of a finite group G always means an
absolute one. If 4 is a representation of a subgroup H of G, ¢ denotes the
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representation of G induced from . If X is a character of G, @(X) denotes
the field obtained from @ by adjunction of all values X(g), g €G. For a natural
number 7, the multiplicative group of integers modulo # is denoted by Z mod* n,
and for reZ, (r, n)=1, r mod* n always means an element of Z mod* n. If
K is an extension field of k, then Ny, is the norm of K over k. If K is a Galois
extension of &, &(K/k) is its Galois group.

2. Irreducible representations of metabelian groups

In the first place we quote from [3, p. 348] Blichfeldt’s theorem.

Theorem. Let G be a finite subgroup of GL(M) for some finite dimensional
vector space M over an algebraically closed field K such that char K ¥'[G: 1], and
let M be an irreducible K[G]-module. Suppose that G contains an abelian normal
subgroup A not contained in the center of G. Then there exist a proper subgroup
H* of G which contains A, and an irreducible K[H*]-submodule L of M, such that
M=LE.

REMARK. It is not stated in [3] that H* can be taken so as to contain 4.

The following theorem implies that, in order to give all the irreducible
representations of a metabelian group G, we may fix a maximal abelian normal
subgroup A4 such that G/A4 is abelian, and find all the subgroups H such that
G>OHDA, and decide all the linear characters of H.

Theorem 1. Let G be a metabelian group with an abelian normal subgroup
A such that G| A is abelian. Let K be an algebraically closed field whose characteristic
does not divide [G: 1]. Then for every irreducible K-representation U of G, there
exists a linear character < of a certain subgroup H which contains A, such that

U=nS.

Proof. Since any subgroup or homomorphic image of a metabelian group
is metabelian, we use induction about the order of G. Since the result is clear
if G is abelian, we may assume that G is not abelian and that the theorem is true
for any metabelian group of smaller order than #G. Let M be any irreducible
K[G]-module. The mapping gi—g,, where g, is the linear transformation
mi—gm of M, is a homomorphism of G onto a metabelian subgroup G of
GL(M), and M is an irreducible K[G ]-module. The image 4, of 4 is an
abelian normal subgroup of G, such that G /4, is abelian. If gi—g, has a
non-trivial kernel, then [G.: 1]<<[G: 1], and by the induction hypothesis, there
exist a subgroup H, of G, containing 4;, and a one-dimensional K[H]-sub-
module P of M such that M=PC¢. If H is the subgroup of G consisting of
all h€G such that A,=H;, then HDA. 1t is easily seen that P is a one-
dimensional K[H]-module and M=P¢,
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We may therefore assume that g—g; is an isomorphism of G onto G, and
we shall identify G with G;. Let C be the center of G. If AQC, then by
Blichfeldt’s theorem, there exist a proper subgroup F of G containing 4, and
an irreducible K [F']-submodule W of M such that M=W¢. Since F/A4 and A
are both abelian and [F: 1]<[G: 1], the induction hypothesis implies that there
exist a subgroup H DA and a one-dimensional K[H]-submodule V" of W such that
W=V?¥. Then we have M=V Now we assume ACC. Since [G, G]CA4,
any subgroup containing C is normal in G. As G is not abelian, we can find a
subgroup EDC such that E/C is cyclic and not equal to {1>. Then E is an
abelian normal 'subgroup not contained in the center, and G/E is abelian.
Therefore we find a subgroup H(DEDA) and a one-dimensional K[H]-
submodule V' of M such that M=V1¢. The theorem is proved.

Now let us consider a metabelian group G which is the semi-direct product
of an abelian normal subgroup 4 and a cyclic subgroup <{o) of order s:

( 1 ) G = A‘<0’> .
If {p,, ==+, pat is the set of primes dividing the order of 4, then
(2) A= o> X+ X Coraaod X+ X oD X o+ X Ltopaem? »

where the order of w;; is pfii (1<z<n, 1<j<c(?)). In the following we
assume that

(3) cTwe = ol (1<i<n, 1<j<d(i)).

Let u;; be the order of 7;;mod* pfii and u be the L.C.M. of u;; (1<i<n,
1<j<c(@)). Then A-{c*) is a maximal abelian normal subgroup of G, so that
by Theorem 1, any irreducible representation U of G is induced from a linear
character +» of some subgroup H,=A4-:{c*), t|u. H, is a normal subgroup of
G and

t.—1
[H, H] = <7

If we set
(4’) dtij: (rgj—l, P‘it”)’
all the linear characters of H, are given by
s

(5) xl)l"'alc(l)"'anl"'anc(n)ﬂ » 0<ay<dy;—1, 0<6< —t—_1 ’
such that

t . 2 \/ —1a;; 1< l<n

:11)1""11c(1)"'anl"'anc(n)ﬂ (w”) €Xp — % i ? <1 <] <L‘(l) )
(6) ’

27[\/ 1 B

) t
o ) = €X
0‘11'"alc(l)“'am“'am(n)ﬂ( ) EXp————
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For simplicity, we write them as

(7) =V g
[ PR SV DLLR- MELRY: ey

The representation of G induced from &5 is denoted by Usy':

( 8 ) (t) — ('\[I'(”)G
It is readily verified that
Lol 0
(9) Ui (wij) = b » Cuj=exp 2”:1/—1
. B tij
0 s
Qeervernonnnnnnnns 0 E?
1 0
(10) W) = . . £ — exp 27z\/s—1t ’
0 10
(11) UR(s*) = E8-1,

where 1, is the identity in the full matrix algebra M ,(C).

Proposition 1. ap 15 trreducible if and only if for every ;=0 (mod ),
there exist © and j such that

(12) SR el

Proof. For any element x=wo" of G where w =4,

w
1 ) w_ rit
X Cl),]x =0 w;;0 = (t),;]” 5

270’ = wT'0’w,, ©, = twc*EH,,
so that
VR i) = £
B (x otx) = 8 (a?) .
Then by [5, Lemma 2] we have

& is irreducible
= for every x&H,, s +(Yr)®
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= for every =0 (mod ¢), there exist ¢ and j such that £7ij= {75 i, q.e.d.

Proposition 2. Let Ug and U, be irreducible. Then U R and U ‘,B,

are inequivalent if and only zf BB or for every p (0<p<<t—1) there exist i

27

and j such that 25 4%,
Proof. By [5, Lemma 3], we have

8 and U %, are inequivalent
= for every xEG, (Vo) EVsy
= for every xEG, Yif(x7'a'x)F\WGp(0’), or YiB(x  w;x) F Vi(w;;) for
some ¢ and j

/
®j

= EBEY or for every pu, there exist 7 and j such that ;t”’u#;”,. q.e.d.

Proposition 3. Let t and t' be any divisor of u, such that t=+t'. Then
3 and Uy, are not equivalent.

Proof. Since [G: H,]=t and [G: Hy]=t', the assertion is obvious.

3. The structure of group algebra Q[G]

The purpose of this section is to prove

Theorem 2. Let G be the metabelian group discussed in the latter part of
§2. (The defining relations are given by §2, (1)~(3).) Let UYS (t%1) be any
irreducible representation of G and X its character. Set

(1) K = Q(&}, £7i%, 1<i<m, 1<j<c(d)) .
Assume that there exists an automorphism  of K over @ such that
(h) (E8) = &, 7(Led) = Lo, 1<i<n, 1< <c(d) .

Then the enveloping algebra of U g over Q is isomorphic to the cyclic algebra of
center Q(X{):

enve(U®R) = (&, K, T)Q(X;,ﬂ)).

ExampLE I. Notation being the same as before, let G be such that
ay="+=a;,p and r,=-=r,. for all {(1<i<n), and that (p, p, - p,, s)=1.
Then every (not one dimensional) irreducible representation of G satisfies the
assumption (K ). In particular, every metacyclic group G with cyclic normal
subgroup 4 and cyclic factor group G/4 such that ([4: 1], [G: A])=1 comes
under this case.
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ExampLE II. Let G be a hyperelementary group (at a prime p) generated
by w, w,, **, w;, o with defining relations:

0" =1, c7lwoc =0", e =1, o =1(1<i<]), (mp)=1,

{w, @y, **+, ;) and {w,, ***, w;, o> are abelian.

Then every irreducible representation of G satisfies the assumption ().

Theorem 2 can be proved almost in the same way as [5, Theorem 2], so that
we give the proof concisely. At first, note that the order of the automorphism
7of Kisequaltoz. Indeed, since Uy is irreducible, Proposition 1 implies that
for any w30 (mod #), there exist 7 and j such that 7#(¢7))#¢7i5. On the other
hand, by (4) of §2 we have -r’,(;f;‘j):é‘fgﬁ'?f:g‘f;") for all 7 and j. Hence the
order of 7is ¢z. For simplicity, set

(2) U=U% and X=X .

Lemma 1. Let U |H, denote the restriction of U to the subgroup H,. Then
the enveloping algebra envo(U | H,) is a (commutative) field, and in fact,

(3) enveg(U |H) =K.

Proof. Denote by [, 0,, ---, 6,] the diagonal matrix of degree ¢ with the
diagonal elements 0,, 8,, --+, 8,. 'Then it follows from the assumption () that
enve(U | H,) is just the set:

(4) envg(U |H,) = {6, 6", ---, 0" "]; 6K} .

This proves our lemma.
As H, is a normal subgroup of G, X(g)=0 for every g H,. Hence we

have
(5) QX) = Q(O+6+--+0"""; 6€K).
From this we see easily that the field K is cyclic extension of @(X) of degree

t whose Galois group is generated by 7. By the isomorphism of K onto
envg(U | H,), the subfield @(X) is mapped onto @(X)-1,, so that

(6) [envo(U | H,): Q)+ 1] = .

Meanwhile it is well known that [enve(U): Q(X)-1,] is equal to the square of
the degree of U:

(7) [enve(U): Q(X)-1,] = £ .
Therefore, enve(U |H,) is a maximal subfield of envg(U). The generating

automorphism T of enve(U | H,) over Q(X)-1,, which corresponds to 7, is eviden-

tly given by
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(8) T:[0,07, -, 0" 1—1[6,07 - 0, fekK.

On the other hand, it is easily verified that

(9) U(o)™'[6, 6, -+, 0" "U(c) = [0, 67, ---, 4] .
Hence

(10) U(a)'®U(c)’ = T(®), Bcenvo(U |H,), 0<v<t—1,

and so 1,, U(o), -+, U(a)'"" are linearly independent over the field enve(U|H,).
Recall that

(11) U(o) cenvg(U|H,).
Thus we see that envg(U) is the cyclic algebra with the defining relation (10):
enve(U) = l,env(U | H,)4-U(o)-env(U |H,) 4+ U(c) *-env(U | H,)
= (U(o-t)’ CHVQ(UI Ht)r T)Q(X)'lt
= (&%, K, T)qww -

This completes the proof of Theorem 2.

4. The Schur index
We shall calculate with the Schur index of the irreducible representation
&% of the metabelian group G which appeared in Theorem 2. For this it
suffices to compute the orders of norm residue symbols

HK
(1) (505) = @2, Kylhy
at all places p of
(2) k= Q(Xg)

where Kg/k, represents the isomorphy type of the completion of K/k for B|p.
Recall that

» 22V —1a;
(3) r)=€xp—— 53— d,:; ~, dyj = (Phii, ri;—1).
If we set
d"'f b, .
(4) (dtij) a,-,-) =P
( 5 ) a; = Max {b“ 5 bizs eey bic(i)} = biji for some i, (1 <j,<c(i)) N
(6) Ti=Tij;s

then it follows that
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(8) (&%) = £, T(“p%}éé)=exp%ﬁ, 1<i<n.
Recall that
(9) £ = exp 2 1B
So £? is a primitive v, g-th root of unity, where
o e (S/ts,/tﬁ) '
(Case I) p A p.p,- p,. Then p is not ramified in Kg/ky, so
(11) (£, Kplky) = 1.
(Case II) p|p; for some 7 (1<i<<nm). Set
(12) p="ri vp=0'%, (p,3)=1.
Then for some primitive p’~th (resp. z-th) root of unity 7, (resp. 7,),
(13) E=mnyum,,
so that
(14) (&%, Ksplky) = (1,5, Ksplky)+ (1., Ksp/ky) -

Consequently the order of (£f, Kg/k,) is that of (7,, Kgp/k,) multiplied by
that of (7., Kg/kp). Let e, be the ramification exponent of Kg/k, and II be a
prime element of Kgp. Set ‘I’INKsB/kp(H)’ Nig(P)=4¢, and Ngso(B)=4¢" ¢
being a power of p. Then by the same argument as in [5, §4] we have

X n”, C. _1 . . .
NKéB/kp(KﬂS): {1,!r Na-1 )‘NK;B/kp('Y); neZ, 1< <16—, @: principal unit of
KSB} where
(15) ¢, =c= (e, g—1).

Note that €y is the exponent of tame ramification of Kylk,. Since p t'z, we
may assume 7,=7,_, %*. Then for an integer x, anNqu/kp(K‘f%) if and

only if c/ <c,q_1> divides x. Hence the order of the norm residue symbol
%

(12> Kgglky) is equal to
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(16) %

g—1y)’
(Cp’ 3 )
It now remains to compute the order of (7,5, Kg/k,), | p-(*) Hereafter
for a positive integer x, 7, denotes a primitive x-th root of unity. Set

_ { Q,(m,)  pF2
Q. (7, =2, b=2.
Then, if p==2 or p=2, b>2, it follows that

k,20@Q,(1,,)2020Q,,
so that

(17) (70, Kylky) = (Nara)(Niyso(n)), Ky/Q,) -
Clearly Nkp/n("Ipb) is equal to %, (resp. 7;) for some v in the case p =2
(resp. p=2, b>2). As
No,,cn,,)/op(’?p) = 1, resp. No,n0,(n,) = 1,
we have, in the case p=+ 2 or p=2, b>2,
(18) (1,9, Kglk) = (1, Kgl@,) = 1.

Lastly the case p=2, b=1 remains. That is, we must compute the norm
residue symbol

19) (=1, Kglk,), pl2.
The field K can be expressed as

(20) K= Q(exp 2”\2/,,“_1, exp 2”‘;:‘7) Q2 w)=1.
Then
(1) S(K/Q) = (Z mod* 2%)x (Z mod* w),

and the automorphism T€®(K/Q) is of the form:
(22) T = (p, mod* 2%, p, mod* w).

Of course p, mod* 2 and p, mod* w are uniquely determined by (8). If a>3,
then the group Z mod* 2% is not cyclic. On the other hand K/k is cyclic, so

(*) The author is indebted to Professor Y. Akagawa for kind advice in the following
argument.
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that Q(7,) Nk+Q. This implies that the degree [k,: @,] is divisible by 2.

Consequently in the case a>3, we have

(23) (—1, Kglky) = (1, Ky/Q:) = 1.

If a=2, p,=1 (mod 2°), then kDQ(7,)OQ, and so [k,: Q)] is divisible by 2.
Consequently

(24) (=1, Kglk) =1.

We come to the case a=2, p,=—1 (mod 2°). Let the order of p, mod* w be
2¥.1,(2,0)=1. If 2'=1, then it can easily be shown that p(p|2) is not ramified

in K/k, so that
(25) (—1, Kglk) =1.

If 2'=1, then [K: k]=2l, and the ramification exponent of p(p|2) in K/k is
equal to 2. Meanwhile the degree [Kg: @,] is 2f, where f is the smallest

positive integer satisfying

(26) 27=1 (mod w).

If f is even, it follows that [kp: Q,] is also even, so that
(27) (—1, Kglky) = (1, Kz/Q,) = 1.
If f is odd, it follows that [kp: Q,] is also odd, so that
(28) (—1, Kylk)=(—1, K4JQ)).
However, as — 1€ Na,c,,70,(Q7,)*), we have

(29) —1&EN Ky /Q(K ) -

Therefore, in this case, the order of (—1, Kg/k,) is equal to 2.
Now we shall compute explicitly the ramification exponent e

and the

absolute norm N.(b) for every p|p, p=p; (1<i<n). We have the ex-

pressions:
27V —1 27V —1
(30) K:Q<eXp ”pa , exp T ) (prw)=1,
(31) &(K/Q) = (Z mod* p*) X (Z mod* w),
(32) T = (r mod* p*, r mod™ w).

Of course, @, w, and » mod* p“w are uniquely determined from (7), (8).

(33) t, = the order of r mod* w .

Let
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Then it can easily be shown that

(34 o=t

Let

(35) f = the order of p mod w* ,

(36) f=4#[<r mod* w>N{p mod* w>].

Then it is verified without difficulty that the relative degree of p in K/k is
equal to f, so that the absolute degree of p is equal to f/f. Hence we have

(37) Ne(p) = P

(For the above argument, see [5, §4].) Thus we have completely decided the
order of (%, Klk,) for every finite prime pCk.

Finally we consider infinite prime spots p.. of k. In the same way as in
[5, §4], the following results are easily obtained. If ##=—1 and k is real,
then the local index at any p.. of the cyclic algebra (£}, K, 7), is equal to 2.
Otherwise, the local index at any p.. of k is equal to 1. The condition &=—1

amounts to 2,8:%, and k is real if and only if 2|t and 7,//*=—1(mod p{i),

1<i<n, where a; and r; are defined by (5) and (6).
Summarizing the results, we have

Theorem 3. Let G be the metabelian group and U be the irreducible
representation of G which appeared in Theorem 2. Denote by A, the local index
at p of envo(U3), where p is a place of k=Q(X(s). Then we have the
following results.

(I)  If p is a prime ideal such that p X p,p,** p,, then
A,=1. .
(IT) p|p; for some i (1<i<n). Set p=p;, v, p=p%, (p, 2)=1. Then we have

c
— p
Ap_

g—1y’
(CP’ 2 )
27V —1 27V —1
except the case that |2, v, p=22, (2, 2)=1, K:Q(exp ud 7 P 4 >,
(2, w)=1, 7=(—1 mod* 4, p mod* w), the order of p mod* w is odd, and the
order of 2 mod* w is odd. For this exceptional case, we have A,=2. In the
above,

; _
6y = (ep, g—1), e, = I q = Ny(») = p"7,

w
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where t,,, f and f are given by (30)~(36).
(III) For any infinite prime spot p.. of k, we have

Ap‘”:l

except the case that 2,8:%, 2|8, 77 =—1 (mod p%), 1<i<n, where a; and r;

are defined by (5) and (6). In this case we have, for any p.., A, =2.
Thus we have found the Schur index of the irreducible representation

& of G, as it is the L.C.M. of all the local indices A

5. Non-split cyclic extension

Until now, we have assumed that G is a split extension of an abelian normal
subgroup 4 by a cyclic group. The methods used are applicable to non-split
extension to some extent. (‘Non-split” means “not necessarily split”.) Here
we shall discuss the case that G is metacyclic. It has been shown in [5, §2] that,
if G is a split extension of a cyclic normal subgroup with a cyclic factor group,
then all the irreducible representations of G are explicitly obtained and their
number is counted. Now by virtue of Theorem 1, we can definitely give all the
irreducible representations of any non-split extension G.

Proposition 4. Let G=<w, o) be a metacvclic group with defining relations

(D) o”=1, clwc=0", o =dw".
Then
(2) (m,r)=1, m|h(r—1), u = order of »r mod* m, u|s.

Let U be any irreducible representation of G. Then there exist a positive divisor
t of u and a linear character < of the subgroup Hy=<w, o*> such that U=+°.

Proposition 5. Notation being as in Prop. 4, all the lincar characters of H,

are given by \ls, 0<a<d,—1, O<B<%—1, such that

(3) V(o) = znV @ e — Xp27r\/—1ahexp27r\/——1,8,
d, S 4 s
t ! t
where
(4) d, = (m, r*—1).

The induced representation U Jg=(\ris)C is irreducible if and only if

(5) ar*sa (moddy), 1<p<t—1.



GROUP ALGEBRAS OF METABELIAN GROUPS 223

Proposition 6. Let Uy and U, be irreducible. Then Uyg and U, are
inequivalent if and only if we have

(6) (a—a' Vi (8—B')d, %0 (mod £ d,),
or
(7) ar*=a’'(modd), 0<u<t—1.

Proposition 7. Let t, t' be distinct divisors of u. Then U3 and Uy are
inequivalent for any a, B3, &', B'.

The proofs of Prop. 4-7 are performed in the same way as in §2, so that they
are omitted. Here we note that the matrix representation Uy is given by

¢t 0
; 2/ =1
(8) UL (w) = " » L= exp T
0 ‘cztnrt—l
Qeeevenens 0 pen+bd,
1 0
( 9 ) (,)(0') K . é y Pr = €Xp 2”\/—_1
. . _d[
. t
0 10

Now we shall consider group algebras and Schur indices.

Proposition 8. Notation being the same as before, assume that u=s.
Namely, the centralizer of {w) in G coincides with {w) itself. Then the enveloping
algebra of the irreducible representation Uy induced from a linear character

Vg of {w) is isomorphic to the cyclic algebra wzth center Q(XSv):

27V —1
envo(U) = (62, Qt2), 7), Em= exp *”VT,,—

where Xy is the character of USy and T is an automorphism of Q(£%)/Q defined by
T(Em) =Em’ .

Proposition 9. Denote by A, the local index of envo(US5) at a place p of
k=Q(X{Y), and set
d —_m . m

= y Uy = .
(m, o) (m, ah)

Then we have the following results,
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(I) If a finite prime p of k does not divide d,, then
A,=1.

(IT) If pld,, we put v,=p%, (p, 2)=1, p|p.
Then we have

A=

S )
except the case p=2, b=1, 2* is the highest power of 2 dividing d,, r=—1 (mod 4),
the order of r mod* % is odd, and the order of 2 mod* % is odd. In this
exceptional case we have A;=2. In the above, c,=(e, g—1), ep-:%, q:pf7f , b

is the order of r mod> —Z%, f is the order of p mod* %}, f= :H:[<r mod > —z%>ﬂ

< p mod* ;-:>], and p” is the highest power of p dividing d,.
(IIT)  For any infinite prime .. of k, we have

A, =1,

except the case ah=""(mod m), 2|s and r**=—1(modd,). In this case we
P 2

have, for any V.. of k, A, =2.
The proofs of Propositions 8, 9 are almost the same as those of Theorems

27V —1ah .
2, 3, so that they are omitted. Here we only note that exp L\/_m_CL is fixed

by the automorphism 7, as follows from the fact m|h(r—1).

ReMARK 1. Going back to Prop. 5, let U be irreducible. We assume
that there exists an automorphism 7 of Q(¢%, p#**#)/@ such that

T(E0) = &7, T(p*rP) = pit P,

where ¢, and p, are defined by (8) and (9), respectively. Then the enveloping
algebra of U{g is isomorphic to the cyclic algebra with center Q(X5):

envo(UGy) = (p?"**1, Q(LT, pt"**r), 7).
Hence the Schur index of U can be computed.

ReEmMARK 2. About the metacyclic groups satisfying the assumption in
Prop. 8, we quote the following fact from [3, §47].

Proposition 10. Notation is the same as in Prop. 4. Assume that the
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centralizer of {w) in G 1s exactly {w) itself. Then, every irreducible representation
of G is either one-dimensional or equivalent to one induced from a linear character
of <w) if and only if, for each i and j, 1 <i<m, 1<j<s—1,

(%) r’i=1i(mod m) implies ri=i(mod m).

In particular, when s is a prime, the condition (x) is fulfilled.

6. Examples
1) The dihedral group D,,. The defining relations are

0" =1, co'woc=0", o=1.

We use notation of Prop. 5. The one-dimensional representations of D,, are
Pip (B8=0, 1) if m is odd, and 5 (=0, 1, 8=0, 1) if m is even. Here

Yig(w) =1, Pip(c) = (—1)%, if mis odd,
Pig(w) = (—1)*, YPiE(e) = (—1)?, if mis even.
The other (inequivalent) irreducible representations of D,, are induced from
linear characters of <w)> and given by U% <1<a<m—2—1) if m is odd, and

m—2

Uug <1<a< ) if m is even. In both cases, each U$ is defined by

050 = (F o) =0 Uz = (] o).

The enveloping algebra of US is isomorphic to the quaternion algebra:
enve(UR) = (1, Qtn), 7, 7(¢m) =¢&a".

Hence the Schur index of U is equal to 1.

REMARK. In [4, §11], the Schur indices of any dihedral group whose order
is 2-power, are discussed.

2) Let G be a split extension of a cyclic normal subgroup {w) by a cyclic
group. Assume that the centralizer of <w) in G coincides with {w) itself.
Then the Schur indices of the irreducible representations of G induced from
linear characters of {w) are all equal to 1. (See Prop. 10).

3) The generalized quaternion group Q,,. In this case, we have for the
generators o, o,

2 -1 -1
0o”=1, clwc=0"", ="

(The integer m is not necessarily 2—power [3, p. 23]) The one-dimensional
representations of Q,, are Y5y (a, 8=0, 1) such that
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V) = (—1,  YB(o) = (— 1 exp L0

The other (inequivalent) irreducible representations of Q,, are induced from
linear characters of {(w> and given by U® (1<a<m—1) such that

U@ tom O 2\/ @ 0(—1)"
((“’) 0 {5; ’ §zm—eXP z ’ Uao()_( (0))

The enveloping algebra of each US is isomorphic to the quaternion algebra
with the center Q(X3)=@Q({%,,+Lzm):

enve(Ug) = ((—1)% QC%m) 7) s T(€2m) = Lam -

Hence, if a is even, the Schur index of US is equal to 1. However, if « is odd,
the local index of enve(US) at every infinte prime spot of Q(X%) is equal to
2, as follows from the fact that the center Q(XY) is totally real. Consequently,
if ¢ is odd, the Schur index of UE is equal to 2.

RemMArRk. The Schur indices of the generalized quaternion groups of
2—power orders are discussed in [4, §11].
4) Let G be a metacyclic group with two generators w, o satisfying

w¥=1, clwo=0*, =1.
(Note that [<w>: 1] and [G: {w>] are not relatively prime. This example
appears in [3, p. 340].) We can easily find all the irreducible representations
of G.

degree number ] representation
1 12 tl/f,}g, a=0,1, §=0,1,2,3
2 3 uR, U
3 16 U, Uy, UR, U
6 4 Ug

In this table the second row, for instance, means that the number of the irreducible
representations of degree two is equal to 3 and the representations USg and
U are the representatives of the algebraically conjugate classes of the
irreducible representations. Here, the definitions of U{y and +ri§ are the
same as those of Prop. 5. We can easily show that the Schur index of every
irreducible representation of G is equal to 1.

5) Let G be a hyperelementary group (at 3), whose 3-Sylow group is
abelian of type (3, 3, 3°), with defining relations
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7 2 -1 2
=1, ol=c}=0"=1, o'ws =0,

Wwo; =00, O00; =00 (i:1)2)'

The inequivalent not one dimensional irreducible representations of G are
given by Uy sp(a=1, 3, 0< a,, a,, B<2) such that

t¢9 0
Uw,,,l,,,zpz W — e , oyl i=1,2,
0 &7
0 0 ¢8 o -
’ 271‘\/'—1 277:\/—1
g 1 0 O s §’7:exp 7 N §3=exp 3 .
010

If 8=0, then the Schur index of every U,y a(@=1, 3, 0<a;, a,<2) is equal to
1. However, if 8=1 or 2, the enveloping algebra of Uy a,p is isomorphic to
the cyclic algebra with the center Q(,, \/ —7):

enVQ(Umwlsz) = (§31 Q(Em E7)) T) s 7(57)24‘3 » T(Ca) ={s.

From this we can conclude that for any a (a=1, 3), a,, a, (0<a,, @,<2),
B (B=1, 2), the Schur index of U,y s is equal to 3.
6) (Brauer) We fix a positive integer s>2. Let p be a prime such that

p=1 (mod s) and (-P s_l’ s>=1. (There exist infinitely many primes satisfying

this condition.) Let j, (j, p)=1, be an integer whose order (mod* p) is equal to
s. Determine a positive integer 7 from the congruences: r=1 (mod s), r=j
(mod p). Let G be a metacyclic group with two generators w, o, satisfying

-1
wr=1, clwc=0", c°=ow?.

We consider the irreducible representation U of G defined by

4 0 Qeevenenenns 0 ¢t
& 1 0
Ulw) = Uy =] :
0 Cpre 0 10
where {=exp 2”\/j1- The enveloping algebra of U is known from Prop. 8:

ps
enve(U) = (&%, Q(£), 7), 7(§) =1¢".

By Prop. 9, it is readilv verified that the Schur index of U is equal to s. Thus
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for each positive integer s>2, there exists an irreducible representation U whose
degree and Schur index are both equal to s.

This result was found by Brauer [2, §5]. Berman [1] has shown the same

result by giving another examples, which are also metacyclic groups.
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