ON THE GROUP ALGEBRAS OF METABELIAN GROUPS OVER ALGEBRAIC NUMBER FIELDS I

Тоѕнініко УАМАДА

(Received August 26, 1968)

1. Introduction

In a previous paper [5], we investigated the group algebra Q[G] over the rational number field Q and Schur indices of a metacyclic group G. Here G is assumed to contain a cyclic normal subgroup A of order m with a cyclic factor group G/A of order s such that (m, s)=1. We showed that every simple component of Q[G] is explicitly written as a cyclic algebra. Consequently, the formulae for the Schur indices of all the irreducible representations of G were obtained.

In this paper, we pursue the same matter for a metacyclic group which does not necessarily satisfy the condition (m, s)=1, or more generally for a metabelian group G with an abelian normal subgroup A such that G/A is cyclic. In the first place, we refine the well known fact that every irreducible representation of a metabelian group is monomial (Theorem 1). By this Theorem 1, we find all the irreducible representations of a metabelian group G which is a semi-direct product of an abelian normal subgroup A and a cyclic subgroup G, and satisfies a certain condition. (This condition is fulfilled if G is metacyclic.) If an irreducible representation G0 of the above metabelian group G2 satisfies the assumption (G3) of Theorem 2, then the enveloping algebra envG3 is expressed as a cyclic algebra. In Theorem 3, we give the formula for the Schur index of the above irreducible representation G3.

To some extent, our argument is applicable to a non-split extension G of an abelian normal subgroup by a cyclic group. For simplicity, we shall discuss the case that G is metacyclic (§5). Finally we consider several examples and determine group algebras and Schur indices of them (§6).

Notation and Terminology As usual Z, Q, C denote respectively the ring of rational integers, the rational number field, the complex number field. For a set M, #M is the cardinality of M. $\langle \omega, \sigma, \cdots \rangle$ is the group generated by ω , σ , \cdots . An irreducible representation of a finite group G always means an absolute one. If ψ is a representation of a subgroup H of G, ψ^G denotes the

representation of G induced from ψ . If χ is a character of G, $Q(\chi)$ denotes the field obtained from Q by adjunction of all values $\chi(g)$, $g \in G$. For a natural number n, the multiplicative group of integers modulo n is denoted by $Z \mod^{\times} n$, and for $r \in Z$, (r, n) = 1, $r \mod^{\times} n$ always means an element of $Z \mod^{\times} n$. If K is an extension field of k, then $N_{K/k}$ is the norm of K over k. If K is a Galois extension of k, $\mathfrak{G}(K/k)$ is its Galois group.

2. Irreducible representations of metabelian groups

In the first place we quote from [3, p. 348] Blichfeldt's theorem.

Theorem. Let G be a finite subgroup of GL(M) for some finite dimensional vector space M over an algebraically closed field K such that $\operatorname{char} K \not \setminus [G:1]$, and let M be an irreducible K[G]-module. Suppose that G contains an abelian normal subgroup A not contained in the center of G. Then there exist a proper subgroup H^* of G which contains A, and an irreducible $K[H^*]$ -submodule L of M, such that $M=L^G$.

REMARK. It is not stated in [3] that H^* can be taken so as to contain A. The following theorem implies that, in order to give all the irreducible representations of a metabelian group G, we may fix a maximal abelian normal subgroup A such that G/A is abelian, and find all the subgroups H such that $G\supset H\supset A$, and decide all the linear characters of H.

Theorem 1. Let G be a metabelian group with an abelian normal subgroup A such that G/A is abelian. Let K be an algebraically closed field whose characteristic does not divide [G: 1]. Then for every irreducible K-representation U of G, there exists a linear character ψ of a certain subgroup H which contains A, such that $U=\psi^G$.

Proof. Since any subgroup or homomorphic image of a metabelian group is metabelian, we use induction about the order of G. Since the result is clear if G is abelian, we may assume that G is not abelian and that the theorem is true for any metabelian group of smaller order than #G. Let M be any irreducible K[G]-module. The mapping $g \mapsto g_L$, where g_L is the linear transformation $m \mapsto gm$ of M, is a homomorphism of G onto a metabelian subgroup G_L of GL(M), and M is an irreducible $K[G_L]$ -module. The image A_L of A is an abelian normal subgroup of G_L such that G_L/A_L is abelian. If $g \mapsto g_L$ has a non-trivial kernel, then $[G_L: 1] < [G: 1]$, and by the induction hypothesis, there exist a subgroup H_L of G_L containing A_L , and a one-dimensional $K[H_L]$ -submodule P of M such that $M = P^{G_L}$. If H is the subgroup of G consisting of all $h \in G$ such that $h_L \in H_L$, then $H \supset A$. It is easily seen that P is a one-dimensional K[H]-module and $M = P^G$.

We may therefore assume that $g\mapsto g_L$ is an isomorphism of G onto G_L , and we shall identify G with G_L . Let C be the center of G. If $A\subset C$, then by Blichfeldt's theorem, there exist a proper subgroup F of G containing A, and an irreducible K[F]-submodule W of M such that $M=W^G$. Since F|A and A are both abelian and $[F\colon 1]<[G\colon 1]$, the induction hypothesis implies that there exist a subgroup $H\supset A$ and a one-dimensional K[H]-submodule V of W such that $W=V^F$. Then we have $M=V^G$. Now we assume $A\subset C$. Since $[G,G]\subset A$, any subgroup containing C is normal in G. As G is not abelian, we can find a subgroup $E\supset C$ such that E/C is cyclic and not equal to (1). Then E is an abelian normal subgroup not contained in the center, and G/E is abelian. Therefore we find a subgroup $H(\supset E\supset A)$ and a one-dimensional K[H]-submodule V of M such that $M=V^G$. The theorem is proved.

Now let us consider a metabelian group G which is the semi-direct product of an abelian normal subgroup A and a cyclic subgroup $\langle \sigma \rangle$ of order s:

$$(1) G = A \cdot \langle \sigma \rangle.$$

If $\{p_1, \dots, p_n\}$ is the set of primes dividing the order of A, then

(2)
$$A = \langle \omega_{11} \rangle \times \cdots \times \langle \omega_{1c(1)} \rangle \times \cdots \times \langle \omega_{n1} \rangle \times \cdots \times \langle \omega_{nc(n)} \rangle,$$

where the order of ω_{ij} is $p_{i^{ij}}^a$ $(1 \le i \le n, 1 \le j \le c(i))$. In the following we assume that

(3)
$$\sigma^{-1}\omega_{ij}\sigma = \omega_{ij}^{r_{ij}} \qquad (1 \leqslant i \leqslant n, \ 1 \leqslant j \leqslant c(i)).$$

Let u_{ij} be the order of $r_{ij} \mod^{\times} p_{i^{ij}}^{a_{ij}}$ and u be the L.C.M. of u_{ij} ($1 \le i \le n$, $1 \le j \le c(i)$). Then $A \cdot \langle \sigma^u \rangle$ is a maximal abelian normal subgroup of G, so that by Theorem 1, any irreducible representation U of G is induced from a linear character ψ of some subgroup $H_t = A \cdot \langle \sigma^t \rangle$, $t \mid u$. H_t is a normal subgroup of G and

$$[H_t, H_t] = \prod_{i,j} \langle \omega_{ij}^{r_{ij}^t - 1} \rangle.$$

If we set

$$(4) d_{tij} = (r_{ij}^t - 1, p_{iij}^a),$$

all the linear characters of H_t are given by

$$(5) \qquad \psi_{\alpha_{11}\cdots\alpha_{1c(1)}\cdots\alpha_{n1}\cdots\alpha_{nc(n)}\beta}^{(t)}, \quad 0 \leqslant \alpha_{ij} \leqslant d_{tij} - 1, \quad 0 \leqslant \beta \leqslant \frac{s}{t} - 1,$$

such that

$$(6) \quad \begin{cases} \psi_{\alpha_{11}\cdots\alpha_{1c(1)}\cdots\alpha_{n1}\cdots\alpha_{nc(n)}\beta}^{(t)}(\omega_{ij}) = \exp\frac{2\pi\sqrt{-1}\alpha_{ij}}{d_{tij}} & \begin{pmatrix} 1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant c(i) \end{pmatrix} \\ \psi_{\alpha_{11}\cdots\alpha_{1c(1)}\cdots\alpha_{n1}\cdots\alpha_{nc(n)}\beta}^{(t)}(\sigma^{t}) = \exp\frac{2\pi\sqrt{-1}t\beta}{s} . \end{cases}$$

For simplicity, we write them as

(7)
$$\psi_{\alpha\beta}^{(t)} = \psi_{\alpha_{11}\cdots\alpha_{1c(1)}\cdots\alpha_{n1}\cdots\alpha_{nc(n)}\beta}^{(t)}.$$

The representation of G induced from $\psi_{\alpha\beta}^{(t)}$ is denoted by $U_{\alpha\beta}^{(t)}$:

$$(8) U_{\alpha\beta}^{(t)} = (\psi_{\alpha\beta}^{(t)})^G.$$

It is readily verified that

(10)
$$U_{\alpha\beta}^{(t)}(\omega_{ij}) = \begin{pmatrix} \zeta_{tij}^{\alpha_{ij}} & 0 \\ & \zeta_{tij}^{\alpha_{ij}r_{ij}} \\ & & \ddots \\ 0 & & \zeta_{tij}^{\alpha_{ij}r_{ij}^{t-1}} \end{pmatrix}, \quad \zeta_{tij} = \exp \frac{2\pi\sqrt{-1}}{d_{tij}},$$

$$V_{\alpha\beta}^{(t)}(\sigma) = \begin{pmatrix} 0 & \cdots & 0 & \xi_{t}^{\beta} \\ 1 & & 0 & \vdots \\ & \ddots & & \vdots \\ & & \ddots & & \vdots \\ & & \ddots & & \vdots \\ & & & \ddots & \vdots \\ & & & \ddots & \vdots \\ 0 & & & 1 & 0 \end{pmatrix}, \quad \xi_{t} = \exp \frac{2\pi\sqrt{-1}t}{s},$$

(11)
$$U_{\alpha\beta}^{(t)}(\sigma^t) = \xi_t^{\beta} \cdot 1_t,$$

where 1_t is the identity in the full matrix algebra $M_t(C)$.

Proposition 1. $U_{\alpha\beta}^{(t)}$ is irreducible if and only if for every $\mu \equiv 0 \pmod{t}$, there exist i and j such that

$$\zeta_{tij}^{\alpha_{ij}} + \zeta_{tij}^{\alpha_{ij}r_{ij}^{\mu}}.$$

Proof. For any element $x = \omega \sigma^{\mu}$ of G where $\omega \in A$,

$$x^{\scriptscriptstyle -1}\omega_{ij}x = \sigma^{\scriptscriptstyle -\mu}\omega_{ij}\sigma^{\scriptscriptstyle \mu} = \omega_{ij}^{r_{ij}^{\scriptscriptstyle \mu}}, \ x^{\scriptscriptstyle -1}\sigma^t x = \omega_{\scriptscriptstyle 1}^{\scriptscriptstyle -1}\sigma^t \omega_{\scriptscriptstyle 1}, \quad \omega_{\scriptscriptstyle 1} = \sigma^{\scriptscriptstyle -\mu}\omega\sigma^{\scriptscriptstyle \mu} {\in} H_t,$$

so that

$$\psi_{\alpha\beta}^{(t)}(x^{-1}\omega_{ij}x) = \zeta_{tij}^{\alpha_{ij}r_{ij}^{\mu}},$$

$$\psi_{\alpha\beta}^{(t)}(x^{-1}\sigma^{t}x) = \psi_{\alpha\beta}^{(t)}(\sigma^{t})$$

Then by [5, Lemma 2] we have

 $U_{\alpha\beta}^{(t)}$ is irreducible

$$\Leftrightarrow$$
 for every $x \in H_t$, $\psi_{\alpha\beta}^{(t)} \neq (\psi_{\alpha\beta}^{(t)})^{(x)}$

 \Leftrightarrow for every $\mu \equiv 0 \pmod{t}$, there exist i and j such that $\zeta_{ij}^{\alpha_{ij}} = \zeta_{ij}^{\alpha_{ij}r_{ij}^{\mu}}$. q.e.d.

Proposition 2. Let $U_{\alpha\beta}^{(t)}$ and $U_{\alpha'\beta'}^{(t)}$, be irreducible. Then $U_{\alpha\beta}^{(t)}$ and $U_{\alpha'\beta'}^{(t)}$ are inequivalent if and only if $\beta \neq \beta'$ or for every μ $(0 \leq \mu \leq t-1)$ there exist i and j such that $\zeta_{t,j}^{\alpha_{ij}r_{ij}^{\mu}} + \zeta_{t,i}^{\alpha'_{ij}}$.

Proof. By [5, Lemma 3], we have

 $U_{\alpha\beta}^{(t)}$ and $U_{\alpha'\beta'}^{(t)}$ are inequivalent

- \Leftrightarrow for every $x \in G$, $(\psi_{\alpha\beta}^{(t)})^{(x)} = \psi_{\alpha'\beta'}^{(t)}$
- \Leftrightarrow for every $x \in G$, $\psi_{\alpha\beta}^{(t)}(x^{-1}\sigma^t x) = \psi_{\alpha'\beta'}^{(t)}(\sigma^t)$, or $\psi_{\alpha\beta}^{(t)}(x^{-1}\omega_{ij}x) = \psi_{\alpha'\beta'}^{(t)}(\omega_{ij})$ for some i and j
- $\Leftrightarrow \xi_t^{\beta} = \xi_t^{\beta'}$ or for every μ , there exist i and j such that $\zeta_{iij}^{\alpha_{ij}r_{ij}^{\mu}} = \zeta_{iij}^{\alpha'_{ij}}$. q.e.d.

Proposition 3. Let t and t' be any divisor of u, such that $t \neq t'$. Then $U_{\alpha\beta}^{(t)}$ and $U_{\alpha'\beta'}^{(t')}$ are not equivalent.

Proof. Since $[G: H_t] = t$ and $[G: H_{t'}] = t'$, the assertion is obvious.

3. The structure of group algebra Q[G]

The purpose of this section is to prove

Theorem 2. Let G be the metabelian group discussed in the latter part of §2. (The defining relations are given by §2, (1)–(3).) Let $U_{\alpha\beta}^{(t)}$ $(t \pm 1)$ be any irreducible representation of G and $X_{\alpha\beta}^{(t)}$ its character. Set

(1)
$$K = \mathbf{Q}(\xi_t^{\beta}, \zeta_{tij}^{\alpha_{ij}}, 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant c(i)).$$

Assume that there exists an automorphism τ of K over Q such that

$$(\ \natural\) \qquad \qquad \tau(\xi_t^{\beta}) = \xi_t^{\beta}\ , \ \tau(\zeta_{tij}^{\alpha_{ij}}) = \zeta_{tij}^{\alpha_{ij}r_{ij}}, \ 1 \leqslant i \leqslant n, \ 1 \leqslant j \leqslant c(i)\ .$$

Then the enveloping algebra of $U_{\alpha\beta}^{(t)}$ over \mathbf{Q} is isomorphic to the cyclic algebra of center $\mathbf{Q}(\chi_{\alpha\beta}^{(t)})$:

$$\mathrm{env}_{m{Q}}(U_{lpham{eta}}^{(t)}){\simeq}(\xi_t^{m{eta}},\,K,\, au)_{m{Q}(\mathbf{x}_{lpham{eta}}^{(t)})}$$
 .

EXAMPLE I. Notation being the same as before, let G be such that $a_{i1}=\cdots=a_{ic(i)}$ and $r_{i1}=\cdots=r_{ic(i)}$ for all $i(1 \le i \le n)$, and that $(p_1 p_2 \cdots p_n, s)=1$. Then every (not one dimensional) irreducible representation of G satisfies the assumption (|). In particular, every metacyclic group G with cyclic normal subgroup G and cyclic factor group G/A such that ([A:1], [G:A])=1 comes under this case.

Ž16 T. YAMADA

EXAMPLE II. Let G be a hyperelementary group (at a prime p) generated by ω , ω_1 , \cdots , ω_l , σ with defining relations:

$$\omega^{m}=1, \ \sigma^{-1}\omega\sigma=\omega^{r}, \ \sigma^{pb}=1, \ \omega^{pb_{i}}=1 \ (1\leqslant i\leqslant l), \ (m,p)=1,$$
 $\langle \omega, \omega_{1}, \cdots, \omega_{l} \rangle$ and $\langle \omega_{1}, \cdots, \omega_{l}, \sigma \rangle$ are abelian.

Then every irreducible representation of G satisfies the assumption (abla).

Theorem 2 can be proved almost in the same way as [5, Theorem 2], so that we give the proof concisely. At first, note that the order of the automorphism τ of K is equal to t. Indeed, since $U_{\alpha\beta}^{(t)}$ is irreducible, Proposition 1 implies that for any $\mu \equiv 0 \pmod{t}$, there exist i and j such that $\tau^{\mu}(\zeta_{tij}^{\alpha_{ij}}) = \zeta_{tij}^{\alpha_{ij}} = \zeta_{tij}^{\alpha_{ij}}$ On the other hand, by (4) of §2 we have $\tau^{t}(\zeta_{tij}^{\alpha_{ij}}) = \zeta_{tij}^{\alpha_{ij}} = \zeta_{tij}^{\alpha_{ij}}$ for all i and j. Hence the order of τ is t. For simplicity, set

(2)
$$U = U_{\alpha\beta}^{(t)} \quad \text{and} \quad \chi = \chi_{\alpha\beta}^{(t)}.$$

Lemma 1. Let $U | H_t$ denote the restriction of U to the subgroup H_t . Then the enveloping algebra $env_Q(U | H_t)$ is a (commutative) field, and in fact,

(3)
$$\operatorname{env}_{\mathbf{Q}}(U|H) \simeq K.$$

Proof. Denote by $[\theta_1, \theta_2, \dots, \theta_t]$ the diagonal matrix of degree t with the diagonal elements $\theta_1, \theta_2, \dots, \theta_t$. Then it follows from the assumption (\natural) that $\text{env}_Q(U|H_t)$ is just the set:

(4)
$$\operatorname{env}_{\boldsymbol{Q}}(U|H_t) = \{ [\theta, \, \theta^{\tau}, \, \cdots, \, \theta^{\tau^{t-1}}]; \, \theta \in K \} .$$

This proves our lemma.

As H_t is a normal subgroup of G, $\chi(g)=0$ for every $g \in H_t$. Hence we have

(5)
$$\mathbf{Q}(\chi) = \mathbf{Q}(\theta + \theta^{\tau} + \dots + \theta^{\tau^{t-1}}; \theta \in K).$$

From this we see easily that the field K is cyclic extension of $\mathbf{Q}(X)$ of degree t whose Galois group is generated by τ . By the isomorphism of K onto $\operatorname{env}_{\mathbf{Q}}(U|H_t)$, the subfield $\mathbf{Q}(X)$ is mapped onto $\mathbf{Q}(X) \cdot \mathbf{1}_t$, so that

$$[\operatorname{env}_{\boldsymbol{Q}}(U | H_t) \colon \boldsymbol{Q}(X) \cdot 1_t] = t.$$

Meanwhile it is well known that $[env_{\mathbf{Q}}(U): \mathbf{Q}(X)\cdot 1_t]$ is equal to the square of the degree of U:

$$[\operatorname{env}_{\boldsymbol{Q}}(U) \colon \boldsymbol{Q}(X) \cdot 1_t] = t^2.$$

Therefore, $\operatorname{env}_{\mathbf{Q}}(U | H_t)$ is a maximal subfield of $\operatorname{env}_{\mathbf{Q}}(U)$. The generating automorphism T of $\operatorname{env}_{\mathbf{Q}}(U | H_t)$ over $\mathbf{Q}(\chi) \cdot 1_t$, which corresponds to τ , is evidently given by

$$(8) T: [\theta, \theta^{\tau}, \cdots, \theta^{\tau^{t-1}}] \mapsto [\theta^{\tau}, \theta^{\tau^2}, \cdots, \theta], \theta \in K.$$

On the other hand, it is easily verified that

$$(9) U(\sigma)^{-1}[\theta, \theta^{\tau}, \cdots, \theta^{\tau^{t-1}}]U(\sigma) = [\theta^{\tau}, \theta^{\tau^2}, \cdots, \theta].$$

Hence

(10)
$$U(\sigma)^{-\nu}\Theta U(\sigma)^{\nu} = T^{\nu}(\Theta), \ \Theta \in \operatorname{env}_{\mathbf{Q}}(U \mid H_{t}), \ 0 \leqslant \nu \leqslant t-1,$$

and so 1_t , $U(\sigma)$, \cdots , $U(\sigma)^{t-1}$ are linearly independent over the field $\text{env}_{\mathbf{Q}}(U|H_t)$. Recall that

(11)
$$U(\sigma)^t \in \operatorname{env}_{\mathbf{Q}}(U|H_t).$$

Thus we see that $env_{\mathbf{Q}}(U)$ is the cyclic algebra with the defining relation (10):

$$\operatorname{env}_{\mathbf{Q}}(U) = 1_{t} \cdot \operatorname{env}(U|H_{t}) + U(\sigma) \cdot \operatorname{env}(U|H_{t}) + \dots + U(\sigma)^{t-1} \cdot \operatorname{env}(U|H_{t})$$

$$= (U(\sigma^{t}), \operatorname{env}_{\mathbf{Q}}(U|H_{t}), T)_{\mathbf{Q}(X) \cdot 1_{t}}$$

$$\simeq (\mathcal{E}_{t}^{\beta}, K, \tau)_{\mathbf{Q}(X)}.$$

This completes the proof of Theorem 2.

4. The Schur index

We shall calculate with the Schur index of the irreducible representation $U_{\alpha\beta}^{(t)}$ of the metabelian group G which appeared in Theorem 2. For this it suffices to compute the orders of norm residue symbols

$$\left(\begin{array}{c} \left(\frac{\xi_t^{\beta}, \ K/k}{\mathfrak{p}}\right) = \left(\xi_t^{\beta}, \ K_{\mathfrak{P}}/k_{\mathfrak{p}}\right) \end{array}\right)$$

at all places p of

$$(2) k = \mathbf{Q}(\chi_{\alpha\beta}^{(t)}),$$

where $K_{\mathfrak{P}}/k_{\mathfrak{p}}$ represents the isomorphy type of the completion of K/k for $\mathfrak{P} \mid \mathfrak{p}$. Recall that

(3)
$$\zeta_{tij}^{a_{ij}} = \exp \frac{2\pi\sqrt{-1}\alpha_{ij}}{d_{tij}}, \quad d_{tij} = (p_{t^{ij}}^a, r_{tj}^t - 1).$$

If we set

$$\frac{d_{tij}}{(d_{tij}, \alpha_{ij})} = p_i^{b_{ij}},$$

(5)
$$a_i = \text{Max}\{b_{i1}, b_{i2}, \dots, b_{ic(i)}\} = b_{ij_i}$$
 for some $j_i \ (1 \leq j_i \leq c(i))$,

$$(6) r_i = r_{ij_i},$$

then it follows that

(7)
$$K = \mathbf{Q}\left(\xi_{t}^{\beta}, \exp{\frac{2\pi\sqrt{-1}}{p_{11}^{a_1}}}, \dots, \exp{\frac{2\pi\sqrt{-1}}{p_{n}^{a_n}}}\right),$$

Recall that

(9)
$$\xi_t^\beta = \exp \frac{2\pi\sqrt{-1}\beta t}{s}.$$

So ξ_t^{β} is a primitive $v_{t,\beta}$ -th root of unity, where

(10)
$$v_{t,\beta} = \frac{s/t}{(s/t, \beta)}.$$

(Case I) $\mathfrak{p} \not \times p_1 p_2 \cdots p_n$. Then \mathfrak{p} is not ramified in $K_{\mathfrak{P}}/k_{\mathfrak{p}}$, so

$$(11) \qquad \qquad (\xi_t^{\beta}, \, K_{\mathfrak{P}}/k_{\mathfrak{p}}) = 1 \, .$$

(Case II) $\mathfrak{p} \mid p_i$ for some $i \ (1 \leq i \leq n)$. Set

(12)
$$p = p_i, \quad v_{t,\beta} = p^b z, \quad (p, z) = 1.$$

Then for some primitive p^b -th (resp. z-th) root of unity η_{p^b} (resp. η_z),

(13)
$$\xi_t^{\beta} = \eta_{p^b} \eta_z,$$

so that

$$(14) \qquad (\xi_t^{\beta}, K_{\mathfrak{P}}/k_{\mathfrak{p}}) = (\eta_{h^{\beta}}, K_{\mathfrak{P}}/k_{\mathfrak{p}}) \cdot (\eta_z, K_{\mathfrak{P}}/k_{\mathfrak{p}}).$$

Consequently the order of $(\xi_t^{\beta}, K_{\mathfrak{P}}/k_{\mathfrak{p}})$ is that of $(\eta_{p^b}, K_{\mathfrak{P}}/k_{\mathfrak{p}})$ multiplied by that of $(\eta_z, K_{\mathfrak{P}}/k_{\mathfrak{p}})$. Let $e_{\mathfrak{p}}$ be the ramification exponent of $K_{\mathfrak{P}}/k_{\mathfrak{p}}$ and Π be a prime element of $K_{\mathfrak{P}}$. Set $\psi = N_{K_{\mathfrak{P}}/k_{\mathfrak{p}}}(\Pi), N_{k/Q}(\mathfrak{p}) = q$, and $N_{K/Q}(\mathfrak{P}) = q^h$, q being a power of p. Then by the same argument as in [5, §4] we have $N_{K_{\mathfrak{P}}/k_{\mathfrak{p}}}(K_{\mathfrak{P}}^{\times}) = \left\{ \psi^n \eta_{q-1}{}^{c\lambda} N_{K_{\mathfrak{P}}/k_{\mathfrak{p}}}(\gamma); n \in \mathbb{Z}, 1 \leqslant \lambda \leqslant \frac{q-1}{c}, \gamma : \text{ principal unit of } K_{\mathfrak{P}} \right\}$ where

(15)
$$c_{\mathfrak{p}} = c = (e_{\mathfrak{p}}, q-1).$$

Note that $c_{\mathfrak{p}}$ is the exponent of tame ramification of $K_{\mathfrak{P}}/k_{\mathfrak{p}}$. Since $\mathfrak{p}/\!\!/z$, we may assume $\eta_z = \eta_{q-1}^{(q-1)/z}$. Then for an integer x, $\eta_z^x \in N_{K_{\mathfrak{P}}/k_{\mathfrak{p}}}(K_{\mathfrak{P}}^{\times})$ if and only if $c/\left(c,\frac{q-1}{z}\right)$ divides x. Hence the order of the norm residue symbol $(\eta_z,K_{\mathfrak{P}}/k_{\mathfrak{p}})$ is equal to

$$\frac{c_{\mathfrak{p}}}{\left(c_{\mathfrak{p}}, \frac{q-1}{z}\right)}.$$

It now remains to compute the order of $(\eta_{p^b}, K_{\mathfrak{P}}/k_{\mathfrak{p}})$, $\mathfrak{p} \mid p.(*)$ Hereafter for a positive integer x, η_x denotes a primitive x-th root of unity. Set

$$\Omega = \left\{ egin{array}{ll} oldsymbol{Q}_{oldsymbol{p}}(\eta_{oldsymbol{p}}) & p \! + \! 2 \ oldsymbol{Q}_{oldsymbol{z}}(\eta_{oldsymbol{q}}) & p \! = \! 2, \ b \! \geqslant \! 2. \end{array}
ight.$$

Then, if $p \neq 2$ or p=2, $b \geqslant 2$, it follows that

$$k_{\mathfrak{p}}\supset Q_{p}(\eta_{p^{b}})\supset \Omega\supset Q_{p}$$
,

so that

$$(17) \qquad (\eta_{p^b}, K_{\mathfrak{P}}/k_{\mathfrak{p}}) = (N_{\Omega/\mathbf{Q}_p}(N_{k_{\mathfrak{p}}/\Omega}(\eta_{p^b})), K_{\mathfrak{P}}/\mathbf{Q}_p).$$

Clearly $N_{k_p/\Omega}(\eta_{p^b})$ is equal to η_p^{ν} (resp. η_4^{ν}) for some ν in the case $p \neq 2$ (resp. $p=2, b \geqslant 2$). As

$$N_{m{Q_p(\eta_p)/Q_p}}(\eta_p)=1$$
, resp. $N_{m{Q_2(\eta_4)/Q_p}}(\eta_4)=1$,

we have, in the case $p \neq 2$ or p=2, $b \geqslant 2$,

(18)
$$(\eta_{p^b}, K_{\mathfrak{P}}/k_{\mathfrak{p}}) = (1, K_{\mathfrak{P}}/\mathbf{Q}_p) = 1.$$

Lastly the case p=2, b=1 remains. That is, we must compute the norm residue symbol

$$(-1, K_{\mathfrak{R}}/k_{\mathfrak{n}}), \quad \mathfrak{p} \mid 2.$$

The field K can be expressed as

(20)
$$K = \mathbf{Q}\left(\exp\frac{2\pi\sqrt{-1}}{2^a}, \exp\frac{2\pi\sqrt{-1}}{w}\right), (2, w) = 1.$$

Then

(21)
$$(Z \operatorname{mod}^{\times} 2^{a}) \times (Z \operatorname{mod}^{\times} w),$$

and the automorphism $\tau \in \mathfrak{G}(K/\mathbb{Q})$ is of the form:

(22)
$$\tau = (\rho_1 \operatorname{mod}^{\times} 2^a, \, \rho_2 \operatorname{mod}^{\times} w).$$

Of course $\rho_1 \mod^{\times} 2^a$ and $\rho_2 \mod^{\times} w$ are uniquely determined by (8). If $a \ge 3$, then the group $\mathbb{Z} \mod^{\times} 2^a$ is not cyclic. On the other hand K/k is cyclic, so

^(*) The author is indebted to Professor Y. Akagawa for kind advice in the following argument.

that $Q(\eta_{2^a}) \cap k \neq Q$. This implies that the degree $[k_p: Q_2]$ is divisible by 2. Consequently in the case $a \geqslant 3$, we have

(23)
$$(-1, K_{\mathfrak{P}}/k_{\mathfrak{p}}) = (1, K_{\mathfrak{P}}/\mathbf{Q}_{\mathfrak{p}}) = 1.$$

If a=2, $\rho_1\equiv 1 \pmod{2^2}$, then $k\supset \mathbf{Q}(\eta_4)\supset \mathbf{Q}$, and so $[k_{\mathfrak{p}}\colon \mathbf{Q}_2]$ is divisible by 2. Consequently

$$(24) (-1, K_{\mathfrak{P}}/k_{\mathfrak{p}}) = 1.$$

We come to the case a=2, $\rho_1 \equiv -1 \pmod{2^2}$. Let the order of $\rho_2 \mod^\times w$ be $2^{\vee} \cdot l$, (2, l)=1. If $2^{\vee} \neq 1$, then it can easily be shown that $\mathfrak{p}(\mathfrak{p}|2)$ is not ramified in K/k, so that

$$(25) (-1, K_{\mathfrak{P}}/k_{\mathfrak{p}}) = 1.$$

If $2^{\nu}=1$, then [K:k]=2l, and the ramification exponent of $\mathfrak{p}(\mathfrak{p}|2)$ in K/k is equal to 2. Meanwhile the degree $[K_{\mathfrak{P}}: \mathbf{Q}_2]$ is 2f, where f is the smallest positive integer satisfying

$$(26) 2^f \equiv 1 \pmod{w}.$$

If f is even, it follows that $[k_n: \mathbf{Q}_2]$ is also even, so that

(27)
$$(-1, K_{\mathfrak{P}}/k_{\mathfrak{p}}) = (1, K_{\mathfrak{P}}/\mathbf{Q}_{2}) = 1.$$

If f is odd, it follows that $[k_n: \mathbf{Q}_2]$ is also odd, so that

(28)
$$(-1, K_{\mathfrak{P}}/k_{\mathfrak{p}}) = (-1, K_{\mathfrak{P}}/\mathbf{Q}_{2}).$$

However, as $-1 \oplus N_{\boldsymbol{Q}_2(\eta_4)/\boldsymbol{Q}_2}(\boldsymbol{Q}_2(\eta_4)^{\times})$, we have

$$-1 \notin N_{K_{\mathfrak{P}}/\mathbf{Q}_2}(K_{\mathfrak{P}}^{\times}).$$

Therefore, in this case, the order of $(-1, K_{\mathfrak{P}}/k_{\mathfrak{p}})$ is equal to 2.

Now we shall compute explicitly the ramification exponent $e_{\mathfrak{p}}$ and the absolute norm $N_{k/\mathbf{Q}}(\mathfrak{p})$ for every $\mathfrak{p} \mid p$, $p=p_i$ $(1 \leq i \leq n)$. We have the expressions:

(30)
$$K = \mathbf{Q}\left(\exp\frac{2\pi\sqrt{-1}}{p^a}, \exp\frac{2\pi\sqrt{-1}}{w}\right), (p, w) = 1,$$

(32)
$$\tau = (r \operatorname{mod}^{\times} p^{a}, r \operatorname{mod}^{\times} w).$$

Of course, a, w, and $r \mod^{\times} p^{a}w$ are uniquely determined from (7), (8). Let

$$(33) t_w = \text{the order of } r \mod^{\times} w.$$

Then it can easily be shown that

$$e_{\mathfrak{p}} = \frac{t}{t_{v_0}}.$$

Let

(35)
$$\tilde{f} = \text{the order of } p \mod w^{\times},$$

(36)
$$f = \# \lceil \langle r \operatorname{mod}^{\times} w \rangle \cap \langle p \operatorname{mod}^{\times} w \rangle \rceil.$$

Then it is verified without difficulty that the relative degree of \mathfrak{p} in K/k is equal to f, so that the absolute degree of \mathfrak{p} is equal to \tilde{f}/f . Hence we have

$$(37) N_{k/Q}(\mathfrak{p}) = p^{\tilde{f}/f}.$$

(For the above argument, see [5, §4].) Thus we have completely decided the order of $(\xi_t^{\beta}, K_{\mathfrak{R}}/k_{\mathfrak{n}})$ for every finite prime $\mathfrak{p} \subset k$.

Finally we consider infinite prime spots \mathfrak{p}_{∞} of k. In the same way as in [5, §4], the following results are easily obtained. If $\xi_t^{\beta} = -1$ and k is real, then the local index at any \mathfrak{p}_{∞} of the cyclic algebra $(\xi_t^{\beta}, K, \tau)_k$ is equal to 2. Otherwise, the local index at any \mathfrak{p}_{∞} of k is equal to 1. The condition $\xi_t^{\beta} = -1$ amounts to $2\beta = \frac{s}{t}$, and k is real if and only if 2|t and $r_i^{t/2} \equiv -1 \pmod{p_i^{a_i}}$, $1 \le i \le n$, where a_i and r_i are defined by (5) and (6).

Summarizing the results, we have

Theorem 3. Let G be the metabelian group and $U_{\alpha\beta}^{(t)}$ be the irreducible representation of G which appeared in Theorem 2. Denote by $\Lambda_{\mathfrak{p}}$ the local index at \mathfrak{p} of $\text{env}_{\mathbf{Q}}(U_{\alpha\beta}^{(t)})$, where \mathfrak{p} is a place of $k = \mathbf{Q}(\chi_{\alpha\beta}^{(t)})$. Then we have the following results.

(I) If \mathfrak{p} is a prime ideal such that $\mathfrak{p} \not \times p_1 p_2 \cdots p_n$, then

$$\Lambda_{\mathfrak{p}}=1$$
.

(II) $\mathfrak{p} \mid p_i$ for some $i \ (1 \leq i \leq n)$. Set $p = p_i$, $v_{t,\beta} = p^b z$, (p, z) = 1. Then we have

$$\Lambda_{\mathfrak{p}} = \frac{c_{\mathfrak{p}}}{\left(c_{\mathfrak{p}}, \frac{q-1}{z}\right)},$$

except the case that $\mathfrak{p}|2$, $v_{t,\beta}=2z$, (2,z)=1, $K=\mathbf{Q}\Big(\exp\frac{2\pi\sqrt{-1}}{4}$, $\exp\frac{2\pi\sqrt{-1}}{w}\Big)$, (2,w)=1, $\tau=(-1 \bmod^{\times} 4, \rho \bmod^{\times} w)$, the order of $\rho \bmod^{\times} w$ is odd, and the order of $2 \bmod^{\times} w$ is odd. For this exceptional case, we have $\Lambda_{\mathfrak{p}}=2$. In the above,

$$c_{\mathfrak{p}}=(e_{\mathfrak{p}},\,q-1),\quad e_{\mathfrak{p}}=rac{t}{t_{w}},\quad q=N_{k/Q}(\mathfrak{p})=p^{\widetilde{f}/f}\,,$$

where t_w , \tilde{f} and f are given by (30)-(36).

(III) For any infinite prime spot \mathfrak{p}_{∞} of k, we have

$$\Lambda_{\mathfrak{p}_{\infty}}=1$$

except the case that $2\beta = \frac{s}{t}$, $2 \mid t$, $r_i^{t/2} \equiv -1 \pmod{p_i^a i}$, $1 \leqslant i \leqslant n$, where a_i and r_i are defined by (5) and (6). In this case we have, for any \mathfrak{p}_{∞} , $\Lambda_{\mathfrak{p}_{\infty}} = 2$.

Thus we have found the Schur index of the irreducible representation $U^{(t)}_{\alpha\beta}$ of G, as it is the L.C.M. of all the local indices $\Lambda_{\rm p}$.

5. Non-split cyclic extension

Until now, we have assumed that G is a split extension of an abelian normal subgroup A by a cyclic group. The methods used are applicable to non-split extension to some extent. ("Non-split" means "not necessarily split".) Here we shall discuss the case that G is metacyclic. It has been shown in $[5, \S 2]$ that, if G is a split extension of a cyclic normal subgroup with a cyclic factor group, then all the irreducible representations of G are explicitly obtained and their number is counted. Now by virtue of Theorem 1, we can definitely give all the irreducible representations of any non-split extension G.

Proposition 4. Let $G=\langle \omega, \sigma \rangle$ be a metacyclic group with defining relations

(1)
$$\omega^m = 1, \quad \sigma^{-1}\omega\sigma = \omega^r, \quad \sigma^s = \omega^h.$$

Then

(2)
$$(m, r) = 1$$
, $m | h(r-1)$, $u = \text{order of } r \mod^x m$, $u | s$.

Let U be any irreducible representation of G. Then there exist a positive divisor t of u and a linear character ψ of the subgroup $H_t = \langle \omega, \sigma^t \rangle$ such that $U = \psi^G$.

Proposition 5. Notation being as in Prop. 4, all the linear characters of H_t are given by $\psi_{\alpha\beta}^{(t)}$, $0 \le \alpha \le d_t - 1$, $0 \le \beta \le \frac{s}{t} - 1$, such that

(3)
$$\psi_{\alpha\beta}^{(t)}(\omega) = \exp\frac{2\pi\sqrt{-1}\alpha}{d_t}$$
, $\psi_{\alpha\beta}^{(t)}(\sigma^t) = \exp\frac{2\pi\sqrt{-1}\alpha h}{\frac{s}{t}d_t}\exp\frac{2\pi\sqrt{-1}\beta}{\frac{s}{t}}$,

where

$$(4) d_t = (m, r^t - 1).$$

The induced representation $U_{\alpha\beta}^{(t)} = (\psi_{\alpha\beta}^{(t)})^G$ is irreducible if and only if

(5)
$$\alpha r^{\mu} \equiv \alpha \pmod{d_t}, \quad 1 \leqslant \mu \leqslant t - 1.$$

Proposition 6. Let $U_{\alpha\beta}^{(t)}$ and $U_{\alpha'\beta'}^{(t)}$ be irreducible. Then $U_{\alpha\beta}^{(t)}$ and $U_{\alpha'\beta'}^{(t)}$ are inequivalent if and only if we have

(6)
$$(\alpha - \alpha')h + (\beta - \beta')d_t \equiv 0 \left(\operatorname{mod} \frac{s}{t} d_t \right),$$

or

(7)
$$\alpha r^{\mu} \equiv \alpha' \pmod{d_t}, \quad 0 \leqslant \mu \leqslant t-1.$$

Proposition 7. Let t, t' be distinct divisors of u. Then $U_{\alpha\beta}^{(t)}$ and $U_{\alpha'\beta'}^{(t')}$ are inequivalent for any α , β , α' , β' .

The proofs of Prop. 4-7 are performed in the same way as in §2, so that they are omitted. Here we note that the matrix representation $U_{\alpha\beta}^{(t)}$ is given by

(8)
$$U_{\alpha\beta}^{(t)}(\omega) = \begin{pmatrix} \zeta_t^{\alpha} & 0 \\ & \zeta_t^{\alpha r} & \\ & \ddots & \\ 0 & & \zeta_t^{\alpha r t - 1} \end{pmatrix}, \quad \zeta_t = \exp \frac{2\pi\sqrt{-1}}{d_t},$$

$$V_{\alpha\beta}^{(t)}(\sigma) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ & \ddots & \vdots & \vdots \\ 0 & 1 & 0 & 0 \end{pmatrix}, \quad \rho_t = \exp \frac{2\pi\sqrt{-1}}{\frac{s}{t}}.$$

Now we shall consider group algebras and Schur indices.

Proposition 8. Notation being the same as before, assume that u=s. Namely, the centralizer of $\langle \omega \rangle$ in G coincides with $\langle \omega \rangle$ itself. Then the enveloping algebra of the irreducible representation $U_{a0}^{(s)}$ induced from a linear character $\psi_{a0}^{(s)}$ of $\langle \omega \rangle$ is isomorphic to the cyclic algebra with center $\mathbf{Q}(\mathbf{X}_{a0}^{(s)})$:

$$\operatorname{env}_{\boldsymbol{Q}}(U_{\alpha 0}^{(s)}) \simeq (\zeta_m^{\alpha h}, \boldsymbol{Q}(\zeta_m^{\alpha}), \tau), \quad \zeta_m = \exp \frac{2\pi \sqrt{-1}}{m}$$

where $\chi_{a0}^{(s)}$ is the character of $U_{a0}^{(s)}$ and τ is an automorphism of $Q(\zeta_m^{\alpha})/Q$ defined by

$$\tau(\zeta_m^\alpha) = \zeta_m^{\alpha r} .$$

Proposition 9. Denote by $\Lambda_{\mathfrak{p}}$ the local index of $\operatorname{env}_{Q}(U_{\alpha 0}^{(s)})$ at a place \mathfrak{p} of $k=Q(\chi_{\alpha 0}^{(s)})$, and set

$$d_{\alpha} = \frac{m}{(m, \, lpha)} \,, \quad v_{\alpha} = \frac{m}{(m, \, lpha h)} \,.$$

Then we have the following results.

(I) If a finite prime \mathfrak{p} of k does not divide d_{α} , then

$$\Lambda_n = 1$$
.

(II) If $\mathfrak{p} | d_{\alpha}$, we put $v_{\alpha} = p^b z$, (p, z) = 1, $\mathfrak{p} | p$. Then we have

$$\Lambda_{\mathfrak{p}} = \frac{c_{\mathfrak{p}}}{\left(c_{\mathfrak{p}}, \frac{q-1}{z}\right)},$$

except the case p=2, b=1, 2^z is the highest power of 2 dividing d_{α} , $r\equiv -1 \pmod 4$, the order of $r \mod^{\times} \frac{d_{\alpha}}{2^z}$ is odd, and the order of $2 \mod^{\times} \frac{d_{\alpha}}{2^z}$ is odd. In this exceptional case we have $\Lambda_{\mathfrak{p}}=2$. In the above, $c_{\mathfrak{p}}=(e_{\mathfrak{p}}, q-1)$, $e_{\mathfrak{p}}=\frac{s}{t'}$, $q=p^{\tilde{f}/f}$, t' is the order of $r \mod^{\times} \frac{d_{\alpha}}{p^a}$, \tilde{f} is the order of $p \mod^{\times} \frac{d_{\alpha}}{p^a}$, $f=\#\left[\langle r \mod^{\times} \frac{d_{\alpha}}{p^a} \rangle \cap \langle p \mod^{\times} \frac{d_{\alpha}}{p^a} \rangle\right]$, and p^a is the highest power of p dividing d_{α} .

(III) For any infinite prime \mathfrak{p}_{∞} of k, we have

$$\Lambda_{n}=1$$
,

except the case $\alpha h \equiv \frac{m}{2} \pmod{m}$, $2 \mid s$ and $r^{s/2} \equiv -1 \pmod{d_{\alpha}}$. In this case we have, for any \mathfrak{p}_{∞} of k, $\Lambda_{\mathfrak{p}_{\infty}} = 2$.

The proofs of Propositions 8, 9 are almost the same as those of Theorems 2, 3, so that they are omitted. Here we only note that $\exp \frac{2\pi\sqrt{-1}\alpha h}{m}$ is fixed by the automorphism τ , as follows from the fact $m \mid h(r-1)$.

REMARK 1. Going back to Prop. 5, let $U_{\alpha\beta}^{(t)}$ be irreducible. We assume that there exists an automorphism τ of $\mathbf{Q}(\zeta_t^{\alpha}, \rho_t^{\alpha h + \beta d_t})/\mathbf{Q}$ such that

$$au(\zeta^{lpha}_{t})=\zeta^{lpha r}_{t}\,,\quad au(
ho^{lpha h+eta d}_{t})=
ho^{lpha h+eta d}_{t}\,,$$

where ζ_t and ρ_t are defined by (8) and (9), respectively. Then the enveloping algebra of $U_{\alpha\beta}^{(t)}$ is isomorphic to the cyclic algebra with center $\mathbf{Q}(\chi_{\alpha\beta}^{(t)})$:

$$\operatorname{env}_{\boldsymbol{Q}}(U_{\alpha\beta}^{(t)}) \simeq (\rho_t^{\alpha h + \beta d_t}, \boldsymbol{Q}(\zeta_t^{\alpha}, \rho_t^{\alpha h + \beta d_t}), \tau).$$

Hence the Schur index of $U_{\alpha\beta}^{(t)}$ can be computed.

REMARK 2. About the metacyclic groups satisfying the assumption in Prop. 8, we quote the following fact from [3, §47].

Proposition 10. Notation is the same as in Prop. 4. Assume that the

centralizer of $\langle \omega \rangle$ in G is exactly $\langle \omega \rangle$ itself. Then, every irreducible representation of G is either one-dimensional or equivalent to one induced from a linear character of $\langle \omega \rangle$ if and only if, for each i and j, $1 \leq i \leq m$, $1 \leq j \leq s-1$,

(*)
$$r^{j}i \equiv i \pmod{m}$$
 implies $ri \equiv i \pmod{m}$.

In particular, when s is a prime, the condition (*) is fulfilled.

6. Examples

1) The dihedral group D_m . The defining relations are

$$\omega^m = 1$$
, $\sigma^{-1}\omega\sigma = \omega^{-1}$, $\sigma^2 = 1$.

We use notation of Prop. 5. The one-dimensional representations of D_m are $\psi_{0\beta}^{(1)}$ ($\beta=0, 1$) if m is odd, and $\psi_{\alpha\beta}^{(1)}$ ($\alpha=0, 1, \beta=0, 1$) if m is even. Here

$$\psi_{0\beta}^{(1)}(\omega) = 1$$
, $\psi_{0\beta}^{(1)}(\sigma) = (-1)^{\beta}$, if m is odd, $\psi_{\alpha\beta}^{(1)}(\omega) = (-1)^{\alpha}$, $\psi_{\alpha\beta}^{(1)}(\sigma) = (-1)^{\beta}$, if m is even.

The other (inequivalent) irreducible representations of D_m are induced from linear characters of $\langle \omega \rangle$ and given by $U_{\alpha 0}^{(2)} \left(1 \leqslant \alpha \leqslant \frac{m-1}{2} \right)$ if m is odd, and

 $U_{\alpha 0}^{(2)} \left(1 \leqslant \alpha \leqslant \frac{m-2}{2}\right)$ if m is even. In both cases, each $U_{\alpha 0}^{(2)}$ is defined by

$$U_{\alpha 0}^{(2)}(\omega) = \begin{pmatrix} \zeta_m^{\alpha} & 0 \\ 0 & \zeta_m^{-\alpha} \end{pmatrix}, \quad \zeta_m = \exp \frac{2\pi\sqrt{-1}}{m}, \quad U_{\alpha 0}^{(2)}(\sigma) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

The enveloping algebra of $U_{a0}^{(2)}$ is isomorphic to the quaternion algebra:

$$\mathrm{env}_{\mathbf{Q}}(U_{\varpi^0}^{(2)}) \simeq (1,\,\mathbf{Q}(\zeta_{\,\mathbf{m}}^{\,\alpha}),\,\tau)\,,\quad \tau(\zeta_{\,\mathbf{m}}^{\,\alpha}) = \zeta_{\,\mathbf{m}}^{\,-\alpha}\,.$$

Hence the Schur index of $U_{m0}^{(2)}$ is equal to 1.

REMARK. In [4, §11], the Schur indices of any dihedral group whose order is 2-power, are discussed.

- 2) Let G be a split extension of a cyclic normal subgroup $\langle \omega \rangle$ by a cyclic group. Assume that the centralizer of $\langle \omega \rangle$ in G coincides with $\langle \omega \rangle$ itself. Then the Schur indices of the irreducible representations of G induced from linear characters of $\langle \omega \rangle$ are all equal to 1. (See Prop. 10).
- 3) The generalized quaternion group Q_m . In this case, we have for the generators ω , σ ,

$$\omega^{2m} = 1$$
, $\sigma^{-1}\omega\sigma = \omega^{-1}$, $\sigma^2 = \omega^m$.

(The integer m is not necessarily 2-power [3, p. 23]) The one-dimensional representations of Q_m are $\psi_{\alpha\beta}^{(1)}$ (α , β =0, 1) such that

$$\psi_{\alpha\beta}^{(1)}(\omega) = (-1)^{\alpha}$$
, $\psi_{\alpha\beta}^{(1)}(\sigma) = (-1)^{\beta} \exp \frac{2\pi\sqrt{-1}\alpha m}{4}$.

The other (inequivalent) irreducible representations of Q_m are induced from linear characters of $\langle \omega \rangle$ and given by $U_{a0}^{(2)}$ ($1 \le \alpha \le m-1$) such that

$$U_{\alpha 0}^{(2)}(\omega) = \begin{pmatrix} \zeta_{2m}^{\alpha} & 0 \\ 0 & \zeta_{2m}^{-\alpha} \end{pmatrix}, \quad \zeta_{2m} = \exp \frac{2\pi \sqrt{-1}}{2m}, \quad U_{\alpha 0}^{(2)}(\sigma) = \begin{pmatrix} 0 & (-1)^{\alpha} \\ 1 & 0 \end{pmatrix}.$$

The enveloping algebra of each $U_{\alpha 0}^{(2)}$ is isomorphic to the quaternion algebra with the center $\mathbf{Q}(\chi_{\alpha 0}^{(2)}) = \mathbf{Q}(\zeta_{2m}^{\alpha} + \zeta_{2m}^{-\alpha})$:

$$\operatorname{env}_{\boldsymbol{Q}}(U_{\boldsymbol{\alpha}0}^{(2)}) \simeq ((-1)^{\alpha}, \boldsymbol{Q}(\zeta_{2m}^{\alpha}), \tau), \quad \tau(\zeta_{2m}^{\alpha}) = \zeta_{2m}^{-\alpha}.$$

Hence, if α is even, the Schur index of $U_{\alpha 0}^{(2)}$ is equal to 1. However, if α is odd, the local index of $\text{env}_{\boldsymbol{Q}}(U_{\alpha 0}^{(2)})$ at every infinte prime spot of $\boldsymbol{Q}(X_{\alpha 0}^{(2)})$ is equal to 2, as follows from the fact that the center $\boldsymbol{Q}(X_{\alpha 0}^{(2)})$ is totally real. Consequently, if α is odd, the Schur index of $U_{\alpha 0}^{(2)}$ is equal to 2.

REMARK. The Schur indices of the generalized quaternion groups of 2-power orders are discussed in [4, §11].

4) Let G be a metacyclic group with two generators ω , σ satisfying

$$\omega^{52}=1$$
 , $\sigma^{-1}\omega\sigma=\omega^3$, $\sigma^6=1$.

(Note that $[\langle \omega \rangle: 1]$ and $[G: \langle \omega \rangle]$ are not relatively prime. This example appears in [3, p. 340].) We can easily find all the irreducible representations of G.

degree	number	representation
1	12	$\psi_{\alpha\beta}^{(1)}, \alpha=0, 1, \beta=0, 1, 2, 3$
2	3	$U_{10}^{(2)},\;U_{11}^{(2)}$
3	16	$U_{10}^{(3)},\;U_{11}^{(3)},\;U_{20}^{(3)},\;U_{21}^{(3)}$
6	4	$U_{10}^{(6)}$

In this table the second row, for instance, means that the number of the irreducible representations of degree two is equal to 3 and the representations $U_{10}^{(2)}$ and $U_{11}^{(2)}$ are the representatives of the algebraically conjugate classes of the irreducible representations. Here, the definitions of $U_{\alpha\beta}^{(t)}$ and $\psi_{\alpha\beta}^{(1)}$ are the same as those of Prop. 5. We can easily show that the Schur index of every irreducible representation of G is equal to 1.

5) Let G be a hyperelementary group (at 3), whose 3-Sylow group is abelian of type (3, 3, 3^2), with defining relations

$$egin{aligned} \omega^{\scriptscriptstyle 7} &= 1 \;, \quad \sigma_1^{\scriptscriptstyle 3} = \sigma_2^{\scriptscriptstyle 3} = \sigma_2^{\scriptscriptstyle 3} = 1 \;, \quad \sigma^{\scriptscriptstyle -1}\omega\sigma = \omega^{\scriptscriptstyle 2} \;, \ \omega\sigma_i &= \sigma_i\omega \;, \quad \sigma\sigma_i = \sigma_i\sigma \qquad (i{=}1,\,2) \;. \end{aligned}$$

The inequivalent not one dimensional irreducible representations of G are given by $U_{\alpha\alpha,\alpha,\beta}(\alpha=1, 3, 0 \le \alpha_1, \alpha_2, \beta \le 2)$ such that

If $\beta=0$, then the Schur index of every $U_{\alpha\alpha_1\alpha_2}(\alpha=1, 3, 0 \leq \alpha_1, \alpha_2 \leq 2)$ is equal to 1. However, if $\beta=1$ or 2, the enveloping algebra of $U_{\alpha\alpha_1\alpha_2\beta}$ is isomorphic to the cyclic algebra with the center $\mathbf{Q}(\zeta_3, \sqrt{-7})$:

$$\operatorname{env}_{\boldsymbol{Q}}(U_{\alpha\alpha_1\alpha_2\beta})\simeq (\zeta_3,\, \boldsymbol{Q}(\zeta_3,\,\zeta_7),\, au)\,,\quad au(\zeta_7)=\zeta_7^2\,,\quad au(\zeta_3)=\zeta_3\,.$$

From this we can conclude that for any α ($\alpha = 1, 3$), α_1 , α_2 ($0 \le \alpha_1$, $\alpha_2 \le 2$), β ($\beta = 1, 2$), the Schur index of $U_{\alpha\alpha_1\alpha_2\beta}$ is equal to 3.

6) (Brauer) We fix a positive integer $s \ge 2$. Let p be a prime such that $p \equiv 1 \pmod{s}$ and $\left(\frac{p-1}{s}, s\right) = 1$. (There exist infinitely many primes satisfying this condition.) Let j, (j, p) = 1, be an integer whose order $(\text{mod} \times p)$ is equal to s. Determine a positive integer r from the congruences: $r \equiv 1 \pmod{s}$, $r \equiv j \pmod{p}$. Let G be a metacyclic group with two generators ω , σ , satisfying

$$\omega^{ps} = 1$$
, $\sigma^{-1}\omega\sigma = \omega^{r}$, $\sigma^{s} = \omega^{p}$.

We consider the irreducible representation U of G defined by

where $\zeta = \exp \frac{2\pi\sqrt{-1}}{ps}$. The enveloping algebra of U is known from Prop. 8:

$$\mathrm{env}_{\mathbf{Q}}(U) \simeq (\zeta^p, \mathbf{Q}(\zeta), \, au), \quad au(\zeta) = \zeta^r$$
 .

By Prop. 9, it is readily verified that the Schur index of U is equal to s. Thus

for each positive integer $s \ge 2$, there exists an irreducible representation U whose degree and Schur index are both equal to s.

This result was found by Brauer [2, §5]. Berman [1] has shown the same result by giving another examples, which are also metacyclic groups.

TOKYO METROPOLITAN UNIVERSITY

References

- [1] S.D. Berman: On Schur's index, Uspehi Mat. Nauk 16 (1961), 95-100.
- [2] R. Brauer: Untersuchungen über die arithmetischen Eigenschaften von Gruppen linearer Substitutionen, II, Math. Z. 31 (1930), 737-747.
- [3] C.W. Curtis and I. Reiner: Representation Theory of Finite Groups and Associative Algebras, Interscience, New York, 1962.
- [4] W. Feit: Characters of Finite Groups, Benjamin, New York, 1967.
- [5] T. Yamada: On the group algebras of metacyclic groups over algebraic number fields, J. Fac. Sci. Univ. Tokyo 15 (1968), 179-199.
- [6] T. Yamada: On the group algebras of metabelian groups over algebraic number fields II, J. Fac. Sci. Univ. Tokyo 16 (1969), 83-90.