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1. Introduction

Until further notice, we assume that R is a ring (with unity) and S is a
multiplicatively closed set of regular elements of R such that R satisfies the
multiplicity condition with respect to S (for every a, s in R, s in S, there exist
aly sx in R, s1 in S such that a s1=s a^). Let Q denote the (Asano's) quotient
ring Rs of R. If 1 denotes the identity of R> Γ the identity of Q, then 1.1'=
l.s.s~ι=(l.s) s~1=s.s~1=l'. Also 1.1 ' = 1 , because Γ is the identity of a bigger
ring Q. So that the identities of the two rings coincide.

Let M be a (unital) right i?-module. M is said to be S-free if m 5=0, mG
M, ίG S implies m=0. M is said to be S-divisible iff Ms=M v ί G S. If M is
both S-free and S-divisible i?-module, then the module composition MxR-^M
can be extended to MX Q-*M in one and only one way such that M becomes
a Q-module, by defining m(a.s~λ)—m' where m' is such that m's=m.a (note
that m' exists because of 5-divisibility and is unique because of *S-freeness).
This composition is well defined, because if a.s~1=a1.sΐ1

9 suppose m'.s=m.a,
m".sι=m.aι. Now there exist s2, s3, s2^S such that ^.^=^.^3. Then a s2=
aλs3. m.a.s2=m.a1.s3. mr.s.s2=mf/.s1.s3 implies m'=m". It is not very difficult

to check that M is Q module with this composition.
However if M is 5-free ^-module, then there exists a 0-module M' such

that MR(ZM'R and M'=MQ={m.s1; m^My SΪΞS}. This module ΛΓ is
unique upto isomorphism over M. There are various construction for this
module M' available in the literature.

Asano's construction. In MxQ define (m, q)^(m\ q') if there exists

ί G S such that q.s^R, q's^R and m(q s)=m'(qr s). The relations can be

verified to be an equivalence relation. In M'^the set of equivalence classes of

Mx Q define ' + ' and '•' as follows: (m> q)-\-(m'y q')=(m(q s)-\-m{q s), 5"1) where

is such that q s^R and q's^R. (my q).q'=(m, q q'). It can be verified
that these compositions are well defined and M' is Q module. The mapping

* Part of the author's Doctoral Thesis.
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σ: m->(my 1) is a /?-isomorphism of MR into MR so that identifying σM with
M, we find that

(m, q) = (m, as *) = (m, a)s 1 = (wα, l)s * = (m> ά)s ι ,

so that

M' = MQ= {ms'1:

Another construction of M'. Let M'=M®RQ. M' is a ^-module.
The mapping σ: m->m®\ embeds MR into M# and

Σ (m&qg) = Σ K®^^ 1 ) = Σ
, =i , =i 1=1

where s is such that afS^s^R i = l , 2, •••, w, so that

Σ K ®?,-) = (
, =i 1=1

71

where m = Σ

Note that if M is 5-free i? module, then MQ=M iff M is -S-divisible.
The starting point of this paper is the following result: If M is a ̂ -module,

the MQ is injective iff MR is injective. This result is used to prove that if M is
a Q module then injective dimension of MQ=injective dimension of MR. The
following corollary follows:

The right Global dim. of £ < right Global dim. of R.
If M is any ^-module, then the injective hulls E(MQ) and E(MR) are seen

to coincide. The following result is also proved: Every 5-free S-divisible
module over R is injective if and only if Q is semi-simple Artinian ring.

Similar results about quasi-injective modules have also been proved.
If M be an 5-free R module, then the Q module M' (mentioned above)

when regarded as a right R moudle is an essential extension of M. Necessary
and sufficient condition on M such that M' becomes the injective hull of M are
obtained. This result is applied to characterize rings whose classical quotient
rings are qusi-Frobenius rings.

These results have also above been applied to obtain necessary conditions
and sufficient conditions on a ring under which the Utumi's ring of quotients of
the ring is an Asano's quotient ring. Necessary and sufficient conditions, when
/? r

Δ=0, follow.
Hereditary orders in semi-simple Artinian rings have been characterized.

These rings are found to 'resemble' Dedekind domains, which are precisely
hereditary orders in commutative fields. A principal right ideal semi-prime
ring is found to be a hereditary ring.

It is proved that if R is a semi-prime Goldie ring, and Q its semi-simple
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Artinian classical right quotient ring, then QR is never projective except when

Q=R
Returning back to arbitrary /?, with an Asano's quotient ring Q=RSy if M

be a projective R module, then trivially M is S-free. It is proved that M'(=
MQ) is a projective ^-module. This result is used to rededuce our earlier
result: right Global dim. ζ)<right Global dim. R.

Finally, necessary and sufficient conditions on R such that Q(=RS) becomes
a hereditary ring are obtained. An immediate corollary thereof being: if R is
right hereditary, then Q is also right hereditary.

2. Modules over Asano's quotient ring

2.1. Theorem. Let R be a ring and S be a multiplicatively closed set of

regular elements of R such that R satisfies the multiplicity condition with respect to

S. Let Q denote the Asano's quotient ring Rs of R with respect to S. Let M be

a module over Q. Then M is clearly a module over R, M is an injective Q-module

if and only if M is an injective R-module.

Proof. Let M be an injective Q module. Let /: IR->MR, I a right ideal
of R. We know that IQ={asι: a(Ξly s^S} Define/': IQ-+M as follows:

f is well defined for if
as~~1=a1sϊ1, α, ^ E / , s, ^GiS, then there exist s2^S such that (see Asano [1])

and sϊ1s2^R. Clearly a(s~1 s2)=a1(sϊ1 s2)y therefore

Λ ) ( ) y ( ) (
Post multiplying by si"1 we getf(a)s 1=f(a1)sϊ\
We check that/' is a £)-homomorphism of IQ into M.

where st is an element of S such that ί"1^, s'^s

f'(a s~' r sf1) = f'(a rx s£ι sϊι) where 5"' r = rλ si"
1
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M being an injective ^-module there exists m^M such that

But f'(x)=f(x) V*£Ξ /. Therefore f(x)=mx
Conversely suppose MR is injective. Let /: 7 ^ M , be £)-homomorρhism,

where / is a right ideal of Q. Then let J=I f)R. J is a right ideal of R and
JQ=I. Let/ ' denote the restriction o f / t o / . Then/' is clearly a /?-homo-
morphism of/ into M. As M is an injective /?-module, there exists
such that f\x)=mx v # ^ / . Any element of / is of the form xs'1, x^J,

Hence M is an injective ζ)-module.

2.2. Theorem. Let M be a module over Q, then MQ is quasi-ίnjectίve

iff MR is quasi-injective.

Proof. Assume that M is a quasi-injective module over Q. Let/: N-+M
be a i?-homomorphism where Λf is a i?-submodule of M. We know that NQ=

Define a mapping / ' : NQ-+M

f'(ns->)=f(n)s-\

It can be checked that/' is well defined and/' is a g-homomorphism of iVζ) into
M. Also / ' coincides with / on N. As M is £)-quasi-injective, therefore
there exists an extension /" of/' such that f"^HomQ(M, M). Clearly /"G
Hom/?(M, M) and / " is an extension of /.

Conversely suppose that MR is quasi-injective. Let / : N^M be a Q-
homonorphism, where N is ζ)-submodule of M. N is also i?-submodule of M.
There exists ^GHom^M, M) such that g coincides with / on N. We prove
that g is infact a ζ)-homomorphism.

g(m.rs-1)s = g(mrs-ιs) = g(tnr) = £(m)r .

Therefore

g{mrs~ι) =g(m)rs'1 v r e i ? , ίGS, m<=M.

2.3. Theorem. Every S-divisible S-free module over R is injective iff
Q (:=/^s) w a semi-simple Artinian ring.

Proof. Let every 5-free S-divisible module over R be injective. Then in
order to prove that Q is semi-simple Artinian, we shall prove every module over
Q is injective. Let M be any Q module, then M is S-free and S-divisible R-
module (ms=0 implies mss~1=0 m=0, MsZD(Ms~1)s=Mz^Ms, M=MS^S
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G5). Therefore M is an injective i?-module. By theorem 2.1 M is an
injective Q module. Hence Q is semi-simple Artinian, see Cartan-Eilenberg
[3, page 11, Theorem 4.2].

Conversely let Q be a semi-simple Artinian ring, then if M be a S-free and
S-divisible i?-module, M can be regarded as a Q-module, the module com-
position MχQ-^M being such that it extends the original module composition
MxR->M, in one and only one way (see introduction). Q being semi-simple
Artinian, any module over Q is injective, therefore M is an injective (J-module.
Consequently M is an injective i?-module by theorem 2.1.

2.4. DEFINITION. Let M be a module over R. M is said to be a torsion
free module if mx=0> m^M, x regular in R implies m—O. M is said to be a
divisible module if Mx=M vregular element x in M.

2.5 Corollary. (Levy, 1963) If R be a ring having a classical right
quotient ring Q, then every torsion free divisible R-module over R is injective if
and only if Q is semi-simple Artinian.

2.6. Theorem. Let R be a ring and Q(=RS) be an Asanoys quotient ring
of R with respect to a set S of regular elements of R. Then every S-free S-dίvisible
module over R is quasi-injective iff Q is semi-simple Artinian.

Proof. In the proof we use the following result of Faith and Utumi:
[6, page 169, Cor. 2.4]. A ring Q is semi-simple Artinian if and only if every
module over Q is quasi-injective.

Assume that every jS-free S-divisible i?-module is quasi-injective. Let
M be any module over Q. Then M is S-free, S-divisible module over R.
Therefore M is a quasi-injective i?-module. Therefore by theorem 2.2 M is a
quasi-injective Q module. Hence Q is semi-simple Artinian.

Converse is proved in the previous theorem 2.3.

2.7. Corollary. If R is a ring with a right classical quotient ring Q, then
every torsion-free divisible R-module is quasi-injective if and only if Q is semi-
simple Artinian.

2.8. Theorem. Let Q (=RS) be an Asanoys quotient ring of R. Let M be
a Q-module, then if E is the injective hull of MQ then ER=the injective hull of MR.

Proof. EQ being an injective module, ER is an injective module by 2.1. ER

is an essential extension of MR, because if 0φmG£, then mQ ΠMφO, O φ m r Γ 1

<ΞM for some r in R, s in 5, Oφw r^M. Therefore mRpiM^O Vmφ0 in E.
Hence ER is an injective hull of MR.

2.9. Quasi-injective hull. The concept of quasi-injective hull of a
module was introduced by Johnson and Wong [15] who proved that if M is any
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module, then M'=AM, where A=HomR(E, E), E being the injective hull of
M is the unique minimal quasi-injective essential extension of M. Faith and
Utumi [6] proved that M is infact a unique minimal quasi-injective extension
by observing that complement (closed) submodules of a quasi-injective module
are quasi-injective, see Faith and Utumi [6, Corollary 2.2],

2.10. Theorem. If Q (=RS) be an Asano's quotient ring of R and M be
a Q-module, then quasi-injective hull of MQ=quasi-injective hull of MR.

Proof. Let EQ be an injective hull of MQ. Then ER is an injective hull
of MR by 2.8. Now note that HomQ(i?, E)=HomR(E, E), because if /EHom^
(EyE), then f(mrs-1)s=f(mr)=f(m)r ^r^R, s(ΞS, therefore / ( w r Γ 1 ) - / ^ ^ " 1 .
Let A=HomQ(E, E)=HomR(E, E). The quasi-injective hull of MQ is AM=
the quasi-injective hull of MR.

2.11. DEFINITION. Injective resolution of a module.

Injective dimension of a module.

Let R be an arbitrary ring. Let MR be a module over R. An exact sequence

where each M1 is injective is called an injective resolution of M. The least
integer n such that kernel dn is injective is called the injective dimension of M.
If no such integer n exists, then the injective dimension of M is defined to be oo.

It has to be noticed that the injective dimension of a module is independent
of the injective resolution.

2.12. Theorem. Let Q (=RS) be an Asano's quotient ring of a ring R.
If M be a module over Q, then injective dimension (MQ)=injective dimension (MR).

Proof. Let

be an injective resolution of the module MQ. Then by 2.1 this is also an in-
jective resolution of the module MR. If ker. dn is never Q injective, then the
ker. dn is never i?-injective by 2.1, so that if dim. MQ=oo<> then dim. MR=oo.
If however dim. M=n, then ker. dn is Q injective and therefore it is i?-injective.
Ker. dm, m<n cannot be i?-injective, because if it is i?-injective, then it will be
Q injective by 2.1, which is a contradiction. Hence injective dimension MQ=
injective dimension MR.

2.13. DEFINITION. If R is any ring, then right Global dimension of R=
supremum of the injective dimension of all R modules.
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2.14. Theorem. If Q (=RS) be an Asano's quotient ring ofR, then right

Global dimension of Qbright Global dimension of R.

Proof. Immediate from 2.12.

3. Let R be a ring and Q (=RS) be the Asano's quotient ring of R with

respect to a set S of regular elements of R. If M be an S-free module over R,

then two known constructions for the 'quotient module' M' (=MQ) have been

outlined in the introduction. A still new construction for this module M,

which seems to be more natural is given below. But before we give this con-

struction we observe one lemma which in essence is due to Levy [18].

3.1. Lemma. If S be a multίplicatίvely closed set of regular elements of a

ring R, then Rs exists (i.e. R satisfies the multiplicity condition with respect to S)

if and only if for every R-module M, T(M)={m^M, ms=0 for some s^S} is a

submodule of M.

Proof. This result can be proved exactly as in, Levy [18, theorem 1.4,

page 134].

3.2. Lemma. Every injective module is divisible.

Proof. Let M be an injective i?-module. Let a be a regular element of

R. Let m^M. The mapping / : aR-^M such that f(ar)=mr v r ^ i ? can be

realized by an element m' of M. m' ar=mr v rGi?. Hence m'a=m. Hence

Ma=M.

We are now ready to give another construction of the quotient module MQ.

3.3. Let R be a ring and Q (=RS) be the Asano's right quotient ring of

R with respect to S. Let M be a 5-free right R module. Let E denote the

injective hull of MR. E is 5-divisible by 3.2. E is S-free, because T(E) =

{m^E: ms=0 for some s^S} is a submodule of E by 3.1. But T(E)p\M=0

because M is 5-free. Therefore T(E)=0. Therefore E is an S-free S-divisible

module, therefore E becomes a £)-module (see introduction) Let M'=MQ(zE.

Then M' is the required module over Q such that MR(zM'R and M'=MQ.

In view of this construction of MQ, a natural question arises when is

MQ=E(M)1 The following theorem answers this question.

3.4. Theorem. Let R be a ring and Q (=Rs) be an Asano's quotient ring

ofR. Let M be an S-free module over R. Then the 'quotient' module M' (=MQ)

is injective Q-module (or injective R-module see 2.1) iff every R-homomorphism

f: I->M> I a right ideal of R can be extended to a R-homomorphism g: J^M,

where J is a right ideal of R containing I and containing an element of S.

Proof. Let MR satisfy the condition. We prove that M'=MQ is an
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injective i?-module. Let there be a i?-homomorphism / : I->MQ, where / is
a right ideal of R.

Set Γ={x<=I: f(x)^M}. Γ is a right ideal of R, Γdl. We claim that
for each r^I, there exists s^S such that rs^Γ. Let rG/. Then f{r)^MQ.
Therefore f(r)=ms~\ where tnEΞM and SΪΞS. Then f(rs)=f(r)s=ms~1s=
m^M. rs^Γ. Let / ' denote the restriction of/ to /. There exists by hy-
pothesis g: J-+M, where / is a right ideal of R containing / and containing an
element of S and g{oc)=f'{x) v # e / ' . As / contains an element of S, JQ—Q.
There exists an extension £' : JQ-^MQ of g defined as follows:

g'un=go)*-1-
The mapping #' is a (J-homomorphism. Let g'(l)=m. Let r^I. There exists

such that

f(r)s =f(rs) =f'(rs) = g(rs) = g'(rs) = g'(l).rs = (m.r.).s

Therefore f(r)=mr
Conversely, suppose MQ be an injective i?-module (injective ^-module).

Let there be a i?-homomorphism /: 7-»M, where / is a right ideal of R. As
MQ is i?-injective and MczMQ, therefore there exists an element m.s~ι of MQ
such that

Let J=sR+I. Define g: J->M as follows:

g(sr-\-x) = ms'

Surely £ is a i?-homomorphism of / into M. J contains / and an element s of
S. Also g(x)=m s~1x=f(x) v # e /.

Self injective quotient rings

3.5. Corollary. A quotient ring Q (=RS) of R is self injective (QR is injective)
if and only if for every R-homoniorphism f: I^R, I a right ideal of R, there exists
a R-homomorphism g: J-*Ry where J is a right ideal of R containing I and an ele-
ment of S and g is such that

g(x)=f(x) v * e / .

3.6. Corollary. Let R be a ring having a classical right quotient ring Q.
The ring Q is self injective (QR is injective or QR is the injective hull of RR) iff
every R-homomorphism

f .I^R,

where I is a right ideal of R can be extended to a R-homomorphism



SELF-INJECTIVE QUOTIENT RINGS AND INJECTIVE QUOTIENT MODULES 77

where J is a right ideal of R containing I and a regular element of R.

3.7. REMARK. Semi-prime right Goldie rings form a class of rings which
possess self injective classical quotient rings. One is tempted to verify whether
this condition is really satisfied by the class of rings.

If/: I->R, then let/ be a complement of / in R, so that 7 0 / is an essential
right ideal of R. I®J contains a regular element of R. Goldie [9, Theorem
3.9]. One can trivially extend / to / ' : (7+/)->i? by defining f(i+j)=f(i) v*

If Q is a classical quotient of a ring R, we say that R is an order in Q.
In view of the corollary 3.6 and the characterization of orders in perfect

rings, orders in semi-primary rings, orders in Artinian rings and Noetherian
orders in Artinian rings given in [10] and [14] we have the following four results:

Orders in self-injective perfect rings

3.8. Theorem. A ring R is an order in a (left) perfect self injective ring iff
(i) N(R), the upper nil radical of R is left T-nilpotent.
(it) R/N(R) is a right Goldie ring.
(Hi) aaRΛ is an essential right ideal of RΛ) for every right regular element aΛ in RΛ

and for every ordinal number a, where RΛ=RITΛ, a^a-^T^R), TΛ(R), an ideal
of R defined as follows:

T0(R) = 0, Ta+1(R) = {x: xt=N{R), xN(R)<zTa(R)} ,

for an ordinal number of the type a-\-l.

Ta(R) = U Tβ(R),

for a limit ordinal a.
(iv) If a-\-N(R) is regular in R/N(R) then a is regular in R.
(v) Every R-homomorphίsm f: I->Ry I a right ideal of R can be extended to a R-
homomorphism g: J-*R, where J is a right ideal of R containing I and a regular
element of R.

Orders in self-injective semi-primary rings

3.9. Theorem. A ring R is an order in a self-inejctive semi-primary ring if
and only if
(i) N(R), the upper nil radical of R is nilpotent.
(it) R/N(R) is a right Goldie ring.
(Hi) a£Ri is essential right ideal of R£ for every right regular element aέ in i?t

and for every integer i^O, where Ri=RjTh ai=a-\-Tii T{ being a two sided ideal
of R defined as follows: Γ0=(0), Ti=l(N(R)i)f]N(R) for I > 1 .
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(iv) If a-j-N(R) is regular in R/N(R), then a is regular in R.

(v) Every R-homomorphism f: I-+R, I a right ideal of R, can be extended to a

R-homomorphism g: J-*R, where J is a right ideal of R containing I and a regular

element of R.

DEFINITION. A ring R such that Vr=I v right ideal / and Llr=L vleft

ideal of L and R satisfies the d.c.c. on left and right ideals is called a quasi-

Frobenius ring.

It is well known that a ring R is quasi-Frobenius iff R is Artinian and

right self-injective see Faith [5], Eilenberg-Nakayama [4].

Orders in qusai-Frobenius rings

3.10. Theorem. A ring R is an order in a quasi-Frobenius ring iff

(i) N(R)y the upper nil radical of R is nilpotent.

(it) R/N(R) is a right Goldie ring.

(Hi) R/Ti has no infinite direct sum of right ideals for every z>0, where 7\ is

defined as follows:

To = (0), T, = l(N(RY)nN(R) i>\.

(iv) If a-\-N(R) is regular in R, then a is regular in R.

(v) Every R-homomorphism f: I-+R, I a right ideal of R, can be extended to

g: J^R, where J is a right ideal of R containing I and a regular element of R.

3.11. Theorem. A Noetherίan ring R is an order in a quasi-Frobenius ring

if and only if

(i) If a-\-N(R) is regular in RIN(R), then a is regular in R.

(it) Every R-homomorphism f: I-+R, I a right ideal of R, can be extended to a R-

homomorphism g: J—*R, where J is a right ideal of R containing I and a regular

element of R.

(In connection with Theorem 3.10, the author wishes to point out that

when this manuscript was ready, the author received an unpublished paper

entitled Orders in quasi-Frobenius Rings' from Professor J.P. Jans wherein

the following result is proved:

A ring R is an order in a quasi-Frobenius ring iff

(i) R has no infinite direct sum of right ideals.

(ii) Ar(E(R)y R) satisfies a.c.c. where E(R) is the injective hull of RR,

Ar(E(R\ R)={S^: SaE(R)}, S^ix^R, Sx=0} for subsets S of E(R).
(iii) T(E(R)/R)=E(R)/R, where for any i?-module Λf, T(M)={m£ΞM: ma=0
for some regular element a in i?}.

(iv) If M is a finitely generated (cyclic) i?-module such that Γ(M)=(0), then

E(M), the injective hull of Md(E(R))n.)

Semi-prime right Goldie rings belong to the class of rings R for which
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Q(R), the classical right quotient ring of R exists, QR=ERf the injective hull of
RR and ER is Σ-injective, see Faith [5, page 189, Corollary 3]. (An injective
module MR is said to be Σ-injective iff the direct sum of arbitrarily many copies
of MR is an injective i?-module). The following theorem precisely determines
this class of rings:

3.12. Theorem. For a ring R, Q(R) exists, QR=ER} the injective hull of
RR, ER is Σ-injective iff R is an order in a quasi-Frobenius ring.

Proof. If R is an order in a quasi-Frobenius ring, then let Q=Q(R), Q
is quasi-Frobenious. QQ is injective. Therefore QR is injective by 2.1. QR

=ER, the injective hull of RR. Now QQ is Σ-injective, because Q is quasi-
Frobenius (Q is quasi-Frobenious iff every projective module over Q is an
injective Q module, see Faith [5]). Therefore QR is Σ-injective by 2.1. Hence
ER is Σ-injective. Conversely let us assume Q(R) exists, QR=ER and ER is
Σ-injective, then QR is injective and QR is Σ-injective. Then Q is self injective
and QQ is Σ-injective by 2.1. Hence any free module over Q is injective.
Therefore any projective Q module is Q injective. Hence Q is quasi-Frobenius.

3.13. Theorem. If R has a classical right quotient ring Q, then Q is quasi-
Frobenius iff every projective Q module is R-injective.

Proof. Let Q be quasi-Frobenius. Let M be a projective module over
Q, then by Faith [5], M is an injective Q module. Therefore by 2.1 M is an
injective R module. Conversely suppose that any projective module over Q is
an injective R module, then any projective module over Q is an injective Q mod-
ule. Hence Q is quasi-Frobenius, Faith [5].

Faith and Walker [8] proved that a ring Q is quasi-Frobenius iff every
injective module over Q is projective. From this and with the help of 2.1 we
obtain the following theorem:

3.14. Theorem. Let R be a ring having a classical right quotient ring Q.
Then Q is quasi-Frobenius iff every torsion free injective R-module is a projective
Q-module.

Utumi's quotient ring and Johnson's quotient ring

3.15. Theorem. Let R be a ring such that R has a multiplίcatively closed
set S of regular elements with respect to which R satisfies the multiplicity condition
and every f: I-+R, I a right ideal of R, can be extended to g: J-+R, where J is
a right ideal of R containing I and an element of S} then Q (=Rs) ά the Utumi's
quotient ring of R.

Proof. Lambek [16] proved that Q the Utumi's ring of quotients of R has
the following characterization. £=Bicommutant of ER where ER is the injective
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hull of RR. In our case by 3.5 QQ is injective. Therefore by 2.1, QR is injective.

Also RRd'QR. Therefore QR is the injective hull of RR. Now HomR(QRy QR)

^Q. Also HomQ(QQ, QQ)^Q. Therefore Q is the Utumi's quotient ring of R.

Conversely we have the following result:

3.16. Theorem. If R is such that QR, where Q is the Utumfs quotient

ring of R, is the injective hull of RR (see, Lambek [17, page 95]) and Q is an Asano's

quotient ring of R, then there exists a multίplίcatίvely closed set S of regular elements

of R such that R satisfies the multiplicity condition with respect to S and every R-

homomorphism f: I-+R, I a right ideal of R, can be extended to g: J^R, where J

is a right ideal of R containing I and an element of S.

Proof. Let S={x^R: x invertibe in Q}. Then Q=RS and the rest

follows, because QR is injective by 3.5.

Combining the previous two theorems and noting that the Utumi's quotient

ring of a ring R coincides with /?, the Johnson's maximal right quotient ring of

Ry if /? r

Δ=0, and that RRy where R denotes the Johnson's maximal quotient ring

of Ry is the injective hull of RR, we notice the following result:

3.17. Theorem. If R is a ring with / ? r

Δ = 0 , then Rry the Johnson's quotient

ring of R is an Asands quotient ring of R iff there exists a multiplicatively closed set

S regular elements of R such that (i) R satisfies the multiplicity condition with re-

spect to S and (it) every R-homomorphίsm f: I—*R, I a right ideal of R, can be

extended to a R-homomorphίsm g: J^>R, where J is a right ideal of R containing

I and an element of S. In this case Rr=Rs.

3.18. Corollary. // R is a ring such that Rr*=0y and Q(R) the classical

right quotient ring of R exists, then R=Q(R) iff every f: I^R, I a right ideal of

R, can be extended to g: J-*R, where J contains I and a regular element of R.

4. If R is a commutative integral domain and Q its field of quotients, then

QR is projective implies Q=R, see Tsi-Che-Te [20, page 174]. The aim of the

present section is to generalize this result from commutative integral domain to

an arbitrary semi-prime right Goldie ring.

4.1. Theorem. Let R be a semi-prime ring with the Goldie conditions on

right ideals and let Q be its semi-simple Artίnίan classical right quotient ring. If

QR is projective, then R=Q.

Lemma. Let Rbe a prime ring with right Goldie conditions and Q its classical

right quotient ring. If there exists Oφq in Q such that q QczR, then R=Q.

Proof. By a theorem of Faith and Utumi [7, Theorem 3, page 56], there

exists a complete set M={egJ: iyj=l, 2, ••-,/*} of matrix units in Q with the

following property: If D is the centralizer of M in Q, then D is a division ring and
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Q = Σ De^RzD Σ Fe{J

where F is a right Ore-domain contained in Rf]D and D is the right quotient
field of F. (It is to be noted that F in general does not contain identity, see
example given by Faith and Utumi [7, (C) page 60]) Let

Suppose αfe/4=0. Fix a non-zero element a of F. aerk^R for every r = l , 2,
•••, n. Also because

( Σ aijβij^a-a^de

for every j = l , •••, « and every d^D. Therefore

«<V*( Σ aije^iaa^de
ί,y=i

for every r, ί = l , 2, •••, n and every d^D. But

^ ^ ( Σ ^ij^i^^ki)~λdels = ders.

Therefore Σ Ders=Q(^R. Hence £>-#.

4.2. Lemma. If Q be an Asano's right quotient ring of R and
HomR(Qy R) then f(q)=f(l).q for every q(Ξθ.

Proof. Let q=ab~\ a, b in /?, b regular. Then

f(q)b =f{ab^)b =fiab'ιb) = /(α) =

Therefore / ( ^

Proof of the Theorem. A module MR is projective iff there exist subsets

{wj. e/ of M and {/f }f e / of Hom^M, R), such that for each m^Mfi(m)=0 for

almost all i and m = Σ Mifi(m)> s e e ̂ a s s [2, (4.8) page 477].

As 5/? is projective there exists subsets {&,•},•£/ of Q and {//}ίe/ of HomR(Q, R)
with the above properties. Now

for finite subset (1, 2, •••, n) of I. By the above lemma 4.2 fk(l) Q(^R for each
k=l, 2, •••, n. Let ely e2, •••,£m the central idempotents in Q such that ^O, ̂ 2O,
•••> ^mδ a r e ̂ e simple components of the semi-simple Artinian ring 0. Clearly
for each i = l , •••, m, there exists k(i), l<ft(/)<n such that/(l)^Φθ. But

Jfe)
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ΪCί)

But βiQ is the classical quotient ring of e{R R and e{Q is a simple Artinian ring,
therefore by the lemma e^Q—e^RcR. Therefore βiQΠR for every /. Therefore

Q=R

5. Hereditary orders in semi-simple Artinian rings

In this section right hereditary semi-prime right Goldie-rings have been
characterized.

5.1. Theorem. If R be a semi-prime right Goldie ring, and Q be its classical
right quotient ring, then R is hereditary if and only if for every essential right ideal

n

I of R, there exist bly b2y •••, bn in I and aly a2y •••, an in Q such that Σ 6, α , = l

andaJcR for every i=ly 2, •••, n.

Proof. Assume R is hereditary. Let / be an essential right ideal of R.
I is a projective right R module. By the characterization of projective modules
mentioned in the proof of Theorem 4.1, there exist subsets {bj\jej of I and
{/y}ye/ of Homβ(/, R) such that for every b^I, fj(b)=0 for almost all values of
j and b= Σ bjfj(b). Now / being an essential right ideal of R, I contains a

ye/

regular element, Goldie [9, Theorem 3.9]. Therefore IQ=Q. Each f5 has a
unique extension / / in HomQ(£), Q). Let f/(l)=<Xj. Then f/(q)=f/(l q)=
f/(l)q=aj(q) for every q in Q. Therefore (Xjb=fj(b)=fj(b) for every
Consequently ctjIdR. Now let a be a regular element of /.

±jfj() φ j j )
y=i y=i

w

for some finite subset (1, 2, •••, «) of J. Therefore \=y^biai. The sets

(bίy b2y •••, όΛ) and ( a D α2, •••, αw) are the desired sets.
Conversely since every right ideal is a direct summand of an essential right

ideal and a direct summand of a projective module is projective, it is sufficient
to show that every essential right ideal is projective. Let / be an essential right
ideal of R. There exist bly b2y •••, bn in / and aly a2y •••, an in Q such that

cCilaR for every ί=\y 2, •••, n and ^Σibiai=\. Define f19f2, •">/« such that

fi(b)=aiby^b^Iyfi^HomR(IyR). Also ft=(Σ*.-«.•)*= Σ * i ( « ^ ) = Σ 3 δ . Λ(ft)
, = 1 f = l ί = l

V 6e7. Hence / is projective by the characterization of a projective module
mentioned in the proof of Theorem 4.1. (The 4only if part of this result is due
to Levy [18]).

5.2. Corollary. (Levy, 1963) A hereditary semiprime right Goldie ring
is a right Noetherian ring.
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Proof. Since every right ideal is a direct summand of an essential right

ideal, it is sufficient to show that every essential right ideal is finitely generated.

Let / b e an essential right ideal. There exist bly b2, •••, bn in / and a19 α2, •••, an

in Q such that yΣιbiai=\ and α f J c l 2 i = l , 2, •••, ». Therefore
t = l

Hence I

5.3. Corollary. A commutative integral domain R is hereditary if and only

if it is a Dedekίnd domain.

Proof. It is easy to make the following observations (a) An ideal / of R is

invertible in the semi-group of fractionary ideals if and only if there exist bίy

b2y •••, bn in / and α 1 ? α2, •••, an, in £), the field of quotients of R such that
n

Σ ^ # ί — 1 and ctilaR for every z=l , 2, •••, n.

(b) Every ideal of R is an essential ideal. These two observations along with

the theorem 6.1 proves the corollary.

5.4. Theorem. A semi-prime principal right ideal ring is a hereditary ring.

Proof. A semi-prime principal right ideal ring is clearly a semi-prime

Goldie ring. By a remark made in the previous theorem 5.1 it is sufficient to

prove that every essential right ideal of R is a projective i?-module. Let / be

an essential right ideal of R, then I=aR for some a in R. The element a is

regular, see Processi and Small [19, page 81]. Therefore RR^(aR)R under the

mapping r<-*ar. Hence I(=aR) is a projective Z?-module.

6. We return to the study of modules over a ring R, which has an Asano's

quotient ring Q (=RS). If MR is a projective i?-module, then M' (=MQ) is

proved to be a projective ^-module. This result is used to prove that if M

is an S-free i?-module then projective dimension (M£))Q< projective dimension

MR.

6.1. Category of S-free modules. Let % denote the category of all

S-free i?-modules (with /?-homomorphisms as the maps).

Let ξ> denote the category of ^-modules (with Q-homomorphisms as maps).

If M e g , then there exists M' (unique upto isomorphism over M) in ξ>

such that MRaM'R and M'=MQ. If Mu M 2 e g and / : M^M2, then

there exists unique g-homomorphism / ' : MλQ->M2Q, which extends/. This

map/' is defined as follows:

f\mxs-1) =f(m1)s~
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In fact the rule T:

T(M) = MQ

T(f) = f

is an additive covariant functor from the category § into the category ξ>. T is

seen below to be an exact functor:

Let

0 -> Mt - ^ - * M - ^ M2 - 0

be an exact sequence in $ . Then the sequence

0 -* MλQ -+-+ MQ > M2Q->0

is also an exact sequence.

Exactness at MλQ\ j\mιs~1) = 0 implies jim^s'1 = 0 ,

j^) = 0, m1 = 0, m1s'1 = 0 .

Exactness at MQ: π'j'fas'1) = 7e\j\m1s"1)) = π'ϋimjs'1)

= (πjfa))*-1 = 0 .
If π\ms~λ) = 0, then 7r(m) = 0, m =j(m1) for some mx in M1.

Exactness at M 2 Q : If m 2 ί - 1 be any element of M2Q> then there exists

such that π(m)=m2, π'(ms~1)=m2s~1.

6.2. We observe in passing that a projective ^-module is torsion free.

6.3. Theorem. Let R be a ring and Q (=RS) be an Asano's right quotient

ring of R. If M is a projective R-module, then MQ is a projective Q-module.

Proof. Let

(MQ)Q

AQ > BQ > 0
n

be a diagram of Q-modules with exact row. Let fx: M^B denote the restriction

of/ to M. /j is i?-homomorphism of M into B. We therefore have the diagram

MR

AR >BR , 0

7Γ
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of i?-modules with exact row. Since MR is projective there exists g: M-^A such
that πg=f. Let g'': MQ-+AQ (=A) denote the extension of g: M-+A. Then

πg'ims-1) = π(g{m)s-1) = πg^s'1 = f ^ s ' 1 = /(m. Γ1).

6.4. Corollary. If M is a Q-module such that MR is projective, then MQ

is also projective.

6.5. DEFINITION. Projective dimension of a module

Global dimension of a ring

Let R be an arbitrary ring and M be a module over R. An exact sequence

M ± M M 2 M ^ M ^ M 0

where each M{ is projective is called a projective resolution of M. The smallest

positive integer n such that kernel dn is projective is called the projective dimen-

sion of the module M. If no such integer n exists, then the projective dimension

of M is infinity. (It is known that the projective dimension of M is independent

of the projective resolution). Right Global dimension of a ring /?=supremum

of the projective dimensions of all i?-modules (see sec. 2).

It is well known that for any ring /?, supremum of the injective dimensions

of all i?-modules=supremum of all the projective dimensions of all i?-modules.

Therefore the same term Right Global dimension is used for both the supremums.

6.6. Theorem. Let R be a ring and Q(=RS) be an Asano's right quotient

ring of R. If M is an S-free R-module, then projective dimension {MQ)Q < projective

dimension MR.

Proof. Let

M ^ M M U M l
(i)

be a projective resolution of MR. If projective dimension MR=oo, we have

nothing to prove. Let the projective dimension M=τz(<oo). Then Kny the

kernel of dn is projective i?-module.

From the projective resolution (i) of MR we get a projective resolution of

{MQ)Q
If J /

M Q ί M Q M Q ^ M Q ^

(We note that the sequence is exact because we have noticed that the functor

T is an exact functor. Also each M{Q is a projective ^-module by theorem

6.3).

The kernel of dn=(kernel dn)Q which is a projective Q-module by theorem

6.3. Hence
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projective dimension {MQ)Q < projective dimension MR .

6.7. Corollary. If M is a Q module, then projective dimension MQ <
projective dimension MR.

6.8. Corollary. Right Global dimension Qfright Global dimension R.

7. Hereditary quotient rings

Let Λ b e a ring and S be a multiplicatively closed set of regular elements
of R such that Rs exists. Denote Rs by Q. In this section we obtain necessary
and sufficient conditions on R such that Q becomes a hereditary ring.

7.1. Theorem. A quotient ring Q of R is hereditary if and only if for
every exact sequence of R modules

M-^+N >0

where M is S-free and ίnjectίve and N is S-free, N is injectίve.

Proof. Let Q be hereditary. Let

be an exact sequence of Λ-modules, where M is 5-free and injective and N is
S-free. Since every injective module is divisible (see 3.2), M is 5-divisible
and therefore M is £)-module. Also because M is 5-divisible, therefore N is
also S-divisible, therefore N is also a Q-module. The map π is £)-homo-
morphism (see 6.1, π'=π in this case). Now since MR is injective, therefore
MQ is injective. As Q is hereditary iV^ is injective and therefore NR is injective.

Conversely we prove that Q is hereditary. It is sufficient to show that
for every exact sequence of ^-modules

where M is injective, iV is injective. Now regarding the above sequence as a
sequence of /^-modules we note that MR is S-free, MR is injective and N is

Therefore NR is injective. Hence NQ is injective.

7.2. Corollary. If R is hereditary, then a quotient ring Q (=RS) of R is
also hereditary.

Proof. Since R is hereditary, for any exact sequence of i?-modules

M >N >0
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where M is injective, N is injective. Therefore by the theorem 7.1 Q is heredi-
tary.
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