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0. Introduction

The problem of characterizing positive additive functionals of Markov
processes by means of their expectation (called characteristic) has been studied
by Volkonsky [5], Meyer [Part II of 3], and Motoo and S. Watanabe [1]. In
the present paper we shall give a characterization of square-integrable additive
functionals with expectation zero.

Our method is different from, and more elementary than, those of Meyer,
Motoo and S. Watanabe; it is a version of the method adopted by Meyer [Part
I of 3, 4] in the study of absolute continuity of two Markov processes. Our
method is also used for characterizing almost additive functionals without
assuming the strong Markov property.

Let X=(x,, P,, x€.S) be a Markov process with a Markov transition function
(P{x, S)=1). Let A be a locally integrable (not necessarily positive) almost

additive functional of X, and let us define a system of kernelst” (Q,(x, dy)) on
S by

(0.1) Oux, E) = E (A, 15(x,)) »

where 15 is the indicator of the set E. Q,(x, dy) is absolutely continuous with
respect to the transition function P,(x, dy)=P (x,Edy), and the following
equation, called the characteristic equation, holds;

(0.2) P.O,+0O.P, = O,., for any s, 2=0.

If a system of kernels (Q/(x, dy); t=0) on S satisfies the characteristic
equation and if each Q,(x, dy) is absolutely continuous with respect to P,(x, dy)
we will call it a system of characteristic kernels. 'The density of Q,(x, dy) with

(1) A map k(x, dy) from S X F(S) to (— oo, o] is called a kernel if it satisfies the following
properties:
(i) For each E€F(S), k(-, E) is a F(S)-measurable function on S.
(ii) For each x€.S, k(x, -) is a measure on F(S) with a finite total variation.
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respect to P,(x, dy) is denoted by ¢,(x, y). As stated above any locally integrable
almost additive functional 4 defines a system of characteristic kernels by
(0.1). In such a case we will say that 4 represents (Q,). We can verify (section
2) that there exists at most one almost additive functional that represents (Q,).
If (Q,) is represented by (4,) then we have (section 2)

(0.3) 9:(%, y) = E(A; |2, = y) .

Therefore g,(x, y) is the conditional expectation of the corresponding almost
additive functional on the set of all trajectories that start from x and stay at y
at the time #. Recall that if (4,) is a positive additive functional it is charac-
terized by its characteristic

m(t, x) = E(d,) = Qfx, S).

However if (A4,) has expectation zero it is evident that (4,) can not be charac-
terized by m(t, x)=Q(x, S). Hence it is natural to ask under what conditions a
given system of characteristic kernels is represented by a locally integrable
almost additive functional. This problem is solved in Theorem 2 of section 3.

In section 4 the system of characteristic kernels which corresponds to a
square-integrable almost additive functionals with expectation zero is discussed.
In the case of one-dimentional Brownian motion starting from the origin the
trajectory itself is a square-integrable additive functional with expectation zero,
and it is characterized by the coordinate function ¢,(0, y)=y. In general the
following theorem will be proved.

Theorem 1. Let (Q,(x, dy); t=0) be a system of characteristic kernels.
Then there exists a square-integrable almost additive functional with mean zero that
represents (Q,) if and only if there exists a characteristic m(t, x)® such that

[ 0 7P d) < mit, )

for any x€ S and t=0, and Q,1=0 for any t=0.

In section 5 we shall give some examples of (Q,) and (g,(x, )).

In section 6 and thereafter we shall confine ourselves to deal with a Hunt
process with a reference measure. We shall prove that for each square-
integrable almost additive functional with expectation zero there exists an equi-
valent® additive functional, and consequently, in the result of Theorem 1 we
can replace the term “almost additive” by the term “additive”.

Finally in section 7 some properties of the Laplace transform of charac-

(2) c.f. Definition 4.1.
(3) (4,) and (B,) are equivalent if 4,=B, (a.s.) for any ¢.
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teristic kernels are studied. It seems important to know what properties of the
processes are reflected to the quantities described in section 7.

1. Preliminaries

Let S be a locally compact Hausdorff space with a countable base for its
topology. Let A be a point adjoined to S as the point at infinity if S is non-
compact and as an isolated point if S is compact. Let B(S) be the topological
Borel field of S and let M(S) be the set of all bounded positive measures on S,
and F(S) be the completion of B(S) by the system of measures in M(S). Let
B(S) and F(S) be the sets of all bounded B(.S)-measurable functions and bounded
F(S)-measurable functions. Let W denote the space of all maps w from [0, oo]
into S U{A} such that w is right continuous and has left-hand limits on [0, o),
w(oo)=A, and if w(t)=A then w(t)=A for all t=t,. As usual x,(w)=w(t)
denotes the #-th coordinate function. The shift operator 9, is defined on W by
Jdaw(s)=w(t+s), dw is also denoted as w,”. Let B, be the o-algebra of
subsets of W generated by the cylinder sets {w; x(w)E A{ (s<¢, A=B(S)), and
B=3B.. We assume that for each x in SU{A} we are given a probability
measure on B satisfying:

(i) P (x(w)=x)=1 for any xS U {A}.

(ii) P, (A) is B(S)-measurable function of x for any A€ B.

(iii) (Conservativity) P (x,& S)=1 for each xS and 0=t < co.

(iv) (Markov property) For each x€ S, >0, and bounded B-measurable func-
tion 7 on W, we have

E (n(w") B,)=E,(n) as. P,.

x

For each p& M(S) we define PM(A)-:SPx(A),u(dx) for A€ 3B and then

define F(<F,) to be the interesection over all y& M(S) of the P.-completions of
B(B,). Henceforth almost surely (abbreviated a.s.) means almost surely with
respect to each P,. Further we assume:

(v) 9.=9,.= N I, for each t=0.
t<s

In this paper we shall deal with a Markov process X=(W, &,, x,(w), &, P,, x
€S U{A}) satisfying (i)—(v). As usual P,(x, dy)=P,(x,Edy) is the transition
probability of X.

DerFINITION 1.1. A (— o0, oo]-valued function Y(t, w) on [0, co)xX W is
said to be an additive functional of X if the following conditions are satisfied:

(1.1) For fixed ¢, Y(¢, w) is &F,-measurable. There exists W'CW, W'eJF
such that $,W'c W’ and P (W')=1 for all xS, and for any fixed we W',

(1.2)  Y(-, w) is finite and right continuous and has left limits,
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(L.3) Y(t+s, w)=Y(¢, w)+ Y(s, J,w) for any ¢, s.
(1.4) Y(0, w)=0.

DErINITION 1.2.  Y(¢, w) is said to be an almost additive functional of X if
it satisfies (1.1) and

(1.2")  Y(-, w) is finite and right continuous and has left limits. (a.s.),
(1.4")  Y(0, w)=0 (as.),
(1.5) P(Y,=Y,+Y,00,)=1 for any xS and ¢, s.

An almost additive functional Y is called locally integrable if E, (| Y,|)<<oo
for any =0 and x€ S.

DrrFiNITION 1.3, Let M (resp. M?) be the class of all additive (resp. almost
additive) functionals such that

(1.6) E(Y,*)<co and,
(1.7) E[(Y,)=0 for any s, ¢ and xE S.
We now list a fundamental lemma on conditional expectations.

Lemma 1.1. Let » be a F-measurable function on W and G, be a countably
generated sub o-algebra of F, that makes x,(w) measurable. Suppose 7 is
P.-integrable for all u< M(S), then we can take a version of conditional expectations
of n relative to G, which is independent from the initial distribution p€ M(S).

Proof. For any bounded &G,-measurable function & on W, E(£-E,(n]4G)))
=E(&+7m) is a F(S)-measurable function on S. Thus for each x€ S R(x, dw)
=E (7| G,)(w)+ P,(dw) is a measure on (W, G,) and for each AE G, R(x, A) is a
F(S)-measurabel function. Therefore a F(S) X G,-measurable function e(x, w)
on SX W such that e(x, w)=E,(n| G,)(w) (a.s. P,) exists [See 2. p.p. 194]. Set
d(w)=e(x(w), w). It is easy to verify

dw) = Eu(n|G)w). as. P..

for any pe M(S).
We shall write the conditional expectation obtained in the above lemma by
E(-|G,) omitting the subscript x or u.

2. The densities of characteristic kernels

Let (Q/(x, dy); t=0) be a system of kernels® on SxF(S), and (Q,; £=0)
be the corresponding linear operators on F(S) defined as follows;

(4) c.f. footnote (1)
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(2.1) 0.fx) = | 0ux, d)(3), FEF(S).

DrerFINITION 2.1. A system of kernels (Qy(x, dy)) is called a system of
characteristic kernels if the following properties are satisfied:

1. O,(x, dy) is absolutely continuous with respect to P,(x, dy) for each t=0,
and if we denote by |Q, | (x, dy) the total variation of the measure Q (x, dy)
then we have P,|Q;| 1<<co for any s, ¢=0.

2. For each x€ S, 5, t=0 and f F(S).

(22) Q.P,f(x)+P,Q,f(x)=0s-.f(x).

(2.2) is called the characteristic equation.

Proposition 2.1. Let (A,) be an almost additive functional with E,(|A4,|)
< oo for every x€ S and t=0, and let Q(x, E)=E (A, 1x(x,)) (E€F(S)). Then
(Ou(x, dy); t=0) is a system of characteristic kernels.

Proof. That each Q,(x, dy) is a kernel follows from E,(|4,|)<<co. The
absolute continuity of Q,(x, dy) relative to P,(x, dy) is obvious and

Pt‘Qsl 1(.X') = Ex(Ex:(]Asl))
= E (|41 A=E (141 1)+E(1 4, ])<oo .

The characteristic equation follows from the almost additivity of (4,) by a
simple calculation.

Proposition 2.2. It is necessary and sufficient for (Q,x, dy); t=0) to be
a system of characteristic kernels that the following properties are satisfied :
1. For each t=0 there exists a F(S)XF(S)-measurable function q,(x, y) such
that it is P,x, -)-integrable as a function of y and Q/x, dy)=gq,(x, y)
P(x, dy), and E (|q/x,, x,.,)|)<oo for any s=0 and t=0.
2. For any s, t and u (0=<s<t=<u) we have

(23) E(qt—s(xs’ xt)+qu—t(‘xh xu)lxs) xu)(S) = qu—s(‘xs) xu) (3.5.)

Proof. Suppose Q,(x, dy) is absolutely continuous with respect to P,(x, dy).
Since Q,(x, dy) is a measure with a finite total variation, the well known method
of differentiating one measure with respect to another [2. p.p. 194] is also appli-
cable here, and we can find a F(S) X F(S)-measurable version of the densities of
Q,(x, dy) with respect to P,(x, dy). Once the F(S)XxF(S)-measurability of

(5) E(-|x,, x,) means a conditional expectation with respect to the completed Borel field
in W generated by x, and x,, which does not depend on the initial distribution. (c.f. Lemma 1.1.)
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g.(x, y) is proved, the proof of the equivalence of (2.2) and (2.3) is reduced to a
simple calculation on the Markov property, so is omitted.

ReMARK. From (2.3) we can prove
(24) E( ]Z_l qu"fj—l(xtj—]’ xt,)lxtoy Xy,) = qtu—to(xto’ %4,,) (a-s.)

for any sequence (%;)j-, such as {,<t,<-.- <1,.
The following proposition is an immediate consequence of Proposition 2.1.
and 2.2.

Proposition 2.3. Let (A,) and (Q,) be those of Proposition 2.1., then we
have

(2.5) E(4,—A,|x,, %) = qs-(%:, %) (as)
for any 0<s<t.

We shall confine ourselves to consider only systems of characteristic kernels

in the sequel.

Given any t=0, let {T,"=(0=t,<t,<---<t?,<t); n=1} be a system of
partitions of the interval [0, £]. Let $," be the o-algebra generated by (x,,, 0
<j=<m, x,), and &,” be its completion. Set

(2.6) Al (w) = ]"Z_; qtj—tj_l(xlj_p xtj)+qt—tn(xt”) x,)

Proposition 2.4. For each fixed t (A", F,", P,),= s a martingale for
VxS, and
2.7) 0:f(x) = E (4" f(x1)) -

Proof. If welet T7H'=(0=t,<t, - <t <u<t, <--<t,<t),

then

k
EAT G, = ng Qej-t; (%1 %))
+E(qu—tk(xtk1 xu)+qtk+1—u(xu’ xlk+l) I 9‘n‘)
+j§2qtj—tj_1(xtj_1’ %) Qe taFes %) -

The right-hand side is eual to 4,” by the Markov property and (2.3). We have
Ouf(x)=E (g%, x,)-f(x))=E(A,"- f(x,)) from (2.4).

In the next section we will construct an almost additive functional from a
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given system of characteristic kernels. Here we guarantee its uniqueness.

Proposition 2.5. There exists at most one® locally integrable almost additive
Junctional which represents (Q,)".

Proof. If we are given two almost additive functionals (4,) and (B,) such
that E.(|4,])<co, E.(|B,|)<co and Q,f(:)=E.(4,-f(x,))=E.(B,-f(x,)) for any
t=0 and f€ F(S), applying the Markov property, we have E.(4,-7)=E.(B,:7)
for any t=0 and any bounded &,-measurable function 7. Therefore 4,=B,
(a.s.) for any £=0.

3. Construction of an almost additive functional

Throughout this section we assume that we are given a system of charac-
teristic kernels (Q,(x, dy); t=0). Let S, be the set of all finite partitions of the
interval [0, #]. For each T=(0=t,<t,<--<t,<t)ES, let B(T) be the o-
algebra generated by (x,, 0=<j=<mn, x,) and F(T) be its completion. As in
(2.6) we define the random variable 4,(T) by

(3.1) A(T) = Jz; q”—t,-,l(xt,-_p xtj)+qf-tn(xfn’ %) .
Proposition 2.4 shows that, for any T, 7' S, such that TC T,
(3.2) A(T) = EA(T")|F(T))

holds. This property will be used later.

In this section we shall frequently deal with the following particular type of
partitions. Let D be a denumerable dense subset of [0, o] and let {T,*(D)},,
be a system of partitions defined as follows;

3.3) T(D)ES,, and, for each n, s€ T ,”(D) implies s€ D and s& T}"'(D),
(3.4) T/Y(D) increases with z so as to cover all points in DN [0, ¢].

We have \/ F,"(D)=%, by virtue of the right continuity of the trajectories,
where _CF,”(”D):EF,(T,”(D)). AT (D)) is also denoted as A,*(D).

Theorem 2. Let (Q,) be a system of characteristic kernels. Then there
exists a locally integrable almost additive functional (A,) with nonnegative expecta-
tion that represents (Q,), if and only if; for any t=0 and xE S,

(35) Qu(x) =0, lmQ,1(®) =0, and

(6) Up to equivalence.
(7) On the word ‘represent’, see the introduction.
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(3.6) {A«T); T€S,} is P -uniformly integrable, are satisfied.

Proof. Suppose that there exists a locally integrable almost additive func-
tional (4,) with nonnegative mean that represents (Q,), then from (2.5),

B Ay, — A %epy %e40)) = Qrgir-0(Bep> %oy, (as.)
holds for any ¢, t,,, € TES,, so

E(Ay,,— A | F(T)) = Tisr-16(Xeps Xepr,) (as.)
Therefore
A(T) = ]gl qtj—tj_l(xtj_l’ xt,‘)+qt—tn(xtm x;)

— E.( g (4, —A4,, )+A4,—A4,FT)
= E(A,|F(T) (as.)

This together with the locally integrability of (4,) yield that {4/(T), T€S,} is
uniformly integrable. 0,1=0 follows from E.(4,)=0. To prove (3.5) we
note that (4,; 0<s<3) is a submartingale on the closed interval [0, 8] for
any §=0, and consequently (4,; 0=<s<38) is uniformly integrable. These and
the right continuity of (4,) prove

lim | 0,1(x) = lim E(4,) = E,(A4,) = 0.
Y0 B0

The proof of the converse is carried as follows: Let (7”),z, be a system of par-
titions of [0, #] consisting of rational points that satisfies (3.3) and (3.4) (D=
the set of all rational points), and let 4,"=A4,"(D). Since (4,"),z, is a uniformly
integrable martingale, lim 4," exists in the sense of the convergence in L'. We
will show that this limit satisfies (1.1) (1.4) and (1.5) of Definition 1.2. Next we
shall modify it so as to satisfy (1.2°) by making use of the fact that it is a sub-
martingale on R,.

(1) From the last paragraph of section 2, (4,%, 4", P,),>, is a martingale, where
F,"=5F,"(D) for D the set of all rational points. Since it is uniformly integrable,
by a general theorem on martingale

P(imA"=A4)=1
A7 =EA,F"  (as.)

where A,=limsup 4,”. Moreover A" converges to A, in L(F, P,). 4, is
obviously &,-measurable.

Now let D be any denumerable subset of [0, o) that contains all rational
points, and {S,”=(0=s,<s,<---<s,,<t)CD},,», be a system of partitions of
[0, #] which satisfies (3.3) and (3.4).
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Set
Btm = ; qs,'—sj_l(xsj_l’ xs,-)+q1—sm(xsm! xt) and
B, = limsup B,™ .

Since D contains all rational points, (S,”),,2: 2 (7}") 2, s0 we can verify, from

(3.2),

A" = E(BP|x,, s€T,") (as.)
Tending # to infinity, we have

A, = E(B,”|x,; x,, s runs through all rational points in [0, #])
= E(B”|¥,) = B/ (ass.)
If we take the next special D in the above argument,
D= g all rational points in [0, o)
s

( (s+7; 7, rational points of [0, t—s)) ),
and if we put B¥*=A4"+ A} -9, then we have for any xE S,

P4, =limB")=1,

P(4,= }‘Lrg Ar)=1, and

P (lim 42_ 08, = 4,_,9,)

o0

=E/(P,(imA4; =4, )=1.

Therefore A,=A,+A,_,o5, (a.s.). This shows that (4,) satisfies (1.5).

We have also E (4, f(x,))= HH}O E (A4, f(%,))=0,f(x) for any f€ F(S) from
(2.7).

(2) The next argument to obtain a right continuous modification of (4,)

is a routine. Since 4, is F,-measurable and E (| 4,|)<oo for any s, and (4,)
satisfies (1.5), we have

Ex(At'gs) = As+Ex(At—sol9.slgs) = ‘qs—i—Exs(At—s) = As+Qt—s1(xs)
= A, (as.P,)forany 0<s<t.

The last inequality follows from (3.5). Thus (4,, &F., P.),z, forms a submar-
tingale. From the general theory of submartingale we know;
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P(lim A,=A4,, andlim A,= A4, exist for any t=0) =1
TVt T4t
7:rational 7:rational

and 4,<E (A, |F)=E(4,.|F,.)=4,, (as. P,). Let (t,),: be a sequence of
rational points such as ¢, | #(n 1 o), since 4,, (4, |F,,) (Vn), (4;:,)nz is
uniformly integrable, so we have E, (4,,)=lim | £,(4,,). But since Q,,1(x)

=0,P,, 1(%)+P,0,,- 1(%)=0,1(x)+P,Q,, ,1(x) and lirg O, 1(%)=0,1(x)

lim | PO, A()=Q,1(x) by (35), we have E(4)=0,1(x)= lim 0,,1(x)

= lim E(4,,). Therefore 4,=A4,, (as.). If we set A (w)= limsup A, (w),
Tyt

n-poo
7:rational

we have

Px(At:At):ly
P (A, is right continuous and has left-hand limits in [0, o0))=1.

Now using the facts obtained hitherto we get a locally integrable almost
additive functional (4,), and E.(4,-f(x,))=E.(4,-f(x,))=0,f for any t=0 and
fEF(S). In particular E.(4,)=0,1=0.

4, Characterization of functionals in I

Let (Q,) be a system of characteristic kernels. In this section we shall
further assume that the following conditions are satsfied;

4.1) Oy, S) = 0,1(x) = Ssq,(x, y)Px,dy) =0  for any £=0and x= S,
(4.2) L gi(x, ) Py(x, dy)<oo  for any £=0 and xS .

Note that (4.1), (4.2) and the Makov property yield
B2 9ttty 8))) = 23 Bl ey %)) for 0= 1,5t =1,
If

(4.3) sup [,2:1 E(@sj-55-1(%s ;-1 %5,V F B @r-sm(Fsmr %,))] < oo for V=0
(D" = (0 = so<s1"'<sm<t)) ’

where sup is taken over all partitions of the interval [0, ], then

(th = E qu—s,'_l(xs;_l' xsj)+qt—3m(xsm’ xt))mzl
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is uniformly integrable for any t=0 and any system (D,™),,>, of partitions of
[0, £]. By Theorem 2 and Proposition 2.5 there exists a unique almost additive
functional which represents (Q,), and E (Y,)=0,1(x)=0.

Proposition 4.1. (4.3) is a necessary and sufficient condition for (Y,) to be
an element of M°.

Proof. 1If (4.3) is satisfied, then (Y, &%, P,),s, is a square-integrable
martingale and sup E,((Y,")’)<<co, so in the argument of the proof of Theorem
2 we can take Y, to be square-integrable. Conversely if (V,)=I?, then we have

E:(qu—s(xs’ xu)z) = Ex(Ex( Yu— Ys | Xsy xu)z)
<E((Y.—Y,)p), and

fV:—I‘lEx(qtj*tj—l(xtj—l’ xtj)z)‘I’Ex(Qt—m(xtm x,)°)

= 2 E((Yy,— Yy, )HE(Y,:—Y,)).
Since E,(Y,)=0 for Vu=0, the right-hand side is equal to
E(( (Y=Y, )+ V= Y,)) = E(Y/).

E.(Y/) does not depend on the choice of a system of partitions, and the propo-
sition is proved.

Now we shall give some conditions that verify (4.3). From (2.3) we have

Ex(Qu—s(xs) xu)z) é Ex(qt —s(xs) xt)z) + Ex(qu- t(xt! xu)z)

for any s<#=<u, so we can prove in the same way as in the proof of Darboux’s
theorem in the theory of integration that

4.4) Lim [ ;} E(qej-t;1(%e;_p %))+ E Qe ta(%00s %:))]
(5 = max (max|t;—t,_,|, [t—1,l))

is equal to the left-hand side of (4.3) if the following condition (4.5) is satisfied.
Proposition 4.2. (4.3) is satisfied if:
(4.5) For any s=0 and x,

lim [max {sup E,(gx(*s, %)), sup E(gu(%,-p %))}]1 =0
840 [P <8
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(4.6) For any t=0 and 8>>0 there exists a constant b=>5(3, t, x) such that

sup L S " (g(%sy %,0,)?) ds<b.
w<s h Jo

Proof. Choose a >0 and fix it. For any A€ (0, 8] there exists a integer
n such that t& (nh, (n+1)4] and from (4.6) there exists a s& (0, %] such that

n-1
];’ E (qu(®sscj-vm¥srjn)’) S b .
From the fact noted above this proposition, it is enough to prove that

(4.7) lim [,(q,(02J)+ 2 Eudlsscs-om %))

FE G- s-cn-0mFsrcn-vmr %)°)]
is finite. Since A4 | 0 implies s | 0 and t—s—(n—1)Ak | 0, lim E (g,(x,, x,)*)=0
and lhl{? E (9 s cn-iZsrcn-n %:)7)=0, so (4.7) is smaller th;: b.

To give another condition equivalent to (4.3), here we give a definition.

DrriniTION 4.1. A finite positive function m(¢, x) on [0, c0)x S is called
a characteristic, if the following conditions are satisfied:

(C.1) m(t, +) is F(S)-measurable
(C.2) li?t? m(t, x) =0
(C.3) m(t+-s, x) = m(t, x)+E (m(s, x,)) .

Proposition 4.3. (4.3) is satisfied if and only if there exists a characteristic
m(t, x) such that

(4.8) | 0.0 57 Putw, dy) < (s, 2)

for any x and s.
Proof. 1If there exists a characteristic m(¢, x) such that E (g/(x, x,)?)
<m(s, x), then we have

]Z:lEx(Qtj—tj_;(xt,-_p xtj)2)+Ex(qt—tn(xtn’ x,)°)

< SVE (m(t;—t,,, x,, )+ E(m(t—t,, ,,))

=

= m(t, x)®

(8) See Proposition 2.1 of [1].
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for any partition (0=t,<t,<---<t,<t). m(t, x) does not depend on the
choice of partitions, and (4.3) is proved. The converse is proved if we put
m(s, x)=E (Y ?), where (Y,) is the functional in M* constructed in Proposition
4.1.

[Proof of Theorem 1] Proposition 4.1 combined with Proposition 4.3
proves Theorem 1.

5. Examples

(1) Let k& be an invariant function of the process X such that E,((h(x,)
—h(x,)))<oo for any x and ¢, then Y,=h(x,)—h(x,) belongs to M*. We have

(5.1) (%, y) = E(Y,|x,=y)=h(y)—h(x) for
P(t, x, dy)—almost all y .
(5.2) Ouf(x) = Py(h-f)(x)—h(x) P.f(x)

(2) Let X=(x,, P,) be a one-dimentional Brownian motion on (— oo, o),

and let Y, be the stochastic integral St f(x)dx,. We shall determine g,(x, y).
Since Eo(f(xs)(xu_xs) l xt:x)

1/2 _ oo
= (gmimy) i VL)l 05 s<us),

we have
00, ) = E | flx)ds. |5, = )
= lim 31 E(flw, )y~ ) % = )
= lim 31 (t—,-) F(t;-)

_ S F(S)ds (a.s. Pyx, dy)) .

where F(s) = ( z_m(tT__s_) )”:1: S : (x—j;) () exp( (ty—sx)* )dy )

2st(t—s)
Since
(5.3) S'(ZM(';_ s-))‘”tl:f =1+ 1£1(2) -exp (- gyt(t ‘”j)) dyds

= I+ (G ))I/st~S1 ¢l exp (=5 )ds]<ee,
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by Fubini’s theorem we have

(54) 00,9 =" —9)/)G, % dy,  where
. t t 1z 1 " _(ty—sx)2 s
G(y, %, t) = So<———2”s(t_s)> e p( ] )

_ 1 ! 1 _ (y—ax) ) d
2ty S P(1—a)" exP( 2ta(1—a))

We can verify that G(y, x, t)<<oo for x%y, and G(x, x, t)=oo.

080 = [ 200, 9L exp (— 5 )ax

2nty” ™

By (5.3) we can exchange the order of integration and have

t
(5.5) 0:8(0) = [ 1 (P.fP, .G—P.FP,_g)0)ds
'P,_s
= | Lot —-Pygl0)as,
where  F(x)=xf(x), G(x)=xg(x) and
(Ps')(x’ dy) = Ps(x» dy)y s
(+P.)(x, dy) = xP(x, dy) .
(3) Let X=(n,, P,, nEN) be a Poisson process with parameter 1 and let
Pyn, m=—1

(m—mn)!
belongs to M, and

t” "¢t be its transition function. Then Y,=n,—n,—¢

9:(”0, nt) = E( Ytlnm nt) = n,—n,—1 (a.s.)

so we have

(5.6) q«n, m) = m—n—t, and

(57) 0f(n) = 53 L e H(h—D)f(k+1).
6. M =M

In and after this section we shall assume that the underlying Markov process
X=(W, 4,, z(w), 9,, P,, x& SU{A}) is a conservative Hunt process with a
reference measure, and shall freely use the standard properties of additive
functionals in MM as well as those of characteristics. (See [1].)
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In [4], it was shown that every finite almost additive functional satisfies the
strong Markov property;

A+ Al = A,., a.s.

for any bounded Markov time o and #=0. So the same arguments as those
of Lemma 8.1-8.3 of [1] prove that m(¢, x)=E,(X,?) is a regular characteristic
for any (X,)€M*. By Theorem 6.8 in [1] we know that a characteristic m(t, x)
is regular if and only if there exists a (unique up to equivalence) 4€C,*®
such that m(z, x)=E (4,).

Theorem 3. For every functional (X,) in I®, there exists a unique equivalent
functional in M.

Proof. Choose any additive functional (Z,) in M and set m(z, x)
=E (X, Z,). Since myt, x):%Ex(Xt‘i‘Zt)z_%Ex(Xt_Zt)z and E(X/,)

=E,(A4,) for some (4,)=C,", it can be verified that m(¢, x) is a regular charac-
teristic, so my(t, x)=E (B,) for some (B,)EC,">. We can prove as in [1] that
(6.1) E(If]+|B| ) S(EAX)-E(f*-<{Z>,))" for any f€ ¢,(Z). From this
we can also prove B,=g-{Z>, for some g< ¢,(<Z>). If we let

N gx)=N
gn(x) = {gx) —N=gx)=N
—N glx)=—N

then from (6.1) we have

E(lgn!-181+<Z>) = E.(Ign!-1Bl)
S(ELX)-E(gn"<Z>))",

and
(E1gn-1gl+<Z0))"

e (Eow'BON" g oo
S EX) ™ g et S (BX)

Tending N to infinity we have g’ 4,({Z>), so we can define the stochastic

(9) C,* denotes the set of all continuous, positive, increasing, additive functionals such
that E,(A4;) <+ oo for all xS and £=0.
(10) c1=c1+_cl+

) f-B={'f(x)dB,.
g-|B|,=§;g(xs)st++§;g(x,)st~, for B=B*—B-,B*, B-€C,*.
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integral g-Z,=St o(x,)dZ,.
0

In Proposition 12.3 of [1] it was proved that there exists a sequence
(Y4, v?,..., Y".:) in M such that Y7’s are mutually orthogonal and
M=L(Y", Y?,---, Y",---). For each j, let m;(t,x)=E,(Y,/-X,) and g,€ ¢,(Y7)
be the function constructed as the above so as to m(t, x)=E,(g;<Y7>).

Yivl= i g;+ Y7 obviously belongs to M. Now we shall show E (YN}
— Y ,M1y) >0 (M, N— ) for each x and ¢#. Then by the completeness of

MY= }Yim YI¥1 must belong to M. It is enough to show the next inequality

(6.2) D E.(g/ <Y D)SELX).

But this follows from

(6.3) 0=E((X,— Y NIy) = E(X})
—2 (X, (g YN+ 3 Eg7 <)
=EX))— 2 EL(g <Y 7).

Since E (Y, Y )=E. (g <Y*,)=E. (X, Y/*) for each k, and since
M=L(Y", Y?,---, Y",:-+), we have E,((Y,—X,)-U,)=0 for any (U,)€M, and
have also E,((Y,—X)).- S:e"“dUs)zo. In particular if we let U,= f(x,)— f(x,)
—i—S:(g—af)(x,) ds, where f=G®g0? and g C(S), we have SZe“’stsze““f(x,)
—fs)+{ e *gw)ds and,

(6:4) e Ef(w) (Y~ XD+ B e *g(w) ds- (Y, — X))
=0.
The first term of (6.4) is equal to fe“”‘E,,(( Y,—X,). (P;_,g)(x,)ds. There-

fore if we set
¢(S) = Ex(g(xs)'(Ys_Xs)) st
= E((Ps_8)(%)-(Y,—X,)) s>t

we have S e @(s)ds=0. o(s) is a right continuous function in sER,—¢, so
0

we have @(s)=0 for any s<¢ from the uniqueness of the Laplace transform.
Thus we have E.(g(x,)-(Y,—X,))=0 for each g& C(S), and therefore for each

(12) Gog— S:e-‘”‘Psgds
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gE F(S). By the same argument as in the proof of Proposition 2.5., we conclude
Y,=X, (as. P,) for any x and ¢.

Theorem 4. In the conclusion of Theorem 1 we can replace M by IN.

7. Some properties of the Laplace transform of characteristic
kernels corresponding to functionals in k.

We shall denote by (Q,[¥1) the characteristic kernels represented by
(Y,)eM. By Lemma 8.2. of [1] we can verify that Q,[¥1g(x) is continuous in

t for each xS and g€ F(S). We will assume that Sme“"O‘Ex(<Y>,) dt<<oo
0
for all x and some a,>0. Set

) K'mgle) = | e 0p)ds (aza).

Proposition 7.1. Let g€ F(S), f[=G"g(a=a,) and X°[gl,=f(x,)—f(%,)
+ (e—afw)ds.
Then
1o B[ e mdp) = e 0+ [ e 0.0 as,
where  @* = (Y, X*[g]> .
2. (72) Koingl) = B e dpr).
Therefore K ®ry1g is the difference of regular a-excessive functions.
3. Lllg aK®yig(x)=0.
4. K°l(x)=0

Proof. Since

[l dcxleh, = e *fw) S+ | e gx)ds,
we have

B edp) = BV, [ e madx L))

= BV, f)+ELY, | e g(x) a9

= Q@+ e 0 gy ds.

Tending ¢ to infinity in the above, (7.2) follows from
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le™ O.f(x)| < e ™| fI(ELLY D)) — 0.
As for 3, |aK *g(x)| < allgll Swe‘“"(Ex< YD) 2ds
= ”g”g:e_m(Ex«Y%/m))l/zds“’ 0 (afe).

4 is obvious.
Proposition 7.2,

(7.3)  Kg(x)—KPg(x)+(a—B)K G g(x)+G"KPg(x)) = 0
(a, B=a, x€S5)
, where K*=K% .

Proof. Let h(x)=G%g(x), and ¢*=<Y, X*[h]>. By Proposition 7.1,
B J w e " dp")=Kh(x)=K"G g(x), ~and  E S:"_”“‘dsﬂs”):e-“' 0,Gh(x)
+E(Y, S'e h(x,) ds).
The second term of the right-hand side is equal to

BV = B[l e VB[] e rptw)duds)

= ([ er . e 0¥, gl ) duds
0

0

B[ e [ e Ve et Y dud)
0 0
_ g ’ gch-os r 0, g(x)duds—E.( S’e-“ Sm P E, (V,g(x.)) duds)
0 s 0 0

= S:e_ﬂi‘ 0.8(x) g: PURLY R g:o e P Q,g(x)- S:ecp—ms ds

—E S: e . S: e 0, g(x,)duds)

e KR W OL S g FIOED

+ e Q,,g<x)du(3—;f_“’;—”")—5x<S:e—“Kﬂgm) ds).

But since

[ e Ougw)dul lfﬁs:)t) = ﬁ(g“”_”a) (€M PYELY D)0 (21 <o),

and
e Q,G"h(x)| =0  (t1 ),
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we have

K*G*g(x) = 51— (K gle)~ K"g(e) — G"Kg(x),

by tending ¢ to infinity in the above equalities.

The next corollary shows that (K®[yj) posesses a composite entrance and
exit property.

Corollary 7.3.
(7.4) K®=({I—(a—B)G"K(I—(a—B)G").

Next we shall give a relation between K%y; and K%, for Z=h-Y

:Soh(xs)dYs.

Proposition 7.4. Let Z:SOh(xs)dYs (he 1Y), and Uw(x):E,,(S:e-“
d(KY, X°[g])s=K *1v18(x), then we have .
(75 Koag) = Uh@) = B e hw)d <y, Xo[gD)).
Proof.  Kug) = B | e di<z, X*[gD),
= B[ e hx)d<Y, X[gD),
ExAMPLES

1. When Y,=h(x,)—h(x,) for some invariant function % of the process X
with E (h(x,)—h(x,))*< oo, we have K *f(x)=G"(h-f)(x)—h(x) G*f(x).

2. When Y,=| f(x,)dx, as in example (2) of section 5, we have
<Y, X[gl> = < fiw)ds,, | grad Gog(a) s>
= Sof(xs) grad G®g(x,)ds, so K®g(x) = G*(f grad G"g)(x) .
3. As for example (3) of section 5, we have
Kenfm) = | e 0.fimde
_ S:wt 5 ;_"!e-t(k—t)f(km)dt .

k kt1 we have lim la"*"-—— 1 SO 1

— , —<1,
(@+1)*  (at+1)* la,l a1 a+1

If we set a,=
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2 a,f(k-+n) is absolutely convergent. Since we can verify

gok_llgjzke-<w+l>f(k—t) dtf(k+n)
= a——:l gakf(k+n)<w )
we have

K *onftn) = — Sauf(k-tn)

R
= a1 ) —fketn—1)
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