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1. Introduction

The purpose of the present paper is to construct all irreducible representa-
tions of SL(2, F), where F is a finite field, closely following the study of H.D.
Kloosterman [9] on the representation of the modular congruence group. Most
of the results described here are known, however the argument which depends
on theta series and was the starting point for H.D. Kloosterman’s work is replaced
by the recent results of A. Weil [11] on a certain projective representation of
symplectic groups. By this construction we hope to give some insight to the
structure of the remarkable irreducible representations of SL (2, F') discovered
by I.M. Gel'fand and M.I. Graev [7] as an analogue of the discrete series of
SL (2) over a non-discrete locally compact field.

We consider F?, the two dimensional vector space over F' and identify its
dual with F? (as an additive group) in two ways. The one is connected with
indefinite quadratic form in two variables and the other is connected with definite
quadratic form (or rather with quadratic extension of ). On the other hand,
a natural projective unitary representation of the symplectic group Sp(G) as-
sociated with a locally compact abelian group G was constructed on L* G) and
studied by A. Weil [11]. SL(2, F) is imbedded into Sp(F'?), so we have two
projective representations of SL(2, F), which turn out to be ordinary repre-
sentations. We call the one associated with indefinite quadratic form the
representation of the first kind and the other of the second kind.

To decompose these representations, we consider the hyperbolic rotation
group H and the rotation group C operating on F?. The operators induced by
hyperbolic rotations commute with the operators of the representation of the
first kind, and those induced by rotations with the operators of the represen-
tation of the second kind. So by Fourier transformation with respect to H or C,
these representations are decomposed into direct sums of representations. Each
operator of the component representations is expressed by a sum analogous to
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Kloosterman’s sum (or to the integral representation of the ordinary Bessel
function) and representations discovered by I.M. Gel'fand and M.I. Graev are
thus reconstructed. We call the sum Bessel function of the first or the second
kind over a finite field. For a representation of the second kind, the operator

corresponding to (? _(1)> is essentially the Fourier transform in two variables,

so the above construction is an analogue of classical construction of Fourier-
Bessel transform. Bessel functions of the first kind are also obtainable as kernels
of the so-called X-realization [7, P216] of the representations, obtained by de-
composing the quasi-regular representation which is naturally defined on the
two dimensional affine space over F.

The author was informed by Professor H. Yoshizawa that since 1963 J.A.
Shalika had undertaken the problem of determining all irreducible representa-
tions of the modular congruence group with considerable progress. After the
author had finished the present work, he was also informed by Professor M.
Kuga about the general outline of J.A. Shalika’s lecture on the similar problem
as considered in this paper at 1965-A.M.S.-Summer Institute on algebraic
groups.

The representation theory of SL(2, F) was originated by G.F. Frobenius
[3] who calculated the traces of all irreducible representations of SL(2, F).
Later E. Hecke [8] gave the construction to a half of irreducible representations
(obtained from quasi-regular representation) of this group. In connection with
his study of the general theory of modular functions, E. Hecke raised the problem
of determining all irreducible representations and their traces of the modular
congruence group mod p*. The problem was attacked by H.D. Kloosterman
[9] by means of the transformation formulas under modular substitutions of
certain theta series. He constructed the greater part (in fact, for the case A=1,
all) of irreducible representations. So all irreducible representations of SL
(2, F) with F=Z/(p) have been constructed by H.D. Kloosterman.

In recent years, .M. Gel’fand and M.I. Graev have undertaken the study
of representation theory of Dickson-Chevalley groups over an arbitrary field
[4), [5), [6], [7]- In particular, they gave the formulas of representations of the
discrete series of SL(2, K), where K is a non-discrete locally compact field, and
analogous ones for SL(2, F) [7]. But the author of the present paper feels that
the meaning of these formulas remains rather implicit.

The present paper is closely connected with our previous paper [10]. In
Part I of [10], the discrete series (of SL(2, K)) of I.M. Gel'fand and M.I. Graev
were reconstructed by the method described before. We hope our construction
described in Part I of [10] and in this paper make the structure of those represent-
ations clear. In Part II of [10], the representations of the modular congruence
group mod p* constructed by H.D. Kloosterman were reconstructed. Modifying
the construction, we obtained a new representation which may give some of
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irreducible representations absent in H.D. Kloosterman’s work. For the special
case of A=2, all irreducible representations absent in H.D. Kloosterman’s work
were thus obtained.

We shall proceed to outline the contents of this paper. §2, §3, §4 of this
paper are preliminaries for later constructions. In §5, the representations of the
first and second kind are constructed depending on results of A. Weil. De-
composition of the constructed representation into invariant subspaces is de-
scirbed in §6 and §7. There are exceptional invariant subspaces which can be
decomposed further. Description of them are given in §8. In §9, irreducibility
of the constructed representations are proved and it is shown that all irreducible
representations of SL(2, F) are thus obtained.

2. Properties of a finite field

For general facts about a finite field, see [2]. Let F be a finite field with
g=p" (p a prime number) elements. Let F* be the additive group of F, F*
its multiplicative group. Let & be a generator of F*.

Let L be the quadratic extension F(\/€) of F. For 2=x++/¢y (x, yeF),
define =x—+/€y, S(z)=2+2%2 and N(2)=z2& 'The set of elements ¢ in L
which satisfy N(t)=c (c€ F*) is called a circle in L. Each circle consists of
g+1 elements. Let us denote by C the circle N(f)=1.

Let F* and C be the character group of F* and C respectively and =,
(same symbol for both case) be the identities of F*and C. There are characters
of F* or C with real values. Apart from 7, there is only one such characters in
each case, which we denote by =, and =, respectively. Let ¢, be a generator
of C. 7, and z, are characterized by #z,(§)=—1 and =,(t,)=—1. Put F¥=
{xeF*; n,(x)=+1}, F.=F*%U {0} and C.= {t€C; n(t)=-+1}.

Lemma 1. 7z (—1)=—1if and only if n,(—1)=1.

Proof. Let —1=¢#, t=C. Then t4+#=0, so t is written as \/ &b, b F.
Therefore —1=#"=¢b?, so r,(—1)=n,(€)=—1. Conversely, let —1=¢&b, beF.
Putting t=1/€b, we have tf=—b*€¢=1 and =—1.

Lemma 2. For any t= C_, there exists an element e L such that N(e)=¢
and ¢le=t.

Proof. Let ¢’ be an element of L which satisfies N(e')=¢€. If &’[e’ is
expressible as ¢”, '€ C, then we have (e't')=e’t’ and é=N(e’)=(e't’)?, which
contradict the definition of & So &’/e’=t"*! for some m. If t=t"*', put
e=ty"tye’.

Let us fix ¢, which satisfies N(e,)=¢€ and &,/e,=t1,.

Let us fix a non-trivial character X of F*. For z€F*, n#n,, define
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7(7) = 2 X(%)7 (%)

XEF*

and put 7=7(z,). It is known that |7(z)|*=q (see for instance [1, P27-29])
and in particular ’=qr (—1).

Let 8(x) be S-function on F ie. §(x)=0 if x F* and §(0)=1. We also
introduce function 8(z) on F* and C defined by 8(z)=0 if z %, and 8(z,)=1.
Given =& F*, we define 7(0)=0 and consider = as a function on F.

3. Quasi-regular representation

Let © be the finite dimensional Hilbert space consisting of all functions on

F xF—{(0, 0)} with the inner product (f,, f;)=>"fi(x:, %) fi(x,, x;). For
4 =<$ §>E SL(2, F), define the operator T(g) on $ by the formula

T(g)f(x,, %) = f(ax,+vx,, Bx,+5x,) .

Then 7T(g) is a unitary representation of SL(2, F). For & F*, we call f€9
which satisfies f(Ax,, Ax,)=7z(\)f(x,, x,), A& F*, a homogeneous function of
degree =. Let 9, be the subpsace of © which consists of all homogeneous
functions of degree =. 9, is the invariant subspace of the representation
{T(g), O} and let us write T(g)=T(g)|Dx.

For f€9,, define y(x)=f(1, x), x& F, and y(c0)=f(0, 1). Induced action
of T.(g) on v is written as follows. If y=0,

To(g)r(x) = w(i’;:[ﬁ ) m(yxta), (xzh _ % )

Tdeyr( =) = (= v (=),

Tg) (=) = n(n)w(2):

if y=0,
T (0) =+ (258w (@),
T(g) ¥ (0) = m () ().

Let z=n, and put <p(y)=§xlr(x)x(—yx), @(o0)=1(o0). Realization

of T.(g) expressed on functions (), @(oo) is called X-realization and written
by the formula in §7. which we shall obtain by another method.

T.,(g) is equivalent to direct sum of T*(g) (which will be introduced in
§9.) and an identity representation.
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4. Summary of results of A. Weil

This section contains summary of definitions and results in Chapter 1. of
[11] which we need later.

Let G be a commutative locally compact group and G* be its dual group.
For ueG and u*= G¥, put {u, u*>=u*(u). For notational convenience, we
assume G is a finite group with # elements. Let  be the finite dimensional
Hilbert space consisting of all functions on G, with inner product (®,, ®,)=
n‘l/zuezg ®,(4)®@,(u). For @9, define its Fourier transform &* by

D¥(u*) = n"‘/zuzz‘,;cb(u) lu, u*>

Let G and H be commutative finite groups. If u— wua is a homomorphism of
G into H, there exists a homomorphism a* of H* into G* such that (ua, v*)
=<lu, v*a*) for any u G and v*eH*. If H¥*=G and a=a*, a is called a
symmetric homomorphism.

Let w— wo be an automorphism of GXG*. Putting w=(u, u*), ¢ can
be represented by matrix:

(u, u*) — (u, u*)(j 8’8> = (ua+u*y, uB+u*d)

where a, B, v and § are homomorphism of G into G, of G into G*, of G*
into G and of G* into G* respectively. An automorphism of G x G* is called

symplectic if o ’=1 where
5% ¥
o= <— ¥ a*)

The group of all symplectic automorphism is denoted by Sp(G).

Let T be the multiplicative group of the complex numbers of modulus 1.
Put F(w,, w,)=u,, uf> for w,;=(u;, uf)e GXG* (i=1, 2). Let A(G) be
the group whose underlying space is GX G*X T, with the multiplication rule
defined by (w,, 2,)(Wy t,)=(w,+w,, F(w, w,)t,t,). We call the group A(G) the
Heisenberg group associated with G. It’s center is {(0, ¢), t€T}. Define the
unitary operator U(w, ¢) in by the formula

Ulw, t)® (v) = 1@ (v+u)lv, u*>  (DED)

U(w, t) is an irreducible unitary representation of the Heisenberg group A4(G).

Let B(G) be the group of all automorphisms of Heisenberg group A(G)
which fix the elements of the center of 4(G). For seB,(G), define the repre-
sentation U°® of Heisenberg group by U®(w, t)=U((w, ¢)°’). It can be shown
that U* and U are equivalent, so there exist unitary operators, unique up to the
constant factors, which define the equivalence. We fix one of them and denote
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it by V(s). The mapping s—V(s) is a projective unitary representation of
By(G). If u—2u is an automorphism of G, a natural injective homomorphism

"=<$ g)*(f , [) of S,(G) into By(G) exists, where

folu, w¥) = <u, 27uaf*) 27Uy 8%, Wy, uB.

(o, f5) 1s simply denoted by o.

Let o, v and p be an automorphism of G, an isomorphism of G* on G
and a symmetric homomorphism of G into G* respectively. Define unitary
operators d(a), d,/{vv) and ¢,(p) by formulas

dy(a)D(u) = D(ua)
d/(V)Pw) = D¥(—uy*™)  (PED)
t,(P)D(u) = D(u)u, 27'upy

¥l
Then V(a() 2_1>, V(g g ) and V<(1) T) are equal to dy(a), d,/(7v) and &,(p)

up to constant factors.

5. The representations of the first and second kind

Let us now proceed to construction of the reprerentations of the first and
second kind of SL(2, F). Assume that the characteristic p of F be odd. Let G
be the additive group of the two-dimensional vector spcae F?* over F. Now let
us define two functions on G' X G which define self-duality of G. Put

<u’ 'I)>1 = X(u17)2+u2‘01)
and
luy v, = X(2(uw,+Euyv,)) .

The self-dualities of G defined by <{, >, and <, >, are called of the first kind
and of the second kind respectively. Let L be the quadratic extension F(1/€)
of F. The self-duality of the second kind is canonically associated with L. We
identify G and L by G=(u,, u,)u— u,+~/Eu,& L and then {u, v>,=X(S(uv)).

First we consider both cases simultaneously, so we omit the suffices and
write {, >. Let a¢=F and the homomorphism of G defined by u—ua=
(otu,, au,) be denoted also by a. Then each element of SL(2, F) can be
considerd as an element of Sp(G), so SL(2, F) can be imbedded homomorphical-
ly into By(G).

If v =0, g=<3 g) is expressed uniquely as

G- CTIC TN
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Define the operator ry(g) by the formula
ry(g) = toay )i (v)t(8r ™) -
or, in an explicit form, by
r(8)P(u) = 2 kglu, 0)@(v)
where
kg lu, v) = 21X (042,:1,<u; wt ?127@ ?Z—<%}’>>
Let g.6,=2,, 8 — (7‘ /5’1) and 7,40 (i=1,2,3). Then ry(g)r(g,)=
(81, 8)1o(85), Le.
2 k(gilu, 0)k(g.]v, w) = c(gy, &)k (g |u, w).

Putting u=w=0, we have
c=c(g &)= — 2 X (718,27 <, ©)X (12! 2,27, v))
— L1 riteitece, o).
q ’s¢
Now let us consider the two cases separately. We have
T B X0 2w )

_ DX (st 0,0,)
q °s¢
= _Zq— 1 +L
q q VEG, V0,30
q q e
_ 2¢—1 n g—1

q q

X(vsvitvato,v,)

(=) =1.
We also have

X(vsvitrzt27 <o, vy)

e

Q

an—a
<

o BXOT TN )

1
g
~1ietl 23X (7,7 YT ®)
g g &
1ogtl gy 1.
g 4



72 S. TANAKA

If we multiply r(g) by (—1)"' and write it by T%(g), we have
T%(g)T%(g,)=T%(g,). Taking into consideration the operators correspond-

ing to elements of the type g=<g g _1>, we obtain following representations.

1. The representation of the first kind. Operators of the representation
are defined by formulas

T™(g)®(u) = 2 KM(glu, v)@(v),

where
K®(g|u, v) — LX<au1u2—|—81)1712—(ulvz—l—uzvl)>
q Y
if v=0;
K®(glu, v) = X(aBu,u,)d(v—uc)
if y=0.

2. The representation of the second kind. Operators of the representation are
defined by formulas

T(g)o() = 3 K(glu, 0)D(),

where
K®(glu, v) = —1x (aN(u)-i-SN (v)—S(u«b)) ’
q Y
if v=0;
K®(glu, v) = X(aBN(u))d(v—uct)
if v=0.

Now let us calculate the traces of these representations, which will be used

in §9.
TrT9(g) =3 K“(glu, u),

50
o G (2 ),
q L=T] Y
if v40; and
TrT%(g) = 2 X(aB27 u, w)d(u—ucr)
= 48—y 3 XE2w w),
if y=0.

So they are computed analogously as the calculation of ¢(g,, g,). We omit the
procedure and state the final results.
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Tr T®(g) = (g—1)S(a+8—2)+1,

if ¥=0;
Tr T®(g) = 14 (q—1)d(a—1) {g8(8)+1},
if y=0.
TrT®(g) = —(g+1)8(a+8—-2)+1
if y=0;
Tr T(g) = 1+(g+1)8(a—1) {g(8)~ 1},
if y=0.

6. Decomposition of 7T(g) into invariant subspaces

Let us now decompose the representation 7°®(g) constructed in §5 into
invariant subspaces. For t=C, define the operator R, on § by

RD(u) = d(tu) (PED).

Then R, commute with T®(g). Let = be an element of C, the character
group of C, and 9, be the subspace of © consisting of elements which satisfy,
for all teC,

R,® = #(t)®

If =9, and z+7=,, ©(0)=0.

By above mentioned commutativity, 9, is the invariant subspace of the
representation {T®(g), 9}. Put TP(g)=T"(g)|9,.

Now for @€ 9, ®, be the function defined by

o, = 2 th"% .
teC

Clearly ®,€9, and (T®(g)®),=T¥(g)®.. Moreover inversion formula

0. w)

B(y) —
(u) q+1 LT

and Plancherel formula

1
(CI)> CD) = qTi‘ ZN(CI),, (I),,)

TEC

are obvious. So {T'®(g), 9} is decomposed into direct sum of {7 (g), .,
reC.

Let 0 be a system of representatives of the C-transitive part (each consisting
of g+1 elements) of L*. For ®€9,,
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T(g)P(u) = 2 K®(glu, 2)@(2)
= K®(glu, 0)@(0)+2; 33 K(glu, to)®(tv)
= K(glu, 0)(0)+2 [ K™(glu, to)n(1)] (o)

ted
This is the general formula of action of the representation 7'%(g).
Now assume that z=n,. Extend 7z to a character of L* and define
W' (u)="(u)x(u). Then W'(tu)=¥'(u) for all t€C, so V'(u)=p(N(x)), where
@ is a function on F*. By

O]

ted H=N@)N@)~1

we have, if v=0,
oy (@) — — L 51y (NWatN@)
(T2(g)wy (@ = — Zx(FATAER)

X [,,—=N<§V X (- w> ﬂ(t)]\lf ().

So the induced action of T'®(g) on ¢(x) is written as

T2(p() = T KZ(gl% )(3),
where
K®(g|x, y) = _ix<ax_—{—8y> N x<_x_tiy_t__l)7[(t) ,

q Y tr=yx~1 Y

if v=0;
K2(glx, y) = n(a)X(aBx)3(y—a’),

if y=0. These representations are analogous, in form, to discrete series of
SL(2, K) and discovered by I.M. Gel'fand and M.I. Graev.

Now let z=1r,, then ¥ €9, can be written as ¥(u)=¢ (N(u)), where ¢ is
a function on F. So arguing as above, we have, for v =0,

Tde)p() =~ 3 X(EEE) 51 (- ()

—2x()p©)  (@eFY
q Y
Tu(&)p(0) = — 152 5% (%) o)~ L 9(0).
g = \y q
For y=0,

Te)px) = X(aBxp(a’s) (xS F¥)
T(g)p(0) = #(0)
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Now let us compute the traces of the representation T3 (g). TrT®(g)=
K(g10, 0)3(x)+ 33 [ K“(glu, tuye()]

If v =0,
TrT&(g) = —8(r)—— 3 ;x(wx>n(t)
g = v
= 3 B lad(etd— 1=t~ ()
= d(r)—2 d(a+d—t—t")= ().
So we have -

TrT®(g) = 8(w)—n(Ng)—n(Az') if A,eC and A #+1;
= 8(n)—n(\,) if A,=+1;
= §(r) if A, &C,
where A, is an eigenvalue of g=(3 'g >
If v=0,
Tr T(g) = 8()-8(ac'—1) T ()X ()
= 8(z)+8(a*—1)m(a) {g8(8)—1} .
Therefore T®(g) and T (g) are equivalent if and only if z==" or z=7r""". It

is proved in §9 that T®(g) (z=n=,) are irreducible. Traces of T®(g) (z=+m,)
are collected in Table 2.

7. Decomposition of T(g) into invariant subspaces

Let us now decompose the representation 7T ®(g) into invariant subspaces.
For te F*, define the transformation u— u* of G by «’=(tu,, t"'u,). Operators
R, on  defined by R,®(u)=P(u*) commute with the operators of the repre-
sentation. Let 7 be an element of F*, the character group of F*, and 9, be
the subspace of 9, consisting of elements which satisfy R, &=n(f)® for all
te F*. If &9, and =+n,, then ®(0)=0. By the above mentioned com-
mutativity, 9, is the invariant subspace of the representation {T'®(g), ©}. Let
TP (g)=T"(g)| 9. Formula of decomposition into invariant subspaces is
analogous as in §6 and it is omitted.

Let 0 be a system of representatives of F*-transitive part (each consisting
of g—1 elements) of G—{(0, 0)}. For ®=9,,

T(g)P(u) = 2 K(glu, v)®(v)

=T

= K(glu, 00@(0)+3) 3 K¢, o)2()
= K, 0000+ Z [R KM glu, v)rt)}e().
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This is the general formula of action of the representation 7'{’(g).

Let us write more explicitly the formula of the representation 7'(’(g), fixing
n+m,. Then ®=9, implies ®(0)=0 and elements of O, is determined by
their values on 8. We take {(1, x), x€ F; (0, 1)} as 6 and put @(x)==>(1, x),

q)(oo)z—;—'r(ﬂ_l)q)(o, 1) If y=0,
1) = - B S (- )0 o)

+X(Ofy—x>n(—$)¢(°°)

and
T (g)p() = "1 316(3)%(22)
g v
If =0,
T2 (8)p(x) = n(a)X(aBx)p(a’x)
and

T2(8)p(o0) = n(@)p(=)
These representations are X-realization of T, introduced in §3.
Let us compute traces of constructed representations.

TrT:(8) = K810, 0)3(m)+23 [ 23 K (g lu, uw)n(®)]

If y=0,
TrT®(g) = L 8(x) +L X(Muluz)n(t)
q q uEg te p* ’y
—1lsm)+2 o ,,(t)_|_ D <Mx>”(t)
q g & 05 v
— %a(ﬂ)+ ; = 7r(t)—i— 2 {@dats—t—t") = La(t)
= 8(m)+ B 3+ 51—t ‘)n(t)
So we have
Tr T (g) = 8(x) L n(hg)+7(ns') if A,EF and A+ 41;
— 8(r)+7(r,) if A+ L1
— §(x) if A & F
If v=0,

TrTP(g) = 8(m)+ ; 'EEF* X(aBuu,)d(u' —ua)m(t)
= 8(n)+r(a)+r(a*)+6(a®— 1)7z(a)‘§* X(aBx)
= 8(m)+m(a)+m(a™")+8(a’—1)z() {g8(8)—1}
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So we have

TrTP(g) = 8(z)+n(a)+=(a™) if a+41;
= () () (1+g5B))  if a=-1.

Therefore T7” and T are equivalent if and only if z=7"or w==""". T is
equivalent to direct sum of 7% and twice the identity representation. It
will be proved in §9. that T&(g) (z=*=,, =,) are irreducible. Traces of
T¥(g) (z=*m,, =,) are collected in Table 2.

8. Decomposition of 7T¢’(g) and T (g) into invariant subspaces

8.1. Algebraic lemmas.

Lemma 3. Let us consider the mapping F*=t— a=t+t'€F. Then
(i)  The range consists of a which satisfy &> —4<F, .
(i)  The image of the set F¥ is the set of o which satisfy a+2, a—2€F.,.

Proof. (i) If a=t+1¢7", then a*—4=(t—t')’cF,. Conversely let a*—4
=d’, acF. If we put t=2"Y(a+a), then t=2(c¢—a)™*. So a=t+t7".
(i) If a=s"+s7% then a+2=(sts')cF,. Conversely let a+2=a" and
a—2=0F, a, b F. Put s=27'(b+a). Then s=47'(b’42ab-+a*)=2""(a+ab)
=2(a—ab)'. So a=s"4s7"

Lemma 4. Let us consider the mapping C>t—a=t-+t'€F. Then
(1)  The range consists of o which satisfy o*—4< F_.
(i)  The image of C.—{—1} is the set of a which satisfy a+2€F* and
a*—4€F._.

Proof. (i) a=t+t"", teC, then a’*—4=(t—f)cF_.. Conversely let
at*—4=a*€, ac F. Put t=2""(a+a\/€), then teC and a=t+17".
(ii) If a=s*+s7%, s€C, then a+2=(s+5)’ and s== —1 implies that s4-50.
Conversely, let a*—4=F_ and a+2=d’, ac F*. Then a=t+t7, teC,
by (i). Suppose tC_, then it is written as t=eéfe, where N(e)=¢E. So
F.>(e+e%)=ee(¢/e+2+ele)=a’¢=F*. This is a contradiction and we have
teC,. t=+—1is obvious.

8.2. Decomposition of T2(g) into invariant subspaces. Representation
space of T',(g) consist of all functions defined on F*. Let us prove that spaces
of functions which vanish on F* and F* are invariant subspaces. In fact, let
yx'=a’€, ac F*. Then

2 X ( - ’—““L—Wyiﬁ(t) = myae) 3 X (- ’ﬁ“(L;r@) 7t) .

tr=yz—1

Put
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A = 3 X(aled-+ead)mlt)

1

Replacing ¢ by (&,/e,)s”*, we have

A= s;c X(a(8,s  +ey8))ma(8ofe)r(s™) = — A .

So it is proved that if yx'eF*, then K2 (g|x, y)=0. Restriction of T'%(g)
on the space of functions vanishing on F* and F* are denoted by T,(g) and
T-(g). It will be proved in §9. that T%(g) are irreducible.

8.3. Calculation of traces of T%(g). TrT(g)=TrT;(g)+TrTo(g) is
already known, so it is sufficient to calculate Tr T} (g)—TrT,(g). Put, for
acF,

S = EZG X(aS(t))rAt) .
Then by Lemma 4.,
S= 3 X(awyr,(u+2){1—7n,(’—4)} +X(2a)+X(—2a)w(—1)

UEF, ud=+2

:uEF%ﬁX(au) {m(u+2)—m,(u—2)} +X(2a)+X(—2a)7,(—1)
— X(—2a)m(a) 3 Xy o)~ X(2aye(a) 3 Xy 1)
EX(—2a)my —4)+X(—2a)(—1) .
= 7{X(—2a)—X(2a)} = (a) .
If v=£0,
T, T(e)—T,Tz(g)

= - L 5 m@x(2 ) 5 x( - t“;’—lx)nz(t)

_ T (_1 a+8+2 \_ (a+d—2

= . 7t1< V>XEZP{X< " x> X( " x)}

- - rm(—_1~>{a(a+5+2)~5(a+6—2)} .

Y
If v=0,
Tr T,(8)—TrTz(g) = S(a—ymde) 3 Xt (x)
— S — ) raB)T

The results are collected in Table 2.

8.4. Decomposition of T, (g) into invariant subspaces. The representa-
tion space of T, (g) consist of all functions defined on FU {co}.
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Proposition. The sapce of functions vanishing on F* and satisfying
(1) — 7 POFe() =0
is an invariant subspace of the representation T, (g).
Proof. Put
A= %X(d28t+b2t"l)7zl(t) (a, be F*)
te
Replacing ¢ by (6*/a’€) s™*, we have
A = X s +a%Es)m (s)my(8) = — A4 .
SE ¥

So A=0.
Let @ vanishes on F* and satisfies (1). It is obvious that T, (g)®
vanishes on F* and satisfies (1), if y=0. We have only to consider the case

0 —1
(T (IP)ae) = < 33 { 53 X(—~(@ett3t™ Ve )o()

+a(—Dp()  (@EF¥).
By A=0, we have

(T p)ae) = - T K~ et 0)p(0) e~ Dp(=2)
- —ﬂﬁ;—‘)lq)(ownl(—lw(oo) —0.

We also have

"%(T,,(s)¢>(0)+(Tﬁ(s)s”)(m)

_T {M = (p(y)—|—7r,(—1)¢>(°°)} -|-i 2 2(y)
q q }'EF:_ q YEF4

= 9"2{—*727!1(—1)+q}y§*¢(y)+4‘1{—7ﬂl(—1)¢(°°)+<P(0)}-
Making use of the fact 7?=g#,(—1) and (1), we have

——}(T¢,<s)¢>(0)+<T,,<s>¢)<oo> =0.

So the proposition is proved.

Let us denote by 7'} (g) the restriction of Ty, (g) to the subspace described
in the statement of the proposition. By the same way, we can show that the
space of functions vanishing on F'¥ and satisfying
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Lp(0)+p(o) =0

is an invariant subspace of T, (g). Let us denote by T;(g) the restriction
of T (g) to this subspace. It will be proved in §9. that T'7 (g) are irreducible.
Now let us write the formulas of the action of T} (g) on ¢(x), x€F,. If

v+0,
L m (B s )]t

+2qu(9‘$)”‘<*7>¢<0> (x& F¥)

T (g)p(x) =

ton =0 ()
If y=0,
T:(p(x) = M@(aBr)play)  (EF).

The action of T'; on @(x), xE F, are written as follows. If y=0,

Ta(@e) = 3 SR 530 o ()

—&X(a—x>nl(—'}')(p(0) (xe F¥)
q Y
T(99(0) =~ 51 5(%(%2)
T YEF - Y
If y=0,
To(e)p(x) = r(@X(@Br)p(a’s)  (xSF.).

8.5. Calculation of traces of T'Z(g). It is only necessary to calculate
IrT:(e)—TrT;(g). Put

S :,g X(a(t-+1))m(t) .
By Lemma 4., we have
S :uEZ X(au) {14z, ('—4)} 7,(u—2)+X(2a)+X(—2a)7w,(—1)
= uéx(au)m(u—Z)—% "gx(au)n-l(u—l—Z)
= {X(2a)+X(—2a)}z,(a)T .

> X(Cia x) t;ﬁ((_ t+t7! x> ﬂl(t)—l-zl( — %I_)_T_

7 B 7
= AR )l 2)om (1)

If y=0,
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Analogously,
70— 2 G2 e 2) (1)
Therefore, we have
TrT3(g)—TrT7(g) = % = {x <"%gx) +X (@—Zx)}d—%)
— T {gd(a+8—2)+g8(a-+d+2)m (1)
g %

= (a8 — 4y — %) ,
If y=0,
TrTz(g) = 8(0{2—l)x%ﬂ,(a)X(aﬁx)+n1(a) .
Therefore, we have
TrT:(8)~ TrTo(g) = 8(e—1) S ma)¥( £ )

= §(a®— 1) (B)T .

The results are collected in Table 2.

9. Description of all irreducible representation

We have proved that the representation of the first kind splits up into

1. T®(g) (n*m,, m) —-12—(q—3) inequivalent representations of degree
g+1, each with multiplicity 2;

2. TZ(g) two inequivalent representations of degree %(q—{—l);

3. A represe{ltation of degree ¢ equivalent to 7'3(g);
4. twice the identical representation.
The representation of the second kind splits up into

1. T®(g) (z*my,m) % (g—1) inequivalent representations of degree
g—1, each with multiplicity 2;
2. Tz(g) two inequivalent representations of degree —;—(q—l);

3. T3

It will next be shown that we have thus obtained the complete decompo-
sition of the representations of the first and second kind into irreducible repre-
sentations. 'The proof of this statement rests on the following

Lemma 5. Let R, R,, -+, R, be (reducible or irreducible) representa-
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tions of a finite group G of order g. Suppose that no two of these representa-
tions are equivalent. Let n,, n,,---,n, be positive integers, let R be the
representation

R =nR+nR,++n.R;
and let 7T be its trace function. Then we have

U;G I T(U)[2>(n12+n22+...__I_nkz)g ,

where the equality sign holds if and only if all representations R,, R,,+, Ry
are irreducible.

For the proof of this lemma, see [9, p. 402].

Now let us recall some properties of SL(2, F). Order of SL(2, F) is

g(¢—1). Put gA=(3 7(3) for \E F* and A+-1. For teC, t+11, let g,

denote an (arbitralily fixed) element of SL(2, F) with eigenvalues ¢ and ¢ .
Then the conjugate class decomposition of SL(2, F) is described as in following
table.

Table 1
Representa-‘ 10 -1 0 11 1e¢ ii 1 —]7 7;7
tive (o 1) ( 0 —1) & 8 (0 1) (0 1) ( 0 ~1)( 0 —1)
Number of 1 1
?stésat(;fscon- 1 1 *7(4—3) 7(11—1) 1 1 1 1
Number of 1,., 1,, 1,, 1 1y
elements in 1 1 q(g+1) | q(g—1) —2~(q -1) —2—(11 -1) 7(({ 1) 7(‘1 )
each set

The sum of the square of the multiplicities with which the enumerated
representations occur in the representation of the first kind is

(g 3)- 242 14142° = 29+ 1.

On the other hand it is shown that
NTr T = q(g—1)(2¢+1)

Therefore, by Lemma 5, T'3(g) (z+n,, m.), Ti(g), Te(g) are irreducible. In
the same way, it is proved that TP (g) (z#n,, 7,), T2(g), T4 (g) are irreduci-
ble. Their traces are collected on Table 2.

By Table 2 it is shown that there are no more equivalence between con-
structed irreducible representations. 'Together with the trivial representation,
there are ¢4 irreducible representations. The number is equal to that of the
conjugate classes in SL(2, F). So all irreducible representations of SI,(2, F)
are thus obtained,
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Table 2
Representative ’ Tr TP TrT%, ’ TrT%’ ’ Tr TP TrTE,
(w+m, ] ;) (m+my, mp)
6) | e | e | e | S
_ 1
( ! _‘1’) ;n(—l)(q+1) 2m(=D@+) | ¢ | —a(~1)@g-1) %nl(—l)(q—l)
Q(AEF*, 2+ +1) [z(D) +7(2-1) () 1 0 0
2(teC, t++1) 0 0 —1 — () —x(t-Y) —,(2)
(1 1 14 1o
0 1) 1 ‘ 7( :l:T) ‘ 0 | —1 7( 1+7)
(1 e) : 1 ] l(1$r) 0 — 1 i(-l—T—r)
01 @ ) - 2
| |
(‘(1) _}) \ 2(—1) %{m(—i)ir} l 0 | —a(-1) %A{nl(—l)frr}
‘ |
_ 1 \ 1
(§.5) | s FECDTI 0| —xn | gD

(1]
(2]
B3]
(4]

(3]

(6]
[7]

(8]
(9]
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