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1. Introduction

The purpose of the present paper is to construct all irreducible representa-
tions of SL(2, F), where F is a finite field, closely following the study of H.D.
Kloosterman [9] on the representation of the modular congruence group. Most
of the results described here are known, however the argument which depends
on theta series and was the starting point for H.D. Kloosterman's work is replaced
by the recent results of A. Weil [11] on a certain projective representation of
symplectic groups. By this construction we hope to give some insight to the
structure of the remarkable irreducible representations of SL (2, F) discovered
by I.M. GeΓfand and M.I. Graev [7] as an analogue of the discrete series of
SL (2) over a non-discrete locally compact field.

We consider F2, the two dimensional vector space over F and identify its
dual with F2 (as an additive group) in two ways. The one is connected with
indefinite quadratic form in two variables and the other is connected with definite
quadratic form (or rather with quadratic extension of F). On the other hand,
a natural projective unitary representation of the symplectic group Sp(G) as-
sociated with a locally compact abelian group G was constructed on L2(G) and
studied by A. Weil [11]. SL(2, F) is imbedded into Sp{F% so we have two
projective representations of SL(2, F), which turn out to be ordinary repre-
sentations. We call the one associated with indefinite quadratic form the
representation of the first kind and the other of the second kind.

To decompose these representations, we consider the hyperbolic rotation
group H and the rotation group C operating on F2. The operators induced by
hyperbolic rotations commute with the operators of the representation of the
first kind, and those induced by rotations with the operators of the represen-
tation of the second kind. So by Fourier transformation with respect to H or C,
these representations are decomposed into direct sums of representations. Each
operator of the component representations is expressed by a sum analogous to
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Kloosterman's sum (or to the integral representation of the ordinary Bessel
function) and. representations discovered by I.M. GeΓfand and M.I. Graev are
thus reconstructed. We call the sum Bessel function of the first or the second
kind over a finite field. For a representation of the second kind, the operator

corresponding to K Q j is essentially the Fourier transform in two variables,

so the above construction is an analogue of classical construction of Fourier-
Bessel transform. Bessel functions of the first kind are also obtainable as kernels
of the so-called %-realization [7, P216] of the representations, obtained by de-
composing the quasi-regular representation which is naturally defined on the
two dimensional afrine space over F.

The author was informed by Professor H. Yoshizawa that since 1963 J.A.
Shalika had undertaken the problem of determining all irreducible representa-
tions of the modular congruence group with considerable progress. After the
author had finished the present work, he was also informed by Professor M.
Kuga about the general outline of J.A. Shalika's lecture on the similar problem
as considered in this paper at 1965-A.M.S.-Summer Institute on algebraic
groups.

The representation theory of SL(2y F) was originated by G.F. Frobenius
[3] who calculated the traces of all irreducible representations of SL(2> F).
Later E. Hecke [8] gave the construction to a half of irreducible representations
(obtained from quasi-regular representation) of this group. In connection with
his study of the general theory of modular functions, E. Hecke raised the problem
of determining all irreducible representations and their traces of the modular
congruence group mod pκ. The problem was attacked by H.D. Kloosterman
[9] by means of the transformation formulas under modular substitutions of
certain theta series. He constructed the greater part (in fact, for the case λ = l ,
all) of irreducible representations. So all irreducible representations of SL
(2, F) with F=Zl(p) have been constructed by H.D. Kloosterman.

In recent years, I.M. GeΓfand and M.I. Graev have undertaken the study
of representation theory of Dickson-Chevalley groups over an arbitrary field
[4], [5], [6], [7]. In particular, they gave the formulas of representations of the
discrete series of SL(2, K), where K is a non-discrete locally compact field, and
analogous ones for SL{2, F) [7]. But the author of the present paper feels that
the meaning of these formulas remains rather implicit.

The present paper is closely connected with our previous paper [10]. In
Part I of [10], the discrete series (of 5L(2, K)) of I.M. Gel'fand and M.I. Graev
were reconstructed by the method described before. We hope our construction
described in Part I of [10] and in this paper make the structure of those represent-
ations clear. In Part II of [10], the representations of the modular congruence
group mod/>λ constructed by H.D. Kloosterman were reconstructed. Modifying
the construction, we obtained a new representation which may give some of
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irreducible representations absent in H.D. Kloosterman's work. For the special
case of X=2, all irreducible representations absent in H.D. Kloosterman's work
were thus obtained.

We shall proceed to outline the contents of this paper. §2, §3, §4 of this
paper are preliminaries for later constructions. In §5, the representations of the
first and second kind are constructed depending on results of A. Weil. De-
composition of the constructed representation into invariant subspaces is de-
scirbed in § 6 and § 7. There are exceptional invariant subspaces which can be
decomposed further. Description of them are given in §8. In §9, irreducibility
of the constructed representations are proved and it is shown that all irreducible
representations of SL(2, F) are thus obtained.

2. Properties of a finite field

For general facts about a finite field, see [2]. Let F be a finite field with
q=pn (p a prime number) elements. Let F+ be the additive group of Ff F*
its multiplicative group. Let £ be a generator of F*.

Let L be the quadratic extension F(\/~£) of F. For z=x+\/~£y (x, y^F)y

define z=x—χ/~Sy, S(z)=z-\-2 and N(z)=z£. The set of elements t in L
which satisfy N(t)=c (c^F*) is called a circle in L. Each circle consists of
#+1 elements. Let us denote by C the circle N(t)=ί.

Let F * and C be the character group of F * and C respectively and π0

(same symbol for both case) be the identities of F* and C. There are characters
of F* or C with real values. Apart from π0 there is only one such characters in
each case, which we denote by π1 and π2 respectively. Let t0 be a generator
of C. πx and π2 are characterized by π1(β) = — 1 and π2(t0) = — l. Put F* =

F±=Fi U {0} and C±={t^C; π2(t)

Lemma 1. πλ{— 1)= — 1 if and only if π2(—l)=l.

Proof. Let — l = ί2, ί e C . Then t+t=O, so t is written as \Z~βby b<=F.
Therefore — \ = f=8b\ so πx(— l)=πi(f)= — 1. Conversely, let — l=£b\ b<=F.
Putting t=χ/~6b, we have tt = —b2ε=l and f= — 1.

Lemma 2. For any t^C_, there exists an element e^L such that N(e)=£

and e/e=t.

Proof. Let e' be an element of L which satisfies N(e')=£. If e'/e' is

expressible as t'\ t'^C, then we have (e~Ύ)=e'tf and £=N(e')=(e't')\ which

contradict the definition of £. So ef/ef=tlm+1 for some m. If f=fgn+1, put

e=tont%e'.
Let us fix eQ which satisfies N(eo)=6 and eo/eo=to.

Let us fix a non-trivial character X of F+, For π e F * , 7rφ7r0, define
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and put τ=τ(τr1). It is known that \τ(π)\2=q (see for instance [1, P27-29])

and in particular τ2=qπ1(—ί).

Let S(x) be δ-function on F i.e. 8(#) = 0 if x e F * and 8(0)= 1. We also

introduce function S(π) on F * and C defined by δ(7r) = 0 if πΦπ0 and δ(τro)=l.

Given π^F*> we define π(0)—0 and consider 7Γ as a function on F.

3. Quasi-regular representation

Let ξ> be the finite dimensional Hubert space consisting of all functions on

FxF— {(0, 0)} with the inner product (Λ, f2) = Σ/i(*i > ^ίΛί^i > #2)
 F o r

2, F), define the operator T(^) on § by the formula

Then T(^) is a unitary representation of ^ ( 2 , F). For π^F*, we

which satisfies f(Xxly Xx2)=π(λ)f(xiy x2)y λ G F * , a homogeneous function of

degree π. Let φ* be the subpsace of ξ) which consists of all homogeneous

functions of degree TΓ. ξ>Λ is the invariant subspace of the representation

{T(g), £>} and let us write T«(g)=T(g)\&.

F o r / e ξ ) Λ , define i/r(x)=/(l, x), x e F , and ^(°°)=/(0, 1). Induced action

of TJ^g) on Ί/Γ is written as follows. If

if 7 = 0 ,

Let πrφπ 0 and put 9 ' ( ί ) = Σ | W X ( - y Λ ^K 0 0 )—"Ή 0 0 )- Realization

of TΛ(g) expressed on functions φ(y), φ{°°) is called %-realization and written
by the formula in §7. which we shall obtain by another method.

T*0(g) is equivalent to direct sum of T^(g) (which will be introduced in
§9.) and an identity representation.
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4. Summary of results of A. Weil

This section contains summary of definitions and results in Chapter I. of
[11] which we need later.

Let G be a commutative locally compact group and G* be its dual group.

For MG(? and &*<=£*, put ζu, u*y=u*(u). For notational convenience, we

assume G is a finite group with n elements. Let φ be the finite dimensional

Hubert space consisting of all functions on G, with inner product (Φly Φ 2 )=

n~1/2 Σ Φi(w)Φ2(w). For Φeξ>, define its Fourier transform Φ* by

φ*(u*) = n~V2 Σ Φ(ιι)<tt,

Let G and if be commutative finite groups. If u-^ua is a homomorphism of
G into Z7, there exists a homomorphism a* of ϋΓ* into G* such that <wα, ̂ *>
=ζu, v*a*y for any M G G and v*^H*. If H*=G and <£=«*, # is called a
symmetric homomorphism.

Let zϋ-̂ ft?σ be an automorphism of GxG*. Putting w=(u> u*), σ can
be represented by matrix:

(ii, M*) - (ii, ιι*)(£ ^ ) = (ιια+«*7, Hi9+ιι*δ)

where α, βy γ and δ are homomorphism of G into G, of G into G*, of G*
into G and of G* into G* respectively. An automorphism of GxG* is called
symplectic if crσ 7=l where

δ* -β*^

The group of all symplectic automorphism is denoted by Sp(G).
Let T be the multiplicative group of the complex numbers of modulus 1.

Put F(wly w2) = 'u1, υ$y for ^,=(11,, UΪ)EΞGXG* ( i=l , 2). Let A(G) be
the group whose underlying space is GxG*xT, with the multiplication rule
defined by (w19 t^){w2, t2)=(w1-\-w2, F(w19 w^tjr). We call the group A(G) the

Heίsenberg group associated with G. It's center is {(0, t)y t^T}. Define the
unitary operator U(w, t) in ξ> by the formula

U(zv, t)Φ(v) = tΦ(v+u)<y, u*y (Φeθ)

U(«ϋ, t) is an irreducible unitary representation of the Heisenberg group A(G).
Let BQ(G) be the group of all automorphisms of Heisenberg group A(G)

which fix the elements of the center of A(G). For s^B0(G), define the repre-
sentation Us of Heisenberg group by Us(zcy t)= U((w, t)s). It can be shown
that IIs and U are equivalent, so there exist unitary operators, unique up to the
constant factors, which define the equivalence. We fix one of them and denote
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it by V(s). The mapping s-*V(s) is a projective unitary representation of
B0(G). If u-^2u is an automorphism of G, a natural injective homomorphism

*< σ ' ^ ) o f 5 ^ G ) i n t 0 5°(G) e x i s t s ' w h e r e

(σ, /σ) is simply denoted by σ.
Let a, γ and p be an automorphism of G, an isomorphism of G* on G

and a symmetric homomorphism of G into G* respectively. Define unitary
operators do(a), do'(y) and to(ρ) by formulas

= Φ(ua)

Then Γ(« 0.,), Γ(° " J ^ " 1 ) and F ( J f) are equal to do(a), do'(y) andίo(p)

up to constant factors.

5. The representations of the first and second kind

Let us now proceed to construction of the reprerentations of the first and
second kind of SL(2> F). Assume that the characteristic p of F be odd. Let G
be the additive group of the two-dimensional vector spcae F2 over F. Now let
us define two functions on G X G which define self-duality of G. Put

and

The self-dualities of G defined by < , X and < , X are called of the first kind
and of the second kind respectively. Let L be the quadratic extension F(\f £)
of F. The self-duality of the second kind is canonically associated with L. We
identify G and L by G3(wx, u2)u-^u1

J

r\/~£u2^L and then ζu, vy2=X(S(uϋ)).
First we consider both cases simultaneously, so we omit the suffices and

write < , X Let a^F and the homomorphism of G defined by u-^ua =
{auλ, au2) be denoted also by a. Then each element of SL(2, F) can be
considerd as an element of Sp(G), so SL(2> F) can be imbedded homomorphical-
ly into B0(G).

If γφO, £ = ( βj is expressed uniquely as

g = Vy δ/ = VO 1 A 7 0 Λθ 1
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Define the operator ro(g) by the formula

rote) =
or, in an explicit form, by

where

k{g\u, v) =

Let g l g t = g s , g i = fy A) and γ,-Φθ (t= 1, 2, 3). Then ^ ( ^

Putting u=w—Oy we have

c = c ( Λ , ^ = —
q <*

Now let us consider the two cases separately. We have

-

^
q q *£f*

q q
We also have

9

1 1
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If we multiply ro(g) by (— l ) ί + 1 and write it by Ta\g), we have

TCD(g1)TQD(g2)=TcD(g3). Taking into consideration the operators correspond-

ing to elements of the type g = ( ̂  -A we obtain following representations.

1. The representation of the first kind. Operators of the representation

are defined by formulas

= ΈK«\g\u, v)Φ(v),

where

if 7Φ0;

Kcl\g\u, v) = Ύ{aβu1u2)h{v-ua)

if γ = 0 .

2. The representation of the second kind. Operators of the representation are
defined by formulas

= Σ K^(g\u, v)Φ(υ),

where

K-\g\u, v) = Z^
q

K^(g\u, v) = X(aβN(u))δ(v-ua)

if 7 = 0 .
Now let us calculate the traces of these representations, which will be used

in §9.

SO

TrT<»(g) =(g) ^

if γφO; and

TτT«\g) = Σ X(aβ2-\u9 u»8(u-ua)

if 7 = 0 .
So they are computed analogously as the calculation of c(g19 g2). We omit the
procedure and state the final results.
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TrT^(g) =

if γ=0.

TrT^(g) = -(q+l)δ(a+δ-2)+l

ifγφO;

TrT^(g) = l + (^+l)δ(^—l){^δ(/5)—1},

if 7=0.

6. Decomposition of Tc2\g) into invariant subspaces

Let us now decompose the representation Tc2^(g) constructed in §5 into
invariant subspaces. For t^C, define the operator Rt on ξ> by

Then Rt commute with TQ2:>(g). Let π be an element of C, the character
group of C, and ΦΛ be the subspace of ξ> consisting of elements which satisfy,
for all

If Φ G ^ and τrφ7r0, Φ(0)=0.
By above mentioned commutativity, ξ>Λ is the invariant subspace of the

representation {T<»(g), Φ}. Put T«\g)= T<2\g) \ ^ .
Now for Φeξ>, ΦΛ be the function defined by

Clearly Φ,Gξ)β and (ΓC 2 )(^)Φ)Λ- Γ f (£)ΦΛ. Moreover inversion formula

and Plancherel formula

1
(Φ, Φ) =

are obvious. So {jΓ^g), ξ)} is decomposed into direct sum of {T£\g),

Let ^ be a system of representatives of the C-transitive part (each consisting

of q+1 elements) of £Λ For Φ e ξ)^,
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(g I u, v)Φ(v)

u, O)φ(θ)+Σ lv

= κ«\g i u, O)Φ(O)+Σ [Σ κ*\g I«.

This is the general formula of action of the representation T^\g).

Now assume that 7rφ7Γ0. Extend ^ to a character of L* and define

ψ\u)-=Ψ{u)Mΰ). Then Ψ'(tu)=Ψ'(u) for all ίGC, so Ψ'(u)=<p(N(u)), where

9? is a function on F * . By

we have, if y Φ 0,

xΓ

So the induced action of T%\g) on <p(#) is written as

where

if γφO;

if γ = 0 . These representations are analogous, in form, to discrete series of
SL(2, K) and discovered by I.M. GeΓfand and M.I. Graev.

Now let π=π0, then Ψ G Φ ^ can be written as Ψ(u)=φ(N(u)), where φ is
a function on F. So arguing as above, we have, for γφO,

Σ x(-

For γ = 0 ,

= 9>(0)
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Now let us compute the traces of the representation Tf\g). TrT£\g)=

K™(g\0, O)δ(»)+Σ [ΣK^(g\u, tu)π(t)].
«e0 ίΞ6'

If yφO,

So we have

TrT*\g) = δ(π)-π(Xg)-π(\sl) if λ^eC and λ,Φ±l;

= 8(π)-π(Xg) if λ^=±l;

= S(π) if λ , $ C ,

where λ^ is an eigenvalue of g=ίfγ g )•

If 7=0,

Σ π(a)X(aβx)

Therefore Γ^2)(^) and T%\g) are equivalent if and only if π=πf or TΓ^TΓ'"1. It

is proved in §9 that T%\g) (τrΦ7Γ2) are irreducible. Traces of T%\g) (π^π2)

are collected in Table 2.

7. Decomposition of T°~\g) into invariant subspaces

Let us now decompose the representation TCΌ(g) into invariant subspaces.

For ί e F * , define the transformation u->u* of G by uf = (tuλ, t~λu^). Operators

Rt on ξ> defined by RtΦ(u)=Φ(ut) commute with the operators of the repre-

sentation. Let π be an element of F * , the character group of F*, and ξ>Λ be

the subspace of ξ>, consisting of elements which satisfy Rtφ=π(t)Φ for all

t^F*. If Φ G ^ and τrφ7Γ0, then Φ(0)=0. By the above mentioned com-

mutativity, ξ>Λ is the invariant subspace of the representation {Tσ\g), ξ>}. Let

T£\g)= Tσ\g)\^. Formula of decomposition into invariant subspaces is

analogous as in §6 and it is omitted.

Let θ be a system of representatives of F*-transitive part (each consisting

of q— 1 elements) of G- {(0, 0)}. ForΦGξ), ,

Ta\g)Φ(u) = Σ KCΌ(g\u, v)Φ(v)

= κm(g\u, 0)Φ(0)+Σ Έκw(g\u, O Φ ( O
fee /e/ί*

= ^ C »(^ |M, 0)Φ(0)+Σ [Σ Km(g\u, v')π{t)]Φ{v).
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This is the general formula of action of the representation T£\g).
Let us write more explicitly the formula of the representation T£\g), fixing

7rφτr0. Then Φ G § Λ implies Φ(0)=0 and elements of ξ>Λ is determined by
their values on θ. We take {(1, x), Λ G F ; (0, 1)} as θ and put φ(x)=Φ(l, x),

r(- ' )Φ(0, 1). IfγΦO,

and

If 7=0,

and

These representations are %-realization of T* introduced in §3.
Let us compute traces of constructed representations.

TrT™(g) = K

± Σ Σ
q «εβ /e^*

δ ( ) + Σ (<)+ Σ() Σ () Σ
q q ttΞF* q t^F*

So we have

TrT?\g) = S^+πiXgi+πiXg1) if λ g G F and

= o(π)-\-π\λ,g) it λ,^4=±l,

= δ(τr) if ?

If 7=0,
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So we have

TrT«\g) = SW+φJ+φ-1) if αΦ±l;

= S(π)+π(a){l+qS(β)} if a=±l .

Therefore 7 ^ and Tp are equivalent if and only if π=πr or π=π'~\ T™ is
equivalent to direct sum of T^ and twice the identity representation. It
will be proved in §9. that T£\g) (ZΓΦTZΊ, π0) are irreducible. Traces of
T?\g) (TΓΦTΓ^ 7Γ0) are collected in Table 2.

8. Decomposition of T^{g) and T{^(g) into invariant subspaces

8.1. Algebraic lemmas.

Lemma 3. Let us consider the mapping F*^t->a=t+t~1^F. Then
(i) The range consists of a which satisfy α 2 - 4 e F + .
(ii) The image of the set F% is the set of a which satisfy a-\-2y a—2EΪF+.

Proof, (i) If a=t+Γ\ then α

2 - 4 = ( ί - Γ 1 ) 2 ε F + . Conversely let α 2 - 4
=a\ a(ΞF. If we put t=2~\a+a), then t=2(a—a)~\ So a=t+Γ\
(ii) If a=s2+s~\ then a±2=(s±s~1)2^F+. Conversely let a+2=a2 and
a-2=b2, ay b^F. Put s=2~1(b+a). Then ί=4-1(y+2αft+fl2)=2-1(α+έΛ)
=2(a-aby\ So α-ί

Lemma 4. L ί̂ us consider the mapping C 3 ί - > α = / + ί " 1 e F . Then
(i) 77*e rtf/ẑ e consists of a which satisfy « 2 - 4 G F _ .

(ii) The image of C+— {— 1} w ίÂ  ^ of a which satisfy a-\-2^F% and

Proof, (i) a = t+Γ1, t^C, then α 2 - 4 = ( ί - ? ) 2 G F _ . Conversely let
a2—4=a2£, a^F. Put ί=2"1(α+ΛV

/f')> t n e n ί e C a n d α = ί + r 1 .
(ii) If a=s2+s~2, ί e C , then α + 2 = ( ί + ί ) 2 and j = Φ —1 implies that ί+ί"Φθ.

Conversely, let α 2 - 4 e F _ and α + 2 = « 2 , « E F * . Then α ^ ί + Γ 1 , ίGC,
by (i). Suppose ί e C _ , then it is written as t=e/e, where N(e) = S. So
F+^(e-]-e2)=ee(ele-\-2-\-ele)=a26^F*. This is a contradiction and we have

ίΦ —1 is obvious.

8.2. Decomposition of T™(g) m t 0 invariant subspaces. Representation
space of T^g) consist of all functions defined on F*. Let us prove that spaces
of functions which vanish on Ff and Ft are invariant subspaces. In fact, let
yx~1=a2εy a(ΞF*. Then

Put
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Replacing t by (eoleo)s~1

y we have

So it is proved that if yx'^Ft, then K™(g\x,y)=0. Restriction of
on the space of functions vanishing on Ft and Ft are denoted by T*2(g) and
T~2(g). It will be proved in §9. that T^2(g) are irreducible.

8.3. Calculation of traces of T%(g). TrT%(g)=TrT;2(g)+TrT;2(g) is
already known, so it is sufficient to calculate TrT*2(g)—TrT#2(g). Put, for

S=ΣX(aS(t))π2(t).
tec

Then by Lemma 4.,

5 - Σ X{au)^(u+2){l-^(u2-4)}+X{2a)+X(-2ay2{-l)

= Σ X(e«){wi(«+2)-»1(tt-2)}+X(2a)+X(-2a>ri(-l)
«eF«φ±2

If-yΦO,

±
q

ry / *

= _ τ W l ( — i ){δ(α+δ+2)-δ(α+8-2)}.

If γ=0,

Tr Ti2(g)-TrT-2(g) = 8(α2-I>r2(α)

The results are collected in Table 2.

8.4. Decomposition of T^{g) into invariant subspaces. The representa-
tion space of T^g) consist of all functions defined on FU {°°}.
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Proposition. The sapce of functions vanishing on Ft and satisfying

(1 ) --?>(0)+?>(oo) = 0
9

is an invariant subspace of the representation T^g).

Proof. Put

A = Σ X^St+VΓ^π^t) (a, όEΞF*)

Replacing t by (b2ja28) s'1, we have

A = Σ X^V^^a)^)^) = -A .

So i ί = 0 .
Let φ vanishes on Ft and satisfies (1). It is obvious that TηCl{g)φ

vanishes on Ft and satisfies (1), if γ = 0 . We have only to consider the case

l = 1 Σ {Σ n-

By ^4=0, we have

9
We also have

Σ
yep*.

Making use of the fact τΛ=qπ1(—l) and (1), we haλ'

= 0 .

So the proposition is proved.
Let us denote by T^(g) the restriction of T<χ{g) to the subspace described

in the statement of the proposition. By the same way, we can show that the

space of functions vanishing on F% and satisfying
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±φ(0)+φ(°o) = 0
T

is an invariant subspace of T^g). Let us denote by T~χ(g) the restriction

of T^{g) to this subspace. It will be proved in §9. that T^(g) are irreducible.

Now let us write the formulas of the action of T+Λ(g) on φ(x), x^F+. If
7Φ0,

= - Σ

T γ

If γ=0,

Ttx{g)φ{x) = 7t(a)X{aβx)φ{aΐx)

The action of T1^ on 9>(>ί), Λ : £ F , are written as follows. If y Φθ,

(
q \y

If-y=0,

{x) = π(a)X(aβx)φ(a2x)

8.5. Calculation of traces of T^(g). It is only necessary to calculate
g). Put

By Lemma 4., we have

= Σ *(βκ>r1(M-2)+ Σ X(β«>r1(«+2)

If 7 * 0 ,

= J- Σ <^- δ -) Σ χ(-Σ (
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Analogously,

\ /1 \ yq χe=F± \ y

Therefore, we have

)
y I q

q *&

= -{qδ(a+δ-2)+qδ(a+8+2)}πJ-±)
q \ γI

If 7 = 0 ,

Therefore, we have

= δ(α 2-l) Σ π1(a)X(aβx)+π1(a).
*(=F*

= 8(α2-l>r1(/3)τ.

The results are collected in Table 2.

9. Description of all irreducible representation

We have proved that the representation of the first kind splits up into

1. T£\g) (πrφτro, πλ) -τy(q— 3) inequivalent representations of degree

<7+l, each with multiplicity 2;

2. T^(g) two inequivalent representations of degree -^-(?+l);

3. A representation of degree q equivalent to T^(g);

4. twice the identical representation.

The representation of the second kind splits up into

l T%\g) (TΓΦTΓO,^) -τy-(q— 1) inequivalent representations of degree

q— 1, each with multiplicity 2;

2. T^2(g) two inequivalent representations of degree -ψ{q— 1);

It will next be shown that we have thus obtained the complete decompo-

sition of the representations of the first and second kind into irreducible repre-

sentations. The proof of this statement rests on the following

Lemma 5 Let Rl9 R2, •••, Rk be (reducible or irreducible) representa-
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tions of a finite group G of order g. Suppose that no two of these representa-

tions are equivalent. Let nλ, n2, •••, nk be positive integers, let R be the

representation

R = n1R1+n2R2+~+nkRk

and let T be its trace function. Then we have

\T(U)\2>(n1*+ni*+..-+nk*)g,

where the equality sign holds if and only if all representations R1, R2, , Rk

are irreducible.

For the proof of this lemma, see [9, p. 402].
Now let us recall some properties of SL(2y F). Order of SL(2, F) is

q(q2-l). Putgk=(^ ^_Λ for λ(ΞF* and λ φ ± l . For feC, t Φ ± l , let gt

denote an (arbitralily fixed) element of SL(2, F) with eigenvalues t and Γ1.
Then the conjugate class decomposition of SL(2, F) is described as in following
table.

Table 1

Representa-
tive

Number of
sets of con-
jugates
Number of
elements in
each set

lo lj

1

1

/ - I ON
V o - l j

1

1

g\

y(<7-3)

ϊte+i)

gt

9(ϊ-l)

βί )
1

y(?2-D

(i!)
1

(-J -ί)
1

4-(«2-D

(-ί -ί)
1

The sum of the square of the multiplicities with which the enumerated
representations occur in the representation of the first kind is

On the other hand it is shown that

Therefore, by Lemma 5, T™{g) (πΦπoy τr2), T%{g\ T%(g) are irreducible. In
the same way, it is proved that T%\g) (τrφ7r0, τr2), Γ±2(g), T™(g) are irreduci-
ble. Their traces are collected on Table 2.

By Table 2 it is shown that there are no more equivalence between con-
structed irreducible representations. Together with the trivial representation,
there are q-\-A irreducible representations. The number is equal to that of the
conjugate classes in SL(2y F). So all irreducible representations of SL(2, F)
are thus obtained,
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Table 2
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Representative

lθ l]

I 0 - l j

gχ(λ€EF ,λΦ±l)

gt(t<EΞC,tφ±ί)

Π
(5ί)

(-ί -ί)

("ί -ί)

TrTφ

(πΦπ0, πλ)

π(-l)(q + l)

0

1

1

π{-\)

π(-l)

TrTΪ0

yte + 1)

0

τ ( 1 ± τ )

yd+r)

}W-l)±r}

l{π i(-l)=Fr}

TrT%l

Q

q

1

- 1

0

0

0

0

TrTφ

(πΦπ0> π2)

q-\

-ττ(-l)(g-l)

0

-π(t)-π(t-i)

1

- 1

-7Γ(-1)

-jr(-l)

TrΓί2

y(ff-l)

l^(-i)to-i)

0

y(-l±r)

τ ( ~ l q = τ )

l ^ - υ + r}

•i-{^(-l)±r}
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