Adachi, M.
Osaka J. Math.
3 (1966), 121-137

NOTE ON MICROBUNDLES®
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In [2] Lashof and Rothenberg have defined the css-group 0 and the
Kan complex PD, and shown a certain exact sequence of abelian groups
(Theorem (4.2)) which is fundamental to the studies of the PL-micro-
bundles and smoothing.

In the present note we shall define a css-group H for the topological
microbundles parallel to the css-group PL for the PL-microbundles (§1),
and show an analogous exact sequence of abelian groups (§4) which
seems to have some meaning to the study of the topological microbundles
(82, §3).

Our method is quite analogous to that of Lashof and Rothenberg
[2], and Milnor [3], and is based on Heller’s theory [1].

The author is grateful to Professors R. Shizuma, K. Shiraiwa and
T. Nakamura for their kind criticisms.

0. Preliminaries

a) Directed systems of css-complexes.

Let 3 be a partially ordered set, i.e. a set in which we have a
transitive relation < defined for some (but not necessary all) pairs of
elements. 3 is called a directed set if every pair of elements has a
common successor : given ¢ and = in X there is an element p in = satisfy-
ing o<p and 7<p.

In the present note all css-complexes are supposed to satisfy Kan’s
extension condition unless otherwise stated.

Suppose to each element o of = is assigned a css-complex® K, (css-
group G,) and to each pair of elements o<t of X there corresponds a
css-map k., of K, into K, (css-homomorphism #%,, of G, into G,) such
that if p<o <t then

%) This work is partially supported by Yukawa Fellowship.
1) For the theory of css-complexes, see for example Heller [1], Moore [5], Puppe [6].
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hP‘r = hu-TohPo"

A system of css-complexes (css-groups) of this sort is called a directed
system of css-complexes (css-groups).

Given a directed system of css-complexes (css-groups), we can define
naturally a new css-complex (css-group) called the /imit css-complex K
(css-group G) of the directed system. We shall denote K =1_i_r£1>K,,(G

=lim G,).

Lemma 1. Let {K,, h,.; o, T€3}, {L,, h.; o, 7€3Z} be directed
systems of css-complexes. Suppose to each element o of = is assigned a
css-map @, of K, into L, such that to each pair of elements o<t of =
the following diagram

is commutative. Then, there exists a css-map @ of K=_1im K, into L
=lim L, which corresponds an element {k,} of K with representative k,
to {p(k)}of L. If @, is injective for each o3, then the css-map ¢ is
also injective. If {K,, h,.; o,7€3}, {L,, h.; o,7EZ} are directed
systems of css-groups and each @, is a css-homomorphism, then the css-
map @ is also a css-homomorphism.

Proof. We shall prove the second assertion. Let k= {k ]}, ¥ = {k7}
be elements of K such that @(k)=@(k’). Then there exists a common
successor p of o and r such that il.(p,(k,))=hi(p.(k;)). The following
diagrams are commutative :

Ka‘ '—?1-) Lcr K‘r _¢T_'> L’r
ho‘P l l é’p l hr,-p l h‘,rp
K,——1L, K,—— L,
Peo Po

Thus we have
Pooho(ks) = poohip(kr) .
Since ¢, is injective, we have #,4(k,)="h.,(k;). Thus we have {&,} = {k7}.
Let {G, h,.; o,7€3}, {H,, ht:; o, 72} be directed systems of
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css-groups, and for each o =X H, is a css-subgroup of G,. Then, cor-

responding to each o css-complex G,/H,, we have naturally a directed

system of css-complexes {G,/H,, k,.; o, 7€3}. Let G=limG,, H=limG,,
—_ —_

By Lemma 1, we can consider H as a css-subgroup of G. So we have
a css-complex G/H. Then we have

Lemma 2. limG,/H, and G/H are css-equivalent, that is, there exists
—
a bijective css-map between them.

Proof. Let K= lin: G,/H,. Define @,: K“—(G/H)? by p,(g)={&-}
mod H?, for g= {g, mod H®} € K. This is independent of the repre-
sentative of g.

Clearly ¢, is surjective.

Let g, g€ K9, g={g,mod H®}, g’={gimod H®} and ¢, g)=
@,g’). Then we have

{g,;} mod H”> = {g7} mod H®,
that is, there exists a common successor p of & and + such that

(hoo(&o)) ' hr(8)EH .
Namely

hu'P(ga') mod t()Q) = h.,-p(g,,.) mod Ht()ﬂ .

Thus we have g=g"’.
For a weakly monotone map A :A,—A,, we can easily see that the
following diagram

lim G’()Q)/Hl(rq) - K(q) _& (G/H)CQ) — G(q)/H(q)
7 A A
lim G HP = Ko L2, (G HY» = G»|H®»

is commutative. Thus o= {p,} : K—G/H is a surjective css-map.
We shall sometimes identify two css-equivalent css-complexes.

b) Heller’s U-functor.

We shall recall Heller’s theory [1]. If T is a css-group, a universal
group for T is a css-group T containing ' as a css-subgroup and with
all homotopy groups z,(T)=0. For any css-group I', there corresponds
a css-group U(T"), which is universal for I'. Moreover, U is a covariant
functor on the category of css-groups and css-homomorphisms into itself.
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Explicitly, the css-group U(T) is constructed as follows. Le U(T)“?
be the set of all map o of css-complex A, into css-group I' preserving
dimension but not in general incidence. The incidence operations are
defined by composition of maps

A, — Ay —> T

for a weakly monotone map A. The group operation in U(T")? is defined
by that in T':if r€eA, and o, o’ U(T"), then

(ea’)(1) = a(r)a’(7) .

With these definitions it is clear that U(I")= |J U(I")? is a css-group.

=0
T may be identified with the subgroup of U(I') consisting of those sim-
plices which are css-maps o:A,—»I'. We shall denote the identifica-
tion by

i T — UT).

Let T, TV be css-groups and ¢ : '—I" be a css-homomorphism. Then
the css-homomorphism

Ulp) : U — UI)

is defined as follows. Let o€ UI)?. We define U(p)(o)< UT)? to be
@co. Then U(p) is a dimension preserving map. For a weakly mono-
tone map A :A —A,, and € U(T)?

MoU(p)(r) = AM(por)
= (@or)or
= @o(roN)
= @oa¥(r)
= Ulp)or¥(r) .

Thus U(p) is a css-map, and clearly css-homomorphism.
By the definition, if @ is a css-monomorphism, the U(p) is also a

css-monomorphism.
Now let T, IV be css-groups. Then I"xXIV is also css-groups. Then

we have

Lemma 3. There exists a css-isomorphism o : U)X UT)—- U xTV)
such that the following diagram
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XTI ._‘ﬁﬁ; U(F) X U(F,)
|
U(r x1T)

texr/

is commutative.

Proof. Define
oy UD)Y?x UT)? — U x TV) @
ao, o’) =7,

() = (o(w), o'()), 0EA,.

Then «, is clearly an injective map.
Let A:A,—A, be a weakly monotone map. Then the following
diagram

UT)® x UT)® %> UT xT')@
¥ ¥
UT)» 5 TP 2> UT % T)?

is commutative. Thus a={a,}: UT)x UT")—-UT xI") is an injective
css-map.

Let (o, o'),(p, P)eUD)? X UT)?, and ay o, c’)=7, alpe, pP)=17".
Then (o, ¢’)p, P)=(op, c’p’). Let a,lop, ’p’)=7". Then we can prove
easily

(@) = (1)), for wEA,.

Thus « is a css-monomorphism, Clearly « is surjective.
Then commutativity is easily seen.

Lemma 4. Let {T,,, k,, ,; m, neZ} be a directed system of css-groups
and I'=limT,,. Then {U,,), U, »); m, nsZ} is also a directed system

of css-groups, and
lim ur,) = UT).

Proof. Define <p:‘1_i£)n Ur,,)—UT) by @({ctm})=—tmo0ls,, Where ¢,:
T,—T is the projection map and ¢%,:A,—T, is a representative of an
element o of (lim U(T,,))?. Let &%, be another representative of o7:
{o%:} = {o%n}. 'ﬁen there exists an integer p such that m, n=<p,

hmﬁoa‘('m)=h,,p00“<’,,). Then
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q — q
Lp®0 () = Lpohnl,oo'(n)

IR

= 400 lm) -

Thus the above definition has no ambiguity.

Clearly @ is an onto css-homomorphism.

Now we shall prove that ¢ is injective. Let @({o%m})=¢@({ri}).
Then we have ¢,00%,=¢,0t%,. Therefore, there exists an integer p such
that m, n<p and A, ,00%,; =h,,or%,. Thus we have {ols}={r&}.

1. css-groups H,, H

In this section we shall construct a css-group H, for topological
microbundles of dimension #. The construction of the css-group H,, is
completely parallel to Milnor’s construction [3] of the css-group PL, for
PL-microbundles of dimension #.

First we need to define the concept of an isomorphism-germ between
topological microbundles. Let

gm:B 'zw_" Em ___)]w B, a=1,2

be two topological microbundles over B. Recall that g, and g, are isomor-
phic if there exist neighborhoods U, of i,B) in E, for a=1,2, and a
homeomorphism f: U,—U, so that the diagram

is commutative.
DEFINITION. Two these homeomorphisms

f:U1 —>U2,
Ui - Us,

are said to define the same isomorphism-germ F from g, to z,, if the
two maps f, f/ coincide on some sufficiently small neighborhood of #,(B).
(Thus an isomorphism-germ

F:£1_>§2

is an equivalence class of such homeomorphisms.)
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Now consider the topological microbundle g*r, and g*r, induced by
some continuous mapping g:B’—B. Any isomorphism-germ F:x,—1,
clearly gives rise to an isomorphism-germ g*g—g*r,. This induced
isomorphism-germ will be denoted by g*F.

For each integer #=0, we shall construct a css-group H, as follows.
Let A, denote the standard ordered k-simplex. As usual let e%, denote
the trivial topological microbundle

x0 2

ej;k:Ak — AkXRn — A;.

DEFINITION. A k-simplex F of the css-complex H, is an isomorphism-
germ F':e2,—eX,. The operation of composing isomorphism-germs makes
the set HS” of k-simplexes into a group. For each weakly monotone
simplicial map A : A,—A, define a homomorphism

M:HP > HE

as follows. Let A* carry each isomorphism-germ F to the induced
isomorphism-germ A¥F. Thus H,= {H{\* is a css-group.
We have a natural css-monomorphism

t,s:H,—~H;, r<s.
The family {H, ;¢ ,} is a directed system of css-groups. Define
H=1lmH,.

Then H is also a css-group.
We have a natural css-monomorphism

Mot PLn - Hn ’
and the following diagram
pL, 25 H,
() al [
s

PL, — H,

is commutative, where ¢ ,:PL,—PL, is a natural css-monomorphism.
Therefore, by Lemma 1 we have a css-monomorphism

[L:PL—>H.

Thus we can consider PL,, PL as css-subgroup of H,, H respectively.
Then we can consider css-complexes H,/PL,, H/PL.
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By the commutative diagram (1), we have a natural css-map
w,s:H,/PL,—- H/PL,, r<s.

The family {H,/PL,; o,,} is a directed system of css-complexes. By
Lemma 2, we have an css-equivalence

H/PL = lim H,/PL,.

Let K be a css-complex not necessarily satisfying Kan’s condition,
L a css-complex. Then we shall denote by [K, L] the css-homotopy
classes of css-maps of K into L. As is remarked above, [K, H,], [K, H],
LK, H,/PL,] and [K H/PL], have meanings.

2. Kan complexes BPL,, BPL; BH,, BH

Since U is a covariant functor, to the css-monomorphism ¢, ,:H,
—H,, m<mn, corresponds a css-monomorphism

Ue,,» ;s UH,,) - UH,), m=n.
Then the family {U(H,); U(,,.} is a directed system of css-groups.
Define
U= h_n’l UH,).
Then U is also a css-group, and by Lemma 4 U can be considered as

U(H), therefore, its all homotopy groups vanish.
Since U is a covariant functor, the following diagram

H, —= UH,)
| | U (m=)

Hn _—”—') U(Hn)

(2)

is commutative, where v, : H,,—U(H,,) is the inclusion map ¢y,. There-
fore, by Lemma 1 we have a css-monomorphism

v:H—->U.

By Lemma 4 this css-monomorphism is nothing but the inclusion map
1y H-U(H). Thus we can consider H as css-subgroup of U.
By the commutative diagram (2), we have a css-map

tmn: UH,)/H, — UH,)H,, (m=n).

The family {U(H,,)/H,,; tm s} is a directed system of css-complexes. By
Lemma 2, we have a ¢ss-equivalence
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U/H = lim U(H,)/H,.

The css-group PL, is a css-subgroup of H,. Therefore, PL, also
can be considered as a css-subgroup of U(H,). The following diagram
PL, =% U,
U, Ultys,n) (m=n)

VpOy

PL, —— U(H,)
is commutative. Therefore, we have a css-map
tma: UH,)/PL,, — UH,)/PL,, (m=n).

The family {U(H,)/PL,; t,. is a directed system of css-complexes.
By Lemma 2, we have a css-equivalence

U/PL = 1_ir_n>U(Hn)/PL,,.
Now the natural map
ms: UH,) — UH,)/H,

can be considered as a H,-bundle in Heller’'s sense (cf. Heller [1]).
Namely, U(H,)/H, is a classifiying css-complex of H,-bundles. We shall
denote U(H,)/H, by BH,, and U/H by BH. Similarly, we shall denote
UH,)/PL, by BPL,, and U/PL by BPL.

We shall denote the natural map U/PL—U/H by

p:BPL — BH.

By Lemma 1 and 2, this css-map can be considered as the limit of css-
maps p,: U(H,)/PL,—~U(H,)/H,.

Let K be a locally finite simplicial complex. Choose some well-
ordering for the vertices of K. Let K be the css-complex consisting of
all weakly monotone simplicial maps f: A,—K, with A#: K‘®— K% defin-
ed by M (f)=sfon for a weakly monotone map I :A;—A,.

Now consider a topological microbundle r of dimension » over K.

DEFINITION. The H,-bundle r=(E, =, K ) associated with g is con-
structed as follows. A k-simplex of the total css-complex E consists of

1) a k-simplex feK®, together with

2) an isomorphism-germ F':e},—f*1.
The function A*¥: E®—E® are defined by the formula A#(f, F)=(fon,
A¥F). The right translation function
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ExH,—E

is just the operation of composing isomorphism-germs. Since this opera-
tion is free, it follows that £ is an H,-bundle in Heller’s sense and
E/H,=R.

Proposition 1. Let K be a locally finite simplicial complex. Then
the operation of assigning to each topological microbundle ¢ of dimension
n over K its associated H,-bundle t sets up ome to ome correspondence
between isomorphism classes of topological microbundles of dimension n
over K and equivalence® classes of H,-bundles over K.

The proof in the case of PL-microbundles given in Milnor [37] applies
without essential change. Details will be left to the readers.

By Heller’s classification theorem (Heller [1], Theorem (10.1), we
have

Proposition 2. Let K be a css--complex. The equivalence classes of
H,-bundles X such that X/H, is K, are in one to one corrvespondence with
the css-homotopy classes [ K, BH,] of css-maps «: K—~BH,.

By Propositions 1 and 2, we have

Theorem 1. Let K be a locally finite simplicial complex. Then the
isomorphism classes of topological microbundle of dimension n over K are
in one to one correspondence with the css-homotopy classes [ K, BH,].

3. Whitney sums
Let H”>a, H?”>8. The a and B are represented by following
maps, respectively :
A, x0cUcA xR,
A,x0cC Vca, xR,
f:U— A, X R*,
g:V—=A XR".
Define the Whitney sum a®B<H®, by the class represented by the
following map:
A, XO0CWCA, x REXR",
fog: W—A, XRFXR,
(f D g)x, u, v) = (x, p,of (%, u), p,og(x, v)),

2) By equivalence we say strong equivalence in Heller’s sense (cf. Heller [17]).
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where p, is the projection to the second factor. Then @ is a css-map
D :HyxH,— Hg.p.
By restruction, we get
@ :PL,xPL,— PL,.,.

This css-map is defined in Lashof-Rothenberg [2].
Now we define css-map

@ : UH) x UH,) — UH,.+)
Let (o, o’)€ U(H,)@ x U(H,)®. Define
B(o, ') = o,

0-” : Aq g Hk+n ’
by
d’(v) = o) P '(v), TEA,.

For a weakly monotone map A :A A

@ (M), MHa"))(r) = M (a)(r) D M (a")(7)
= goM7) D o’on(7)
= " o\(7)
= A¥(a"')(7)
= Ao P (0,0')(7) -

Thus the map ¢ defined above is a css-map.
By the above definition the following diagram

HkXHn —i HIHn

LHI;XLFI" LHk+n

U(H,) x UH,) —2> U(H,.)

is commutative.
By left translation PL,x PL, acts on H,x H, and we have a com-
mutative diagram

(PLkXPL,,)X(HkXH”)%HkXHn
®xo | |e
PLy wXHpip— Hyiy

Thus the above map passes to the quotient
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@ :H,/PL,xH,/PL,—> Hgyn/PLg,n.
Similarly we have
@ : UHy)/Hex UH,)/Hy — UHgn)| Herm
& : U(Hy)/ PLy x U(H,) | PLy — U(Hgsn)/ PLes s -
Let K be a css-complex, and
a,:K—H,, a,: K— H,
be css-maps. Then the above operation induces a map
oy @ ay: K — Hein -
We note
(D a)Pa,=a,d(@,Da,).
Thus we have
@ :[K, Hi1X[K, H,]1 - LK, Hgis]l-
Similarly we have
@ :[K, UH)IXLK, UHn)]— LK, UH)],
and moreover
@ :[K, UHy/H ] X [K, UH,)/H,]— [K, UHg. )] Heinls

@ : [K) U(Hk)/PLk] X [K’ U(Hn/PLn] g [K» U(Hk-+n)/PLk+n]’
@ : [K, Hk/PLk] X[K’ Hn/PLn] g [K) Hk+n/PLk+n] .
Let A, be one of the Kan complexes
rpL, H, UH,, UH,)/H, UH,/PL,, H, PL,,
and ¢,, , be one of the natural css-maps
PL,— PL,, H,PL,—-H,PL,,
H,— H,, UH,,)/PL,, — UH,)/PL,,
UH,)— UH,), UH,/H,— UH,/H,.
Then the family {A,,; ¢, .} is a directed system of Kan complexes.
Define A=1EA”.
We shall call a css-complex K finite, if it has only a finite number

of non-degenerate simplices. For any finite css-complex K an easy
argument shows [K, A]=1lim [K, A,]. By the same argument as Lashof-
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Rothenberg [2], §4, we have

Proposition 3. Let K be a finite css-complex. We have the following
commutative diagram :

[K’ Ak] X [K, An] _@) [K’ Ak+n]

(Enm,mr)se X (L evs)se @ (Ll m s mrrs)sk
LK, Aui, IX LK, Anis] —> LK, Aviniris]-
Consequently we have
@ LK, AIX[K, A]— LK, A].

Proposition 4. Let K be a finite css-complex. For A=PL, H the
Whitney sum on [K, A] is induced from group multipication. Further
[K, A] is an abelian group.

Proposition 5. Let K be a finite css-complex K. For A=H|PL, U/PL,
U/H the Whitney sum induces on [ K, A] the structure of an associative
abelian monoid with two sided identity.

By Lemma 3, we have the following commutative diagram
U(H) x U(H,)

LH" X tHn

U j a

X ” nXHgy
PL,x PL, M x H, 2 U(H,x H,)
®| ®| | v@)
Pk tHy y
PLk!n Hkﬁ-n U(Hk i—n)'

Notice that the css-homomorphism U(P)oa is nothing but the Whiteney
sum

@ : U(Hk)x U(Hn) - U(HlH—n)
defined above. Then we have

Proposition 6. Let K be a css-complex. The following diagram

[K, Hy/PLXLK, Hy/PL,] ~2o [K, Up,p/PLuss]
(€ X €] o [ @an

[K’ Uk/PLk] X [K’ Un/PLn:I I [K) Hk+n/PLk+n]
(Pr)x X (Pw)x @ (ple+n)*

[K’ Uk/Hk]x[K’ Un/Hn] E— [K’ Ukl—n/Hki—n]

is commutative, where U,=U (H,).
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Let K be a locally finite simplicial complex of finite dimention.
Recall that the s-classes of topological microbundles over K form an
abelian group kr.,(K) by Whitney sum (Milnor [4], §4).

The following theorem will give some meaning to the css-complex
BH.

Theorem 2. Let K be a finite simplicial complex. Then there exists
an isomorphism of krop(K) onto [K, BH] as semi-group.

Proof. Let (r)Ekrop(K), and the fibre dimension of r be m. By
Theorem 1, to g corresponds a css-map f: K—~BH,=UH,)/H,. Let
tw; BH,—BH be the canonical inclusion map. To the s-class (x) we
correspond the css-homotopy class {c,of}. We shall denote o((¢))=
{ewor .

Now we shall prove that this class does not depends on the represen-
tative g of the class (r)Ekrop(K). Let e, : UH,)*—UH )@ be the
map which corresponds all elements of U(H,)?® to the unit of U(H A
Then

Cm,, = {emyt : UH,) — UH,)
is a css-homomorphism, and the following diagram

H, i U(H,,)

1x em/ 1xe,, /

H teim ™ e, U(H,) % UGH,)

m XHp m p
\ "m,mrp \
@ LHmw-p ®

Hm+p

U(Lm,m-l*p)

U(H,: ),

is commutative, where & is the restriction of ¢ over H,,. Thus we

m,p ”m,p
have the following commutative diagram

UGH,) H,y "% UH,y, ) Hons,
lxém,x D
UH,)/H,xUH,)H,
where ¢, ,: U(Hm)/HmeU(Hp)/Hp is the css-map induced for o, -
UH,)—U(H ).
Let (x)=(y), and the fibre dimension of vy be ». Then there exist
integers 0<p, ¢ such that

(3) t1De?~pypDel,

Considering the definition of Whitney sums and the correspondence in
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Theorem 1, we find that to the microbundle y&@e? corresponds the com-
posite css-map

. f 1><ém,p
K — UH,)/H, — UH,)/H,xUH,)/H,
S,

I U(Hm+p)/Hm+p .

By the above commutative diagram, we obtain that to the microbundle
te? corresponds the css-map ¢, ,.,of. If we denote the css-map
corresponding to the microbundle vy by g:K—BH,, then to the micro-
bundle y@e? corresponds the css-map ¢, ».4°8. BY (3) ¢y mieof and ¢, 5408
are css-homotopic each other. Thus we have {c,,of} = {¢,og}.

By Theorem 1, the above map ¢ is clearly surjective.

Let o((x))=@((y)) and to r and Y correspond css-maps f and g,
respectively. Then ¢,of and :,0g are homotopic each other. Therefore,
there exist integers p, ¢=0 such that m+p=n+q and Lm_,,H_pOf and
tnn+¢°8 are homotopic each other. So we have (x)=(y).

Now ws shall show that ¢ is a homomorphism. Let (x), (v)Ekrop(K),
and x=(E, =, K), v=(&', », K) be associated H,- and H,-bundles to  and
v, and f: K—UH,)/H,, g: K—~UH,)/H, be css-maps corresponding to
t and vy respectively. We have the following commutative diagram;

gx & 228 v, H, < UH,)H,

a(fxd) ~~ @ @)

UH,,x H,)|Hy,x Hy ——> UHp 1) Huins

¥

where @ and U(@) are the css-maps induced by « and U(&) respectively.
Considering the correspondence in Theorem 1, we obtain that the H,,. -
bundle associated to rxy is induced by the css-map Po(fxg). Let d:
K—KxK, d:KxK be diagonal maps. As r@®y=d*(xxy), the H,, .-
bunble associated to Py is induced by Po(fx g)ed. By Proposition 3,
we obtain that ¢ is a homomorphism.

4. Exact sequence

Theorem 3. For any finite css-complex K, the sequence

A
[K, PL] LN [K, H] . LK, H/PL] ﬁ» [K, BPL] —pi» LK, BH]
is an exact sequence of abelian groups.

Proof. That this is an exact sequence of base-pointed sets is the
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usual property of fibre spaces applied to the css-fibre spaces

I PL->H-H/PL,
II H/PL- U/PL— U/H,

noticing that I is fibration induced from II by inclusion H/PL—U/PL.

That the maps are additive follows from definitions and from Pro-
position 6.

The fact that [K,BPL] and [K, BH] are abelian groups is known
(Theorem 2). Now it only remains to show that [ K, H/PL] is actually
a group, i.e. that inverses exist. Let a=[K, H/PL]. Then {.(a)e[K,
BPL] has an inverse ve[ K, BPL]. Since py is a group homomorphism,
px(»)=0. Thus there is an o’e[ K, H/PL] with {(a/)=v. Thus {(a+
a’)=0, and there is a B[K, H] with A y(B)=a+a’. Now B has an
inverse (—@) in [K, H] so that A(—RB)+(a+a)=r(—B)+r(B)=
A(—B+B)=0. Thus a'+r(—B) is an inverse to a.

Thus the theorem is proved.

Let O be the css-group defined in Lashof-Rothenberg [2]. Then O
is a css-subgroup of H and BO can be considered as U/O. Let

Wi 0—H,
\: H—HJO,

¢': HJ/O - U/O=BO,

p': BO = U/O—U/H = BH

be the naturally defined css-maps.
Then in quite a parallel way, we obtain the following

Theorem 4. For any finite css-complex K, the sequence

[K, 0] *% [K, H] 2% [K, H/O] %> [K, BO1 2% [K, BH]

is an exact sequence of abelian groups.
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