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Introduction. J. F. Adams [1] calculated the Grothendieck rings
K, of the projective spaces. The manifold D(m, n), defined by A. Dold
in his study of cobordism theory [6], is regarded as a generalization of
the projective spaces.

The purpose of this paper is to calculate K, of the Dold manifold
D(m, n) ; the result is stated in Theorem (3. 14) of §3. For this purpose,
we construct a real 2-plane bundle », over D(m, n) which is a generaliza-
tion of the real restriction of the canonical complex lire bundle over
CP(n) and also of the bundle sum of the canonical real line bundle over
RP(m) and the trivial line bundle over RP(m). This bundle 5, plays an
important role in computations. On the way of computations, we make
use of mod 2 K,-theory which is introduced by S. Araki and H. Toda
[2].

The author wishes to express his thanks to Prof. S. Araki for his
many valuable suggestions and discussions.

1. Cohomology rings of Dold manifolds

Let S”, m=0, denote the unit m-sphere in R”'* with the coordinates
Xy, X, , X,,, and let CP(n), n=0, denote the complex projective n-space
with the homogeneous coordinates z,, z,, --, 2,. Consider the product
space S™x CP(n) and difine a homeomorphism T : S” x CP(n)—S™ x CP(n)
by

1.1 T(x, 2) = (—2x, 2) (xeS™”, zeCP(n)),

where —x is the antipodal point of x and z is the conjugate point of
z. Then, by definition, the Dold manifold D(m, n) is the quotient space
obtained from S™xCP(xn) by identifying (x, 2) with T(x, 2).

The projection S™ x CP(n)—S™ induces naturally a map p of D(m, »)
onto the real projective m-space RP(m), and {D(m, n), p, RP(m), CP(n),
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Z,)} is a fibre bundle whose fibre is CP(n) and structure group is the
group of order 2 generated by a homeomorphism sending z to z (ze
CP(n)).

Let C;(C7) denote an open i-cell of S” defined by x;.,=x;.,= =
%,=0, ;>0 (x,<0), and D; denote an open 2j-cell of CP(n) defined
by z;=1, 2;,, = 2;:,=-+=2,=0. Then {CF¥xD,|i=0,1,-,m;j=0,1,
.-, n} forms an oriented cellular decomposition of S™x CP(n) whose
boundary relations are given by

(1.2) {G(CEEXD:‘) = +(C{.1xD;+C;1xD))

d(CFExD) =0, i=1,2, - ,m; j=0,1, -,

The homeomorphism 7T is cellular with respect to the above cellular
decomposition and satisfies

1.3) T(CExD;) = (—1)*/*(CTxD,).

Let ®: S"xCP(n)—>D(m, n) denote the projection, and write (C,,
D,)=®(C}xD;). Then {C;, D)|i=0,1,--,m; j=0,1,---, n} is a
cellular decomposition of D(m, n) whose boundary relations are given
by

a(Ci, D;) = 1+ (—1)*4)(C,y, D,
- (€0 D) = (4 (-1(Ce D)

8(Co, D]) = O, i:]_, 2, e m, j:O, 1’ ey n’

and @ is a cellular map. Let (¢?, d’) denote the cochain dual to (C;, D)),
then for the coboundary operation § we have

(1.5) 8(ct, d¥) = (L+(—=1)"*)(ct, d9).
From this we obtain

Proposition (1.6). The integral cohomology group H*(D(m, n); Z)
is a direct sum of the following groups:

case m: even
free abelian group gemerated by (¢, d¥) and (c™, d¥'), torsion
group generated by (c*, d¥) and (c*7', d*") whose order are 2.

case m: odd
free abelian group generated by (c°, d¥) and (c™, d%), torsion
group generated by (c*,d%¥) and (*7', d**") whose order are 2,
where i=1, 2, .-, [m/2]; j=0,1, ---, [#/2] ([ ] is the Gauss notation).
For m'<m and n'<n we identify S™ xCP(#’) with the subset x,,/.,
==4,=0, 2,,,=-=2,=00f S”"xXCP(n) and D(m’, ') with the subset
®(S™ x CP(n)) of D(m, n). Under this circumstance D(m, #’) is identified



Ky-GroupPs oF DoLD MANIFOLDS 51

with the closure of the cell (C,/, D,) of D(m, n).

Consider the space D(m, n)/D(m—1, n) obtained from D(m, n) by
collapsing D(m—1, n) to a point, and let = denote the projection D(m,
n)—D(m, n)/D(m—1, n). Then »(C,, D;) (i=0,1,---, n) together with
a zero cell forms a cellular decomposition of D(m, n)/D(m—1, n). Since
obviously all z(C,,, D,) are cycles, their duals (¢”, d) form a basis for
H*(D(m, n)/D(m—1, n); Z).

Let E7 is the upper hemisphere of S™, then we may regard D(m,
n) as the quotient space of the product space E7XCP(n) under the
identification (x, 2)=(—x, 2), where xcE™, z2eCP(n) and E™ is the
boundary of E7. Let CP(n)" denote the disjoint union of CP(n) and a
point, and let S”ACP(n)" denote the reduced join of S” and CP(n)".
Then it is easily seen that a homeomorphism

1.7 h: D(m, n)/D(m—1, n) ~ S" ACP(n)*

can be defined by the following commutative diagram

h,
E?xCP(ny ——> D(m, n)

n |
E?xCP(n)* D(m, n)/ Dim—1, »n)
Vh, \h

hy
S”xCP(n)t ——— S™”ACP(n)*,

where %, h, are the identification maps and %, is the map collapsing
E7 to a point. From this we obtain immediately the following

Proposition (1.8). Let s, and y be the gemerators of H™(S™) and
H*CP(n)) respectively, then isomorphism

¥ H¥(S™ ACP(n)*) — H*(D(m, n)/D(m—1, n))

sends s, \y¢ to (™, d7).

In the following, we denote by f the composition oz : D(m, n)—
S"ACP(n)*.

The following theorem is proved in A. Dold [6].

Theorem (1.9). The mod 2 cohomology ring H*(D(m, n); Z,) is a
truncated polynomial ving Z,Jc, d1/(c™", d™"), where c=(c', d°) and d=
(c’, d).

As for the structure of cohomology ring with coefficients in the
field @ of rational numbers, we have also
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Theorem (1.10).
i) H*D@2t, 27); Q) = QLa, b]/(a"", b*, ba"),
i) H*D@2t 27+1); Q) = Q[a, b]/(a"", b°),
iii) H*DQ2t+1,27); Q) = Q[a, b']/(@*, b,
iv) H¥D@2t+1,27+1); Q) = Q[a, b']/(a"*, V'),
where a=(c’ d*), b=(c*, d) and b'=(c*", d").
Proof. Consider the spectral sequence associated with the covering
(S™x CP(n), ®, D(m, n)). We then have an isomorphism

E%* =~ HXZ,; H'(S"XCP(n); Q)
with the action of Z, to HYS”xCP(n); Q) given by
T(1xy) = (—1)71xy7, T(s,,xy)) = (— 1)t x 7.
Therefore we have

E3* =~ HY(S™; Q@QH"*(CP(n); Q),
{Eg.m+2(2k+l) ~ Hm(sm ; Q)®H2(2k+1)(cp(n) ; Q),
E¢* = H(S™; Q@H*(CP(n); Q)+ H™S™; Q®@H"* ™(CP(n); Q),
if m = 4¢t+2,

if m = 4¢,

{Eg,zlk ~ HO(S"‘ ; Q)@H“‘(CP(”) ’ Q)’ if m = 2t+1

Eg,m+4k ~ H"‘(Sm; Q)@H“’(CP(%) ’ Q))

and all other E%® are zero. This proves that d,=0 (#=2) and E”*=0
for p=+0. Consequently we have

HYD(m, n); Q) = E3°.

In case of m=4¢(m=2¢+1), obviously we may assume that 1Ry’
and s,,Qy (s,,Q1) are the elements corresponding to a=(c’, d*) and b=
(c™, d) (b'=(c™ d%) respectively.

In case of m=4¢+2, since a=(c’, d?) is induced from a=(c’, d*) for
D(4(t+1), n) by the inclusion map D(4¢+2, n)c D(4(¢t +1), n), again we
may assume in virtue of the naturality that 1®3y* is the element corre-
sponding to @. Furtheremore we may assume that s,,Qy is the element
corresponding to b=(c”, d) by the following reason. Let the element
corresponding to b be s,,Qy+k(1Ry***) with keQ. Since b= f*(s,Ay),
we have *=0. Therefore k=0 for n=2¢+3. For n<2t+3, since b is
induced from & for D(m, n’) with #'=2¢+3 by the inclusion map D(m,
n)CD(m, n’), we have also k£=0.

The above shows that the multiplicative structure of H*(D(m, n);
Q) is induced by that of the spectral sequence. Thus we have the
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desired results.
The following corollary is obtained from Proposition (1.8) and
Theorem (1.10).

Corollary (1.11). We have an exact triangle

%
HHS™ACP()" ; Q) —L— H*(D(m, n); Q)
AN L i*
H*D(m—1, n); Q)
such that
i*ak = gk
and
S('a*) = 2s,, N\ y*
{( W) =BT o,
SESu A Y*) = ba*
8 b k) — 2 . 2k+1
{ (0a) = 2o AV o oii1.
f*(szt+1/\y2k) = b'a*

2. Canonical real 2-plane bundle over D(in, n)
We shall recall from [4] that one can define operations
€: Ko(X)~>Ky(X), p:Ky(X)=KoX), *:Ky(X)—>Ky(X)
such that

@.1) {pe =2 : KJX)— KoX),

ep = 1+%: Ky(X) > Ku(X) .

The operations are natural with respect to maps and ring homomor-
phisms, excepting p which is a homomorphism of groups. & and p come
from the standerd inclusions, and * is the conjugation (i.e. ¥*u=m).

Let £ be the canonical real line bundle over RP(m), and let » be
the canonical complex line bundle over CP(n).

In this section we shall prove the following

Theorem (2.2). There is a real 2-plane bundle », over D(m, n)
satisfying the following conditions :
i) =, restricted to CP(n) is the 2-plane bundle p»,
ii) », for n=0 is the 2-plane bundle 1PP'E,
iii) 7, Qp'E is equivalent to 7.
iv) the Chern character of the complex 2-plane bundle &y, is given
as jfollows :

2.3) chen, = 21 +a/2!+ - +a’/@2r)),



54 M. Fuii

where r=[n/2].

Proof. Every point of D(m, n) can be represented by [x, z] under
the identification (x, 2)=(—x, A2) for x=S™, z2&S5***'CC*** and all A &C,
In|=1. Then the total space E(»,) of 7, is defined as the set of all
triples [(x, 2), #] under the identification ((x, 2), #)=((— %, A2), 1), where
teC and x, z and ) are as above. The projection is given by p([(x,
2), t) =[x, z].

Local triviality is checked as follows: Define ¢; ,: U; , X R*—>p~(U; ,)
by
[(x, 2), z,t] if 2,>0,

Qbi,r([x, Z], f) = {[(x’ 2), zrf] if x;<0,

where U, , is the set of points [x, 2] of D(m, n) such that x; and z,

are non-zero, and {U;,|i=0,1,-,m;r=0,1,.+, n} is an open covering
of D(m, n); the transition functions are given as follows:

a —b

G0 @0,

(2.4) & oanrl® 2] =
) (%:<0, x;>0),

b
a —b 0
b —a (%;>0, x,<0),
a
—b

(
G
<

{ > 8 o>

N

) (x:, 2,<0),

where z,/z,=a-+0bi, a, bER.
This real 2-plane bundle 7%, is the complex line bundle » for m=0,
therefore we have

(2. 5) i!12771 = P

for the inclusion map i: CP(n)cCD(m, n).

Also, it is easy to see from (2.4) that in case of #=0 the 2-plane
bundle 7, is 1Pp'E.

Since the transition functions 7%, o [ %, 2] of p'€ are 1 for x,x,>0
and —1 for x,x,<0, (2.4) implies

P(g(j,s)<i,r)[x) 2] Qh; o, oL% 21) = g oaoL% Z1P,
where P=(_§’ (1)> This shows iii).

We next show iv). In virtue of Theorem (1.10), we see that the
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kernel of the homomorphism
i*: H¥(D(m, n); Q) — H*(CP(n); Q)

consists of the elements divisible by & or & and that

i*a =y~
Also, by (2.1) and (2.5) we have
i.&n, = nD7.
Since
i*ch &, = ch(nP7) = 2A+3*/2!+ --- +57/(27)),
we have
i*chénp, = i*2(1+a/2!+--+a”/@2r)) .
Hence
(2.6) ché&n,—2(1+a/2!+---+a”/2r))eKer i*,
that is

2.7)  chen,—20+a/2!+-+a’[(2r)) is divisible by b or V.

On the other hand, the total Chern class c¢(&7,) of the complex 2-
plane bundle &7, is a polynomial on @ for m=5 and so is the Chern
character ch &y, of &n, for m=5.

Therefore the left hand side of (2.6) is a polynomial on «. Thus
we obtain (2.3) from (2.7).

In case of m<5, since the bundle %, over D(m, n) is induced from
7, over D(m’, n) (m’=5) by the inclusion D(m, n)C D(m/, ), the naturality
of the Chern character shows (2.3) for every D(m, n). This completes
the proof of Theorem (2. 2).

Finally we shall prove

Theorem (2.8). On the real tangent bundle +(D(m, n)) of D(m, n),
we have the following relation :
n+1
' ' /‘_&,\

Proof. The total space E(+(D(m, n))) of the real tangent vector
bundle of D(m, n) can be represented as the set of all pairs [(x, 2), («,
v)], wtih xeS”cCR"", z&S$*""'cC"™, ueR™", veC""* and X%-4=0, Z-7
=0 in the Hermitian metric, under the identification ((x, 2), (%, v))=
((—x, 22), (—u, Av)) for all AeC, |[x|=1. Therefore we have the
following decomposition :
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7(D(m, n)) = p'+(RP(m))®¢,

where the total space E(¢) of ¢ is the set of all triples [(x, 2), v] under
the identification ((x, 2), ) = ((—x, A2), A0) for %, 2, v and A are as
above.

Consider the (#+1)-fold bundle sum 7,®---@»n,. Then the total
space E(n,---@Pn,) can be represented as the set of all triples [(x, 2), ]
with the identification ((x, 2), v)=((—x, A2), Av), where x=S™, z&S***'
cC™, peC™ and A is as above. Comparing this with E(f), we see

E(m,®-Dn)DEQ).
Let 6 be the real 2-plane bundle over D(m, n) with E(0)= {[(#, 2),

rz]} modulo the identification ((x, 2), 72)=((—x, r2), 7\2), where x=S™,
eSS cC™, reR’=C and A is as above. Clearly @ is equivalent to

1bpe.

As can readily be seen, we have
n+1
' ,%J_‘—\
T(D(m7 n))@a = ﬁ'T(RP(m))EBm@'“@"h .

3. Calculation of K £(D(m, n))

In terms of the canonical line bundle and the canonical 2-plane
bundle, we introduce the following elements A, u, v, a,, .

A = E—1€K,(RP(m)),

p = n—1€Ky(CP(n)),

v = exe Ky(RP(m)),
a, = n,—p'E—1€Ko(D(m, n)),
a = éa,eKy(D(m, n)) .

According to J. F. Adams [1] we have the following theorems.

Theorem (3.1). KY(RP(m))=Z,r, the cyclic group of order 27, where
f=[m/2]). v generates the group, and the multiplicative structure is
given by v'=—2v,

Theorem (3.2). 2CP((n)) is a truncated polynomial ring (over the
integers) with one gemerator n and one relation p”'=0.
Also, we have the following theorem.

Theorem (3.3). i) KL(RP(2#)=0 and K%, (RP(2t+1))=Z,
ii) K%,(CP(n))=0.

Proof. i) Considering the spectral sequence of K, theory for
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RP(2t), we have
E$~2RP(2t)) = H*"(RP(2t); Ki?(x)) = 0,

and hence K}(RP(2¢))=0. Next, considering the exact sequence

KY(RP(2t+1))—>K%RP2t))—KL(S*)—

Ky (RP(2t+1)—»K}RP2t) =0,
we have
KYRP(2t+1)) = K)S*") = Z.
ii) Since
E§*"2(CP(n)) = H**'(CP(n); Ki#(x)) = 0,

we have ii).

The following three lemmas are useful for the computation of
K y(D(m, n)).

Lemma (3.4). The homomorphism, induced by projection,
ts: KW(RP(m))—K\(D(m, n))  (A=0 or U)
is a monomorphism and Im p'\ is a direct summand of K (D(m, n)).

Proof. Since there is a cross section
r: RP(m)—D(m, n)

defined by »([x]) =[x, -+, %, 1,0, -, 0], we have immediately the
lemma.

Lemma (3.5). Both of the following systems of elements of the type
i) and ii) form an integral basis of K} (CP(n)).

l) 122) /1'(#+Tb)) E) ﬂ(/b+f—b)r-l, (/"—}-77’)7 (M‘*‘T‘)Z, cer (#‘+p)r’ and dlSO,
in case n is odd, p” ' (=u(p+n));

i) w wlp+m), -, ple+2)7"Y p—8 (p—8) p+a), -, (=) (u+
7) 7", and also, in case n is odd, p**', where r=[n/2].

Proof. First we consider the elements of type i). It is sufficient
to ensure that u, u? -+, u” can be written as linear combinations of
the elements of type i).

From Theorem (7.2) of [1] we have

B=—ptpt—p+ee+ (=17
Therefore
(n+m)* = {p’— @+ -+ (=1},
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Since
(w+m)y = p*+ highter terms
and
wlp+ @)™ = u? "'+ higher terms,
an easy inductive argument on 7 shows that p"* (=0, .-, n—1) are

represented as linear combinations of the elements of type 1i).
As for ii), in virtue of the relation

(p+my =2p(p+7) " — (=) u+m)™",
the elements of type i) are rewritten as linear combinations of the

elements of type ii), thus the elements of type ii) also form a basis of
KY(CP(n)).

Lemma (3.6). cha=2(a/2!+4.--+a"/(27)), where r=[n/2] .

Proof. Since a,=7,—2—(p'€—1), we have a=&y,—2—p'v. On the
other hand ch »=0. Therefore Theorem (2.2) implies the lemma. '

Considering the spectral sequence in K,-theory for D(m, n), we
have
H?(D(m, n);Z)  if g=even

En.QD s —
#{(Dlm, m)) {0 if g—odd .

By Proposition (1.6) we can enumerate E%? with p+¢=0 or 1, and we
obtain the following result as for the rank of E¥*= 3 Ep°:

p+q=i

(m, n)
(2t 2r) (2t+1, 2r) 2t 2r+1) | (2t+1,2r+1)
(3' 7) 0 2r r 2r+1 r
1 0 r+1 0 r+1

Next, we shall show that the rank of Ki(D(m, n)) is no less than
that of E$*. For this purpose, by (1.7) we identify Ki(D(m, n)/D(m—1,
n)) with Ki™CP(n)). Then in virtue of Lemma (3.5) the basis of
K7/ (D@2t+1, n)/D(2¢, n)) can be represented by

g, g, g wlu+m), -, g u(n+m)" 7,
gH—l(/"’_—p‘)’ gt+1(:u'_-/7’)(ll’+p)7 Tty gt+1(ﬂ—"ﬁ)(:u‘+/—l')r—l )
and also, in case » is odd, g**'u*** with »=[n/2], where g denotes the

canonical generator of K%(S?. Also, in virtue of Proposition (1.8) we
may identify H*(D(m, n)/D(m—1, n); Q) with H*S™"ACP(n)"; Q).
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Consider the following commutative diagram

K7 (D2t +1, n)/D(2¢, n)) (S—f); K7 (D2t +1, n))

ch ch

*

H*D(2t+1, n)/D(2¢t, n); Q) i—-» H*D@2t+1, n); Q),

where f is the map defined after Proposition (1.8) and sf is its sus-
pension. Since we have

ch(sf)!gt-)—l — f* ch gt+1 — b/,
ch(sf)g" \p(u+ P = F* ch g u(u+ Bt
= 26/(@/2!+ -+ a” (27,

there are 41 independent elements (sf)'g*™, (sf)'g* 'u, (sf)'g" u(u+
B), -, (sf)g uw(p+m) " in Kgi(D@2t+1, n)) with r=[x/2]. We put
{ (sf)g'' = g,

(s)g ulp+m)* " = Bpy (k=1,2,-, 7).

Next, in virture of Lemma (3.5) the basis of K%(D(2¢, n)/D2t—1,
n)) can be represented by

(3.8)

gtv gt(ﬂ‘_‘_p’)’ Tty gt(ll’+ﬁ)rv gt,U/’ gt/"(lb+/7')r T gt#(ﬂ+ﬁ)r_l ’
and also, in case » is odd, g/u”*" with »=[»/2].
Consider the following commutative diagram
Ry(DEt, 0)/DEt—1, m) L RYDE@L, )
ch ch

K

H*D(2t, n)/D2t—1, n); Q) —— H*D(2t, n); Q).
Since we have

ch f'g' w(p+m)*™ = f*chg'ulp+m)*
_{2""17(1-&—(1/3!+---+a"‘/(2r—1)!)(a/2l+---+a’/(2r)!)”‘1 if n=2r,
S l2EeA a3+ @ Q1)) @/2! e+ @ [ CR)E i n=2r 41,
there are independent elements f'g’u, f'g‘u(u+a), -, f'gtulp +2) 7
and also, in case z is odd, f'g’u”*" in KY(D(2t, n)) with »=[n/2]. We
put

(3.9) { Flgtu(p+m)* " = g, (k=1,2, -, 7)

Fg T = Y
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Moreover, by Lemma (3.6) there are » independent elements «, o,
v, in KY(D(m, n)) with r=[n/2].

From the above mentioned facts, we have the following results as
for the rank of Ki(D(m, n)):

~_ (m,n)
™~ (2t, 2v) (2t+1, 2r) @t 2r+1) |(2t+1,2r+1)
P~
(3‘ 10) 0 2r 7 2r+1 ’ r
1 0 r+1 0 ’ r+1

Now, in virtue of Proposition (1.6) K (D(m, n)) must be a direct
sum of Z’s and Z,’s, and it remains to settle the question of how
many Z,’s occur in K}(D(m, n)). For this purpose we consider the
spectral sequence of mod 2 K, theory. Let M, be RP(2) and let (X, A)
be a pair of finite CW-complex and its subcomplex. The mod 2 K-
theory [2], Ky( ; Z,) and Ky( ; Z,), is defined by

Ky(X, A; Z,) = Ki"*(X X M,, Xx*xUAXM,),
Ki(X; Z) = K73 XAM,) for all i.

Let X be a finite simplicial complex and X" be the n-skeleton of X.
When we filter K{(X; Z,) by defining

K(X; Z,) = KernellLK{(X ; Z,)>K(X?™"; Z,)],
we have the following theorem:.

Theorem (3.11). Let X be a finite simplicial complex. Let M, be
RP(2), so that K{(M,)=Z, if q is even and K{(M,)=0if q is odd. Then
there is a spectral sequence E?Y(X; Z,) (r=1, — oo <p, g< o) with

(1) EyY(X; Z,) = C*(X ; Ky(M)),
d, being the ordinary coboundary operator,
(2) E3¥(X; Z,) = H*X ; Ky(M,)),
(3) E2(X; Z,) = K3'(X; Z,)| K31(X; Z,).

The differential d,: E2(X; Z,)—>E?*""7"*YX; Z,) vanishes for even r
since E?»Y(X; Z,)=0 for all odd values of q. Also d,=Sq’+Sq°Sq"' is
known.

The E?(X; Z,) together with the differentials d, are homotopy type
invariants of X for r=2. Also K,(X) is a homotopy type invariant.
By a theorem of J.H.C. Whitehead [8, p. 239, Theorem 13], any finite
CW-complex is of the homotopy type of a finite simplicial complex.
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Hence the spectral sequence {E7"%(X; Z,), r=2} is well defined for any
finite CW-complex.

We now apply the spectral sequence of mod 2 K,-theory to D(m, n).
We have S¢'d=cd from (1.5). Since the operator d, is a derivation, we
obtain
3.12) dy(c'd?) = (i +)ciPdi+jeitidi,

We can enumerate easily the additive basis in E,-term which is
the d,-cohomology of H*(D(m, n); Z,):

{ e, dz’ d", . dzr’ Cztd’ Cztda’ vor Cztdzr-1’

c* ' if (m, n)=(2¢, 27),

[ ¢ dd, -, d¥,
N R if (m, n)=(2t+1, 27),
¢ d? e, d7, ctd, -, AT ¢t P

{ 1 ed if (m, n)=2¢, 2r+1),

{ C d2 er" czld27‘+l’
U G QU GG e (m, )= (2841, 27 +1),

where elements in the first rows are the basis of E,~term of total
degree 0 and the second are those of total degree 1.

Now, note that K{(D(m, n)) has a 2-primary compoent Z, by
Lemma (3.4). By Kiinneth relation of K,-theory [2, Cor. 2.8]

RKYD(m, n); Zz)°—'K (D(m, n))RZ,+ Tor(Ky(D(m, n)), Z,),
Ky(D(m, n); Z,)=KyD(m, n))Q@Z,+ Tor(KYD(m, n)), Z,).

Comparing the number of copies of Z, of both sides, as for the 2-torsion
part of K}(D(m, n)), we obtain the following results :

(3.13) If n is even, the torsion of K\(D(m, n)) is p'K{H(RP(m)), and
K1(D(m, n)) has no torsion.
If n is odd, the torsion of KY(D(m, n)) is Zx« or 0.

Now we obtain the following

Theorem (3.14).
2r
i) KYDQ2t, 2r)=Z+ - +Z+27Z,,
(D2t 27)) = O,
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r
i) RyD@t+1,20) =Z+ - +Z+Zy,
r+1
RUD@t+1,27)) = Z+ -+ Z,
2r+1
iii) KyD@t, 2r+1) = Z+ -+ Z+ 2,
RL(DQ2t, 2r+1)) = Zy
r
iv) RYD@t+1,2r+1) = Z+ -+ Z+ 2y,
r+1
RYDQ@t+1, 27+ 1)) = Z+ ot 2+ Zyos

the basis of the free part of KYD(m, n)) are a, o, -, &', v, ya, *+,
ya'™', and also, in case n is odd, ya’, and the basis of the free part of
KY(D(2t+1, n)) are g, B, Ba, -+, B’ ™", where v=f'g'n and B=(sf)'g""u;
the gemerator of 2—torsion part of K(D(m, n)) is v,=p'v. Also we have
a-v,=0.

Proof. Proof of i) and ii). Since we have D(0, 27)=CP(27), our
assertions are trivial for m=0, and the basis of the free part are given
by p+a, (u+a), -, (u+B), p, p(p+a), -, plp+m) "

Suppose that i) is true for m=2¢, n=27 and that the basis of the
free part of K%(D(2t, 27)) are a, o, -, a’, 7y, va, -, va’". And con-
sider the exact sequence

~ ! _ St
0—> R3X(D(2t+1, 27)) —— B3(D (28, 27)) ——

RF(D@2t+1,27)/D2t, 27)) (o) ED@t+1,27) —>0.

It is easy to see that the basis of the free part of K{(D(2¢+1, 27)) are
given by a, o -+, a” and the basis of Kj'(D(2¢+1, 27)) are given by
g, B, Ba, -+, Ba’ ™, because of ch B, ,=ch Ba** (k=1, 2, ---, 7).

Now, if we use the exact sequence

N 8 _ !
0—> K5} (D@2t+1, 27)) —> Ky(D(2¢t+2, 27) /D2t +1, 27)) —f—>

RYUDEt+2, 27) —> RYUD21+1, 27) — 0,
the induction on m shows i) and ii).

Proof of iii) and iv). Consider the exact sequence
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0— K#D2t+1, 2r+1)) R RFAD@2t, 27 +1)) e,
RF#D@t+1, 27+1)/D(2t 27 +1)) sf) KF#DEt+1, 27 +1))

L RFDEE, 27+ 1)) — 0.

Assume inductively that the basis of the free part of K7*(D(2¢, 27+1))
are given by ga, go?, -+, go’, gv, gya, -+, gya’ and that Ki(D(2t, 27 +1))
=Z,. Then we have

S!g,yar — gt“(#‘/’z)(#‘*‘ﬁ)r _ 2gt+1ﬂzr+1,

and hence K;'(D(2¢+1, 2r+1)) has 2-torsion part Z,+.
Consider the exact sequence
. PR . 8!
0—— B{(D@2t+2, 27+ 1)) — RF{(D@1+1, 27 +1)) ——
RUD@2E 42, 2r+1)/D@E+1, 27+ 1))~ RYDE@E+2, 27+ 1)

L RyD@t+1, 27 +1)) — 0.
Since K (D@2t+2,2r+1)/D2¢t+1, 27+1)) is free, we have
R D@E+2, 27 +1)) = Zy.

The rest of the proof of iii) and iv) can be treated in the similar way
as in the case i) and ii).

Since av,ep'K{(RP(m)) and r'a=0 (cf. Theorem (2.2) and Lemma
(3.4)), we have av,=0. The proof is complete.

UnNIvERSITY OF OsAKA PREFECTURE
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