QF-3 AND SEMI-PRIMARY PP-RINGS I

Manabu HARADA
(Received September 13, 1965)

Recently the author has given a characterization of semi-primary hereditary ring in [4]. Furthermore, those results in [4] have been extended to a semi-primary PP-ring in [3], (a ring A is called a left $P P$-ring if every principal left ideal in A is A-projective).

This short note is a continuous work of [3] and [4]. Let K be a field and A an algebra over K with finite dimension. A is called a QF-3 algebra if A has a unique minimal faithful representation ([10]). Mochizuki has considered a hereditary QF-3 algebra in [6].

In this note we shall study a PP-ring with minimal condition or of semi-primary. To this purpose we generalize a notion of QF-3 algebra in a case of ring. We call A left (resp. right) $Q F-3$ ring if A has a faithful, injective, projective left (resp. right) ideal, (cf. [5], Theorems 3.1 and 3.2).

Let $1=\sum E_{i}$ be a decomposition of the identity element 1 of a semi-primary ring A into a sum of mutually orthogonal idempotents such that E_{i} modulo the radical N is the identity element of simple component of A / N. If $A x$ is A-projective for all $x \in E_{i} A E_{j}$, we call A a partially $P P$-ring, (see [3], $\S 2$). Such a class of rings contains properly classes of semi-primary hereditary rings and PP-rings.

Our main theorems are as follows: Let A be directly indecomposable and a left QF-3 ring and semi-primary partially PP-ring. Then 1) there exists a unique primitive idempotent e in A (up to isomorphism) such that $e N=(0)$ and every indecomposable left injective ideal in A is faithful, projective and isomorphic to Ae. Furthermore, A is a right $Q F-3$ ring. 2) Let $B=\operatorname{Hom}_{e A_{e}}(A e, A e)$, where $A e$ is regarded as a right eAe-module. Then $e A e$ is a division ring and $B=(e A e)_{n}{ }^{17} . B$ is a left and right injective envelope of A as an A-module and B is A-projective. Furthermore, if A is hereditary, then A is a generalized uniserial ring whose basic ring is of triangular matrices over a division ring. (Mochizuki proved in [6] the above fact 2) in a case of hereditary algebra over a field with finite dimension).

[^0]We always consider a ring A with identity element 1 and every A-module is unitary.

1. Preliminary Lemmas.

In this paper we make use of some results in [3], [4] very often and we shall here summarize them.

Let $1=\sum_{i=1}^{t} E_{i}$ be a decomposition of 1 into a sum of mutually orthogonal idempotents E_{i}. We assume that $E_{i} A E_{j}=(0)$ for $i<j$ and $E_{i} A E_{i}$ is semi-simple with minimal conditions. Then

$$
\begin{align*}
A= & S_{1} \\
& \oplus E_{2} A E_{1} \oplus S_{2} \tag{1}\\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
& \ldots \cdots \cdots \cdots \cdots \cdots \\
& \oplus E_{t} A E_{1} \oplus \cdots \oplus E_{t} A E_{t-1} \oplus S_{t}
\end{align*}
$$

as a module, where $S_{i}=E_{i} A E_{i}$.
By $T_{t}\left(S_{i} ; \mathfrak{M}_{i, j} \equiv E_{i} A E_{j}\right)$ we denote the above expression, and we call it a generalized triangular matrix ring over S_{i} (briefly g.t.a. matrix ring).

Let $S_{i}=\sum_{j=1}^{\rho(i)} \oplus T_{i, j}: T_{i, j}$ is a simple ring. Then we can easily check that

$$
\mathfrak{M}_{p, q} \approx\left(\begin{array}{lll}
M_{1,1} & \cdots & M_{1, \rho(q)} \tag{2}\\
M_{2,1} & \cdots & M_{2, \rho(q)} \\
\ldots \ldots & \cdots & \cdots \cdots \cdots \\
M_{\rho(p), 1} & \cdots & M_{\rho(p), \rho(q)}
\end{array}\right)
$$

as a $S_{p}-S_{q}$ module, where $M_{l, s}$ is a $T_{p, l}-T_{q, s}$ module and the operations of S_{p} and S_{q} are naturally defined on the right side of (2).

From [3], p. 160 and the proof of [4], Proposition 10 we have
Lemma 1. Let A be a semi-primary partially PP-ring. Then A is isomorphic to $T_{t}\left(S_{i} ; \mathfrak{M}_{i, j}\right)$ such that every row of (2) is non-zero and $A E_{1}$ is a faithful A-module. Furthermore, let $\left\{e_{i}\right\}$ be a set of non-isomorphic mutually orthogonal primitive idempotents e_{i} such that $e_{i} N=(0)$, then $E_{1} \approx \sum e_{i}$ and every faithful projective A-module contains $A E_{1}$ as a direct summand, where $E_{1}=T_{t}\left(1_{1}, o, \cdots, o ; o\right)$ and 1_{1} is the identity element in S_{1}.

If A is isomorphic to $T_{t}\left(S_{i} ; \mathfrak{M}_{i, j}\right)$ as in Lemma 1 , we call $T_{t}\left(S_{i} ; \mathfrak{M}_{i, j}\right)$ a normal right representation of A as a g.t.a. matrix ring.

Lemma 2. Let A be as in Lemma 1. Then $\mathfrak{M}_{i, j} \otimes_{S_{j}} S_{j} x \approx \mathfrak{M}_{i, j} x$ and $y S_{i} \bigotimes_{S_{i}} \mathfrak{M}_{i, k} \approx y \mathfrak{M}_{i, k}$ for $x \in \mathfrak{M}_{j, t}$ and $y \in \mathfrak{M}_{l, i}$.

See [3], Lemma 5.

Let K be a field and A a K-algebra with finite dimension. Jans showed in [5] that A has a unique minimal faithful representation if and only if A has faithful, projective, injective left ideal L. Since L is projective, we know that $\operatorname{Hom}_{K}(L, K)$ is faithful, projective, injective right A-module.

We are interested in a case of a triangular matrices with minimal conditions. We shall generalize the above fact in this case.

Now we assume that A is a g.t.a. matrix ring over semi-simple rings $S_{i} ; A=T_{n}\left(S_{i} ; M_{i, j}\right)$.

If e is a primitive idempotent, then $e A e$ is division ring. By B we denote $e A e$. Since A satisfies the minimal conditions, $[A e: B]_{r}{ }^{2)}<\infty$ by [4], $\S 5$.

The following lemma is well known in a case of algebra over a field.
Lemma 3. Let A, B and e be as above. If $A e$ is A-injective, then $\operatorname{Hom}_{B}(A e, B)$ is right A-projective and injective.

Proof. For a finitely generated left A-module M we have $\operatorname{Hom}_{B}(A e, B) \otimes_{A} M \approx \operatorname{Hom}_{B}\left(\operatorname{Hom}_{A}(M, A e), B\right)$ from [1], p. 120, Proposition 5.3. This isomorphism implies that $\operatorname{Hom}_{B}(A e, B)$ is right A-flat. Hence, $\operatorname{Hom}_{B}(A e, B)$ is A-projective by [2]. On the other hand, from an isomorphism : $\operatorname{Hom}_{A}\left(N, \operatorname{Hom}_{B}(A e, B)\right) \approx \operatorname{Hom}_{B}(N \otimes A e, B)$ in [1], p. 120 for a right A-module N we know that $\operatorname{Hom}_{B}(A e, B)$ is A-injective, since $A e$ is A-flat.

Proposition 1 ${ }^{33}$. Let A be a g.t.a. matrix ring over semi-simple rings with minimal conditions. If A has a faithful, injective, projective left ideal, then A has a faithful, injective, projectve right ideal.

Proof. Let L be a faithful, injective, projective left ideal $L=$ $\sum \oplus A e_{i} ; e_{i}$ primitive idempotent. Put $B_{i}=e_{i} A e_{i}$ and $C_{i}=\operatorname{Hom}_{B_{i}}\left(A e_{i}, B_{i}\right)$. Then C_{i} is right A-projective and injective. Let $x \neq 0$ in A. Since L is faithful, $x A e_{i} \neq 0$ for some i. Since B_{i} is a division ring, there exists g in C_{i} such that $g\left(x A e_{i}\right) \neq(0)$. Therefore, if we put $R^{\prime}=\sum \oplus C_{i}$, then R^{\prime} is a faithful, projective, right A-module. Since $C_{i} \approx \sum \oplus e_{i}^{\prime} A$, we have a faithful, projective, injective right ideal.

If A has a faithful, projective, injective left (resp. right) ideal, then we call A a left (resp. right) $Q F-3$ ring.

If A is a g.t.a. matrix ring over semi-simple rings with minimal conditions, then a left QF-3 ring is a right QF-3 and conversely by

[^1]Proposition 1. However, we do not know whether it is true in a general ring with minimal conditions. ${ }^{3)}$

We quote here the concept of basic ring following Osima [8].
Let

$$
\begin{equation*}
1=\sum_{i=1}^{n} \sum_{j=1}^{\rho(i)} e_{i, j} \tag{3}
\end{equation*}
$$

be a decomposition of the identity element 1 of A into the sum of mutually orthogonal primitive idempotents such that $e_{i, j} \approx e_{h, k}$ if and only if $i=h$.

For each i we denote $e_{i, 1}$ by e_{1}^{*}. Let $e^{*}=\sum_{i=1}^{n} e_{1}^{*}=\sum_{i=1}^{n} e_{i, 1}$. We call $A^{*}=e^{*} A e^{*}$ the basic ring of A relative to the decomposition (3). We can find elements $c_{i, 1 j} \in e_{i, 1} A e_{i, j}$ and $c_{i, j_{1}} \in e_{i, j} A e_{i, 1}$ such that $c_{i, 1 j} c_{i, j_{1}}=e_{i, 1}$ and $c_{i, j 1} c_{i, 1 j}=e_{i, j}$. Put $c_{i, j k}=c_{i, j 1} c_{i, 1 k}$. We may assume $e_{i, 11}=e_{i, 1}$. Then we have

$$
c_{i, j k} c_{i^{\prime}, j^{\prime} k^{\prime}}=\delta_{i, i^{\prime}} \delta_{k, j^{\prime}} c_{i, j k^{\prime}}
$$

A can be written

$$
A=\sum_{i=1}^{n} \sum_{j=1}^{\rho(i)} \sum_{h=1}^{n} \sum_{k=1}^{\rho(k)} c_{i, j_{1}} A^{*} c_{h, 1 k}
$$

The following observation is a direct proof of [7], Lemma 7.2. Let M^{*} be a left A^{*}-module. We put

$$
M=E\left(M^{*}\right)=\sum_{i=1}^{n} \sum_{j=1}^{\rho(i)} \oplus c_{i, j 1} e_{i}^{*} M^{*}
$$

where $c_{i, j 1} e_{i}^{*} M^{*} \approx e_{1}^{*} M^{*}$ as a module. We can directly check that M is a left A-module and $e^{*} M=M^{*}$. Conversely, let M be a left A-module. Then $M=\sum_{i=1}^{n} \sum_{j=1}^{\rho(i)} \oplus e_{i, j} M$ and $M^{*}=\sum_{i=1}^{n} \oplus e_{i, 1} M$ is a left A^{*}-module. We define a mapping φ of M to $E\left(M^{*}\right)$ by setting

$$
\varphi\left(e_{i, j} m_{i, j}\right)=c_{i, j 1} e_{i, 1} m_{i, j} .
$$

Then we can easily check that $M \approx E\left(M^{*}\right)$ as a left A-module.
Let M and N be left A-modules. Then

$$
\operatorname{Hom}_{A}(N, M)=\operatorname{Hom}_{A}\left(\sum c_{i, j 1} N, \sum c_{i, j 1} M\right)
$$

For elements $f_{i, 11} \in \operatorname{Hom}_{e_{i}^{*} A e_{i}^{*}}\left(c_{i, 11} N, c_{i, 11} M\right)$ and $f_{i, j 1} \in \operatorname{Hom}_{e_{i, j} A e_{i, j}}\left(c_{i, j 1} N\right.$, $\left.c_{i, j 1} M\right)$ we consider a diagram :

Then we can easily see that the diagram (4) is commutative for $f_{i, j_{1}}$ $=f \mid c_{i, j 1} N$ and $f \in \operatorname{Hom}_{A}(N, M)$. Converely let M^{*} and N^{*} be left A^{*} modules. For $f_{i}^{*}=f^{*} \mid e_{i}^{*} N$ of f^{*} in $\operatorname{Hom}_{A^{*}}\left(N^{*}, M^{*}\right)$ we define $f_{i, j 1}$ such that $f_{i, 11}=f_{i}^{*}$ and the diagram (4) is commutative. Then we can show that $f=\sum f_{i, j_{1}}$ is in $\operatorname{Hom}_{A}(N, M)$. Thus we have

Lemma 4. A is a left $Q F-3$ ring if and only if so is a basic ring of A. (cf. [11], Proposition 5).

2. Main theorems.

In this section we consider a semi-primary $\mathrm{QF}-3$ partially $\mathrm{PP}-$ ring A. From Lemma 4, [4], Corollary 1 and [3], Remark 1 and Lemma 4 we have

Proposition 2. If A is a semi-primary left $Q F-3$ and hereditary (resp. PP- or partially PP-) ring, then so is a basic ring of A. In the case of hereditary ring the converse is true.

By N we denote the redical of A.
Proposition 3. Let A be a left $Q F-3$ and partially PP-ring and semi-primary. Let $\left\{e_{i}\right\}$ be a set of mutually orthogonal primitive nonisomorphic idempotents such that $e_{i} N=(0)$. Then $L=\sum \oplus A e_{i}$ is a unique minimal left faithful, projective, injective A-module.

Proof. It is clear from the definition and Lemma 1.
From Proposition 2 we may first restrict ourselves in a case where A coincides with its basic ring. Then $A / N=\sum \oplus \Delta_{i} ; \Delta_{i}$ a division ring.

Let A be a g.t.a. matrix ring over division rings $\Delta_{i} ; T_{n}\left(\Delta_{i} ; M_{i, j}\right)$. We put $C(i)=\left\{k \mid M_{k, i} \neq(0)\right\}$ and $R(j)=\left\{k \mid M_{j, k} \neq(0)\right\}$.

Lemma 5. ${ }^{4)}$ Let A be as in Proposition 3 and $A=T_{n}\left(\Delta_{i} ; M_{i, j}\right)$. We assume $A e_{i}$ is A-injective. If t is the maximal index in $C(i)$, then $C(i)$ $=R(t)$, where $e_{i}=T_{n}\left(o, o, 1_{i}, o, o ; o\right)$ and 1_{i} is the identity element of Δ_{i}.

Proof. Put $C(i) \equiv\{i(1)<i(2)<\cdots<i(k)=t\}$. Then $M_{a, i}=(0)$ if $a \notin C(i)$. We first show that

$$
\begin{equation*}
M_{t, a}=(0) \quad a \notin C(i) \tag{5}
\end{equation*}
$$

If $M_{t, a} \neq(0)$, we take $x \neq 0$ in $M_{t, a}$ and $y \neq 0$ in $M_{t, i}$. Since A is partially PP-ring, for any element z in $A \quad z x=0$ impleis $z \in A\left(1-e_{t}\right)$ by Lemma 2. Hence, $z y=0$. Therefore, a mapping φ of $A x$ to $A y \subseteq A e_{i}: z x \rightarrow z y$ is homomorphism. Since $A e_{i}$ is A-injective, there exists an element w in $A e_{i}$ such that $y=x w$ by [1], p. 8, Theorem 3.2. Therefore, w might be

[^2]in $M_{a, i}$. Since φ is non-zero, w is not zero, which contradicts the fact $M_{a, i}=(0)$. We need a lemma to complete the proof.

Lemma 6. Let A and $t=i(k)$ be as above. Then there exists an index $g=g(l)$ such that $M_{g i(l)} \neq(0)$ for any $l, 1 \leqslant l<k$.

Proof. We assume $M_{g, i(l)}=(0)$ for all g and some l. Then $M_{i(l), i}$ is a non-zero left ideal contained in $A e_{i}$. Furthermore, $M_{g^{\prime}, t}=(0)$ for all g^{\prime}, because if $M_{g^{\prime}, t} \neq(0)$ (and hence $g^{\prime}>t$), then (0) $\neq M_{g^{\prime}}{ }_{t} M_{t, i} \subseteq M_{g^{\prime}, i}$. Hence, $Q=M_{i(l), i} \oplus M_{t, i}$ is a left ideal contained in $A e_{i}$. Let $x \neq 0$ in Δ_{i}. Then a mapping ψ of Q to $A e_{i}$ defined by $\psi(n+m)=n x$ for $n \in M_{i(l), i}$, $m \in M_{t, i}$ is A-homomorphism. Since $A e_{i}$ is injective, there exists an element z in $A e_{i}$ such that $n z=n x$ and $m z=0$. This is a contradiction, because $n=M_{i(1), i}, m \in M_{t, i}$. Q.E.D.

We continue the prove of Lemma 5. We shall show that $M_{t, i(s)} \neq(0)$ for $1 \leq s \leq k$. We have $M_{b, i}=(0)$ for $i(k-1)<b<t, t<b$ by the definition of $C(i)$ and t. If $M_{l, i(k-1)} \neq(0)$ for an integer l such that $i(k-1)<l \neq t$ $=i(k)$ then (0$) \neq M_{l, i(k-1)} M_{i(k-1), i} \subseteq M_{l, i}$. Therefore, $M_{l, t(k-1)}=(0)$ for all $l \neq t$. Hence, we know $M_{t, i(k-1)} \neq(0)$ from Lemma 6 . We assume $M_{t, i(c)} \neq(0)$ for integer $c>$ a fixed integer d. By the same argument as above we obtain $M_{q, z(d)}=(0)$ for $q \neq i(r) ; d<r<k^{\prime}$. Hence, we know by Lemma 6 that there exists an integer $f(>d)$ such that $M_{i(f), i(d)} \neq(0)$. Therefore, $(0) \neq M_{t, i(f)} M_{i(f), i(d)} \subseteq M_{t, i(d)}$. Thus we can prove Lemma 5 by induction.

Theorem 1. ${ }^{4)}$ Let A be a semi-primary, partially $P P$-ring. If A contains a finitely generated projective, injective left ideal L, then A is a directsum of two rings A_{1}, A_{2} such that A_{1} is a left $Q F-3$ and L is a faithful, projective, injective left ideal in A_{1} and A_{2} is the annihirator ideal of L in A. In particular if A is a left $Q F-3, A=\sum \oplus A_{i}$ as a ring and there exists a primitive idempotent e_{i} in A_{i} such that $A_{i} e_{i}$ is a unique minimal, faithful, projective injective ideal and e_{i} is uniquely determined up to isomorphism with property $e_{i} N=(0)$, where N is the radial of A.

Proof. Since A is semi-primary, $L \approx \sum \oplus A e_{i}, e_{i}$ primitive idempotent. As before we may assume that A coincides with its basic ring. Let $T_{n}\left(\Delta_{i} ; M_{i, j}\right)$ be a normal right representation of A as a g.t.a. matrix ring. We assume $e_{i}=T_{n}\left(o, \cdots, 1_{i}, o, \cdots ; o\right)$. Let $C^{*}(i)=i \cup C(i) \equiv\{i=i(o)$ $<i(1)<\cdots<i(k)=t\}$. For $j \notin C^{*}(i)(0)=M_{t, j} \supseteq M_{t, i(s)} M_{i(s), j}$ and $(0)=M_{j, i}$ $\supseteq M_{j, i(p)} M_{i(p), i}$. Hence $M_{i(s), j}=M_{j, i(p)}=0$ any $i(s)<j$ and $i(p)<j$, respectively. Put $E=\sum_{j \in \sigma^{*}(i) \geqslant} e_{j}$ and $E^{\prime}=1-E$. Then the above facts imply
that $M_{k, k^{\prime}} \subseteq E A E+E^{\prime} A E^{\prime}$ for all k, k^{\prime}. Hence $A=E A E \oplus E^{\prime} A E^{\prime}$ as a ring and $E A E \supseteq A e_{i}$. Furthermore, $E A E \approx T_{n^{\prime}}\left(\Delta_{i(j)} ; M_{i(j), i(s)}\right)$ and $M_{i(2), i(1)}, \cdots$, $M_{i\left(n^{\prime}\right), i(1)}$ are non-zero. Since $A e_{i}$ is $E A E$-injective, $A e_{i}=T_{n^{\prime}}\left(\Delta_{i(1)}, 0, \cdots\right.$, $0 ; M_{i(j), i(s)}=(0)$ if $s \neq 1$) by the fact (5) in the proof of Lemma 5. Hence, $A e_{i}$ is faithful. Therefore $E A E$ is a left $\mathrm{QF}-3$ ring. It is lear that $E^{\prime} A E^{\prime}$ is the annihitator of $A e_{i}$. Repeating the above argument we have the first part of Theorem 1 . The second one is an immediate consequence from the first part and Proposition 3.

Remark 1. Let $A=T_{n}\left(\Delta_{i} ; M_{i, j}\right)$ be a partially PP-ring and indecomposable basic QF-3 ring. Then we have obtained in the above proof that $M_{i, 1} \neq(0)$ for all i and hence, $M_{n, i} \neq(0)$ for all i by Lemma 5.

Remark 2. We shall see later that the set of those indecomposable ideals $A_{i} e_{i}$ coincide with the set of indecomposable injective left ideals in A.

Next, we shall consider a QF-3 and semi-primary PP- (resp. hereditary) ring. We restrict ourselves again to a case of basic ring.

Lemma 7. Let A be an indecomposable basic ring and semi-primary partially PP-ring. $A=T_{n}\left(\Delta_{i} ; M_{i, j}\right)$ be a normal right representation of A as a g.t.a. matrix ring. Then $\left[M_{n, i}: \Delta_{n}\right]=\left[M_{i, 1}: \Delta_{1}\right]=1$ for all i. Furthermore, if A is hereditary then $\left[M_{i, j}: \Delta_{i}\right]=\left[M_{i, j}: \Delta_{1}\right]=1$ if $M_{i, j} \neq(0)$.

Proof. We use the same notation as above. Since $T_{n}\left(\Delta_{i} ; M_{i, j}\right)$ is a normal representation, $A e_{1}$ is A-injective. From Remark 1 we know $M_{n, i} \neq(0)$ and $M_{i, 1} \neq(0)$ for all i. If $\left[M_{n, 1}: \Delta_{n}\right] \geqslant 2$, then we have two independent elements x, y in $M_{n, 1}$ over Δ_{n}. Let φ be a linear mapping of $M_{n, 1}$ into itself such that $\varphi(x)=x, \varphi(y)=0$. Then φ is A-homomorphism of $M_{n, 1}$ to $A e_{1}$. Since $A e_{1}$ is injective, this is a contradiction. If $\left[M_{n, 1}: \Delta_{1}\right] \geqslant 2$, then there exist two independent elements x^{\prime}, y^{\prime} in $M_{n, 1}$ over Δ_{1}. Let ψ be a linear mapping of $M_{n, 1}=\Delta_{n} x^{\prime}$ to itself such that $\psi\left(x^{\prime}\right)=y^{\prime}$. Injectivity of $A e_{1}$ implies that there exists an element z in Δ_{1} such that $x^{\prime} z=y^{\prime}$. This contradicts a fact of independency. Since $M_{n, 1} \supseteq M_{n, i} M_{i, 1},\left[M_{n, i}: \Delta_{n}\right] \leqslant\left[M_{n, i}: \Delta_{n}\right]=1$ and $\left[M_{i, 1}: \Delta_{1}\right] \leqslant\left[M_{n, 1}: \Delta_{1}\right]=1$. We assume that A is hereditary. Then $M_{n, i} \otimes M_{i, 1} \approx M_{n, i} M_{i, 1}$ as $\Delta_{n}-\Delta_{1}$ module by [4], Theorem 1. Hence $1=\left[M_{n, 1}: \Delta_{n}\right] \geqslant\left[M_{i, 1}: \Delta_{i}\right]$. If $M_{i, j}$ $\neq(0),(0) \neq M_{i, j} M_{j, 1} \subseteq M_{i, 1}$. Hence, $1=\left[M_{i, 1}: \Delta_{i}\right] \geqslant\left[M_{i, j}: \Delta_{i}\right]$. Similarly, we have $\left[M_{i, j}: \Delta_{j}\right]=1$.

Theorem 2. If A is a left $Q F-3$ and semi-primary hereditary ring, then A is a directsum of rings whose basic ring is a ring of triangular matrices over division rings. And hence, A is right $Q F-3$ and A satisfies
minimal conditions. The converse is also true, (see Remark 3 below).
Proof. We assume that A is an indecomposable, basic ring. Then $A=T_{n}\left(\Delta_{i} ; M_{i, j}\right)$ and $M_{i, 1} \neq(0)$ and $M_{n, i} \neq(0)$ for all i from Remark 1. We shall show that $M_{i, j} \neq(0)$ for all $i<j$. We quote the same notations of [4], Theorem 1. Since $M_{2,1} \neq(0)$, we assume that $M_{j, k} \neq(0)$ for any $j \leqslant i$. If $M_{i+1, i}=M_{i+1, i-1}=\cdots=M_{i+1, t}=(0)$ and $M_{i+1, t-1} \neq(0)$, then $\bar{M}_{i+1, t-1}$ $=M_{i+1, t-1} / \sum_{k=t}^{i} M_{i+1, k} M_{k, t-1}=M_{i+1, t-1}$. On the other hand, $\bar{M}_{t, t-1}=M_{t, t-1}$ $\neq(0)$, since $t \leqslant i$. However, $M_{n, i+1} \bar{M}_{i+1, t-1} \neq(0), M_{n, t} \bar{M}_{t, t-1} \neq(0)$ and $M_{n, i+1} \bar{M}_{i+1, t-1} \cap M_{n, t} \bar{M}_{t, t-1}=(0)$ by [4], Theoreme 1. Which contradicts a fact $\left[M_{n, t-1}: \Delta_{n}\right]=1$. Therefore, we know $M_{i+1, i} \neq(0)$. $M_{i+1, k} \supseteq$ $M_{i+1, i} M_{i, i-1} \cdots M_{k+1, k} \neq(0)$. Thus we can prove the fact $M_{i, j} \neq(0)$ for all $i>j$ by induction. Since $M_{i, j} \neq(0),\left[M_{i, j}: \Delta_{i}\right]=\left[M_{i, j}: \Delta_{j}\right]=1$ by Lemma 7 . Therefore, A is isomorphic to a ring of triangular matrices by [4], Lemma 12. Thus, we have proved Theorem 2.

In the above proof if we replace $M_{i+1, t-1}$ by a non-zero element x in $M_{i+1, t-1}$ and $M_{t, t-1}$ by a non-zero element y in $M_{t, t-1}$, then $M_{n, i+1} x$ and $M_{n, t} y$ are not zero by Lemma 2, provided A is a PP-ring. Since $\left[M_{n, t-1}: \Delta_{n}\right]=1$ by Lemma $7, M_{n, i+1} x=M_{n, t} y$. This contradicts [3], Proposition 1. Hence, we have similarly

Proposition 4. Let A be a left $Q F-3$ and semi-primary $P P$-ring. We assume A is indecomposable. Then A is isomorphic to a g.t.a. matrix ring $T_{n}\left(S_{i} ; \mathfrak{M}_{i, j}\right)$ over simple ring S_{i} and each component of $\mathfrak{M}_{i, j}$ in (2) is non-zero. Therefore, $T_{n}\left(S_{i} ; \mathfrak{M}_{i, j}\right)$ is a right and left normal representation of A as a g.t.a. matrix ring and the nilpotency of the radical is equal to n. Let $S_{i} \approx\left(\Delta_{i}\right)_{n}, \Delta_{i}$ division ring. Then $\Delta_{1} \approx \Delta_{n}$ and Δ_{i} is isomorphic into $\Delta_{1} \approx \Delta_{n}$. Furthermore, we assume that A is K-algebra with finite dimension. Then A is hereditary if and only if $\Delta_{i} \approx \Delta_{1}$ for all i.

Remark 3. Theorem 2 says that the class of the $\mathrm{QF}-3$ and semiprimary hereditary rings coincides with the class of the rings of directsum of g.t.a. matrix rings of the following form.

Let Δ be a division ring and $\Delta(n \times m)$ the module of rectangular matrices of $(n \times m)$-form over Δ and it is regarded as $(\Delta)_{n}-(\Delta)_{m}$ module.

$$
A=\left(\begin{array}{ll}
(\Delta)_{n_{1}} & 0 \\
\Delta\left(n_{2} \times n_{1}\right)(\Delta)_{n_{2}} & \\
\cdots \cdots \cdots \cdots \cdots & \\
\cdots \cdots \cdots \cdots \cdots & \\
\Delta\left(n_{r} \times n_{1}\right) \Delta\left(n_{r} \times n_{2}\right) \cdots(\Delta)_{n_{r}}
\end{array}\right)
$$

We consider the converse of the first half of Lemma 7.

Proposition 5. Let $A=T_{n}\left(\Delta_{i} ; M_{i, j}\right)$ be a g.t.a. matrix ring over division ring Δ_{i}. If A is a partially $P P$-ring, then $A e_{1}$ is A-injective and $M_{i, 1} \neq(0)$ and $M_{n, i} \neq(0)$ for all i if and only if $\left[M_{i, 1}: \Delta_{1}\right]=\left[M_{n, 1}: \Delta\right]=1$. Conversely if $A e_{1}$ is faithful and $\left[M_{i, 1}: \Delta_{1}\right]=1$, then A is a partially PP-ring, where $e_{1}=T_{n}\left(1_{1}, 0, \cdots ; 0\right)$.

Proof. We assume that A is a partially PP-ring. We have proved "only if" part of the first half in the proof of Lemma 7. We shall prove "if" part. Since $\left[M_{i, 1}: \Delta_{1}\right]=1$, we put $M_{i, 1}=x_{i} \Delta_{1}\left(x_{1}=\right.$ the identity element of Δ_{1}). Since $\left[M_{n, 1}: \Delta_{1}\right]=\left[M_{n, 1}: \Delta_{n}\right]=1$, there exists an isomorphism φ of Δ_{1} to Δ_{n} such that $x_{n} \delta=\delta^{\varphi} x_{n}$ for $\delta \in \Delta_{1}$. It is clear that $\operatorname{Hom}_{\Delta_{1}}\left(M_{i, 1}, M_{n, 1}\right)=\Delta_{n} f_{i}$, where $f_{i} \in \operatorname{Hom}_{\Delta_{1}}\left(M_{i, 1}, M_{n, 1}\right)$ such that $f_{i}\left(x_{i}\right)=x_{n}$, (for $f \in \operatorname{Hom}_{\Delta_{1}}\left(M_{i, 1}, M_{n, 1}\right) f\left(x_{i}\right)=x_{n} \delta=\delta^{\varphi} x_{n}=\left(\delta^{\varphi} f_{i}\right)\left(x_{i}\right)$). On the other hand $M_{n, i} \approx M_{n, i} x_{i}=M_{n, 1}$ by the assumption $\left[M_{n, 1}: \Delta_{n}\right]=1$ and Lemma 2. Hence, there exists a unique element g_{i} in $M_{n, i}$ such that $g_{i} x_{i}=x_{n}$, ($g_{n}=$ the identity element in Δ_{n}). Therefore, $\operatorname{Hom}_{\Delta_{1}}\left(M_{i, 1}, M_{n, 1}\right)$ coincides with the multiplications of elements in $\Delta_{n} g_{i}$ from the left side. Let $M_{i, 1}^{*}=\left\{f \in \operatorname{Hom}_{\Delta_{1}}\left(A e_{1}, \Delta_{1}\right) \mid f\left(M_{j, i}\right)=(0)\right.$ for $\left.j \neq i\right\}$. Then $\operatorname{Hom}_{\Delta_{1}}\left(A e_{1}, \Delta_{1}\right)$ $=\sum_{i=1}^{n} \oplus M_{i, 1}^{*}$ as a module. We have isomorphisms $\theta_{i}: M_{n, i}=\Delta_{n} g_{i} \rightarrow M_{i, 1}^{*}$ by setting

$$
\theta_{i}\left(\delta g_{i}\right)\left(x_{i}\right)=\delta^{\varphi^{-1}} \quad \text { and } \quad \theta_{i}\left(\delta g_{i}\right)\left(x_{j}\right)=0 \quad \text { for } j \neq i .
$$

Hence, we have an isomorphism Θ of $e_{n} A$ to $\operatorname{Hom}_{\Delta_{1}}\left(A e_{1}, \Delta_{1}\right)$ via θ_{i} as a module. We shall show that Θ is A-isomorphic. Let $\theta_{i}\left(\delta g_{i}\right)=f \in M_{i, 1}^{*}$ and $m_{k, l} \in M_{k, l} . \quad$ Then $f m_{k, l}: M_{l, 1} \xrightarrow{m_{k, l}} m_{k, l} M_{l, 1} \xrightarrow{f} \Delta_{1}$. Hence if $k \neq i$, $f_{k, l}=g_{i} m_{k, l}=0$. Let $k=i$. Since $m_{i, l} x_{l} \in M_{i, 1}=x_{i} \Delta_{1}, m_{i, l} x_{l}=x_{i} \delta$ for some $\delta_{1} \in \Delta_{1}$. Hence, $\theta_{l}^{-1}\left(f m_{i, l}\right)=\delta \delta_{1}^{\varphi} g_{l}$. On the other hand, $\delta g_{i} m_{i, l} x_{l}$ $=\delta g_{i} x_{i} \delta_{1}=\delta x_{n} \delta_{1}=\delta \delta_{1}^{\varphi} x_{n}=\delta \delta_{1}^{\varphi} g_{l} x_{l}$. Hence $\delta g_{i} m_{i, l}=\delta \delta_{1}^{\varphi} g_{l}$ by Lemma 2. Therefore, Θ is A-isomorphic Hence $e_{n} A$ is A-injective. It is clear that $\operatorname{Hom}_{\Delta_{1}}\left(A e_{1}, \Delta_{1}\right)$ is A-faithful (cf. the proof of Proposition 1). Thus, A has a faithful injective, projective right ideal $e_{n} A$. If we replace a position of $M_{i, 1}$ by $M_{n, i}$ in the above, then we have similarly that A is a left QF-3 ring. Next, we assume that $A e_{1}$ is faithful and $\left[M_{i, 1}: \Delta_{1}\right]=1$. Let $x_{i, j}, y_{j, k}$ be in $M_{i, j}, M_{j, k}$, respectively. If $x_{i, j} x_{j, k}=0,(0)=x_{i, j} y_{j, k} M_{k, 1}$ $=x_{i, j}\left(y_{j, k} M_{k, 1}\right)$. Since $A e_{1}$ is faithful, $y_{j, k} M_{k, 1} \neq(0)$ if $y_{j, k} \neq 0$. Hence, $y_{j, k} M_{k, 1}=M_{j, 1}$. We have shown that $M_{i, k} \otimes y_{\Delta_{k}} y_{k, j} \approx M_{i, k} y_{k, i}$. Therefore, A is a partially PP-ring by [3], Lemma 5.

Similarly to Theorem 2 we have
Theorem 3. Let A be a semi-primally PP-ring. A is a left $Q F-3$ ring if and only if its basic ring is of the form $T_{n}\left(\Delta_{i} ; M_{i, j}\right)$ such that
$\left[M_{i, 1}: \Delta_{1}\right]=\left[M_{n, i}: \Delta_{n}\right]=1$. In this case A is also a right $Q F-3$ ring.
Proof. It is clear from Theorem 1 and Proposition 5.
Finally, we shall generalize Mochizuki's result [6], Theorem 2.3 in a case of semi-primary partially PP -ring.

Let A be a basic QF-3 ring and semi-primary partially PP-ring. We assume that A is indecomposable. Then $A \approx T_{n}\left(\Delta_{i} ; M_{i, j}\right)$ and $\left[M_{i, 1}: \Delta_{1}\right]=\left[M_{n, i}: \Delta_{n}\right]=1$ for all i by Lemma 7 . Hence, we may asume that $\Delta_{1}=\Delta_{n} \equiv \Delta$ and Δ_{i} is contained in Δ. Let $L=T_{n}\left(\Delta, 0, \cdots, 0: M_{i, j}=(0)\right.$ if $j \neq 1$). Then L is a unique minimal faithful projective, injective left A-module. Let $B=\operatorname{Hom}_{\Delta}(L, L)$. Then $B=(\Delta)_{n}$. Let $B_{i, j}=\{f \mid \in B$, $f\left(M_{j, 1}\right)=M_{i, 1}, f\left(M_{k, 1}\right)=(0)$ for $\left.k \neq j\right\}$. Then $B_{i, j} \cap A \supseteq M_{i, j}$, where A is regarded as a subring of B, since L is faithful. By virtue of this imbedding we can regard $M_{i, j}$ as a $\Delta_{i}-\Delta_{j}$ submodule in Δ. In such a setting, we have

$$
B=\left(\begin{array}{c}
\Delta \Delta \cdots \Delta \\
\Delta \Delta \cdots \Delta \\
\cdots \cdots \cdots \\
\Delta \Delta \cdots \Delta
\end{array}\right) \supseteq A=\left(\begin{array}{ll}
\Delta & \\
\Delta \Delta_{2} & 0 \\
\Delta M_{3,2} \Delta_{3} \cdot & \\
\cdots \cdots \cdots & \Delta_{n-1} \\
\Delta \Delta \cdots \cdots \cdots \cdots \Delta
\end{array}\right) \supset L=\left(\begin{array}{cc}
\Delta & \\
\vdots & 0 \\
\vdots & \\
\vdots & \\
\vdots & \\
\Delta &
\end{array}\right)
$$

where $M_{i, j}$ is a $\Delta_{i}-\Delta_{j}$ submodule in Δ and Δ_{i} is a subdivision ring of Δ. Since $B \approx L^{(n) 5)}$ as a left A-module, B is left A-projective and injective.

Lemma 8. Let A and L be as above. Injective envelope of indecomposable left ideal $A e_{i}$ is isomorphic to L.

Proof. Since $M_{i, 1} \neq(0)$, we can take $x \neq 0$ in $M_{i, 1}$. Then $A e_{i} x \approx A e_{i}$ by Lemma 2. Since $A e_{i} x \subseteq L$ and L is indecomposable, L is an injective envelope of $A e_{i} x$.

We note that the double commutator ring of module which is a directsum of n-copies of a module M coincides with that ring of M up to isomorphism.

Summarizing the above we have
Theorem 4. Let A be a semi-primary partially PP-ring and e be an idempotent such that $A e$ is a faithful projective, injective left ideal. Then the following facts hold.
(1) Both the commutator ring $e A e$ and the double commutor ring $B=$ $\operatorname{Hom}_{e A_{e}}(A e, A e)$ of $A e$ are semi-simple.

[^3](2) B is an $A-A$ module which is both the left and right injective envelope of A and left and right A-projective.
(3) If A is hereditary, then A is a generalized uniserial ring with minimal conditions.

Corollary. Let A be as above. If L is an indecomposable A-injective left ideal in A, then L is projective and $L \approx A e, e N=(0)$.

Proof. We may assume A is indecomposable. Let M be a minimal left ideal contained in L, since A is semi-primary, (see [5], p 1106). Then an injective envelope of M^{\prime} is contained in L and hence L is isomorphic to an injective envelope of M^{\prime}. Therefore, B in Theorem 4 contains an isomorphic image of L as direct summand by the proof of Theorem 3.2 in [5]. Hence, L is A-projective by Theorem 4. The second part is clear from Theorem 2.

We conclude this paper with the following examples.
Example. Let K be a field and L proper extension of K. We put

$$
A=\left(\begin{array}{lll}
L & 0 & 0 \\
L & K & 0 \\
L & L & L
\end{array}\right)
$$

where L at $(2,1)$-component is regarded as $K-L$ module and L at (3,2)-component as $L-K$ module. Since a natural mapping $L \underset{K}{\otimes} L \rightarrow L$ is not monomorphic, A is not hereditary by [4], Theorem 1. It is clear that $\binom{L 00}{L 00}$ is a faithful, projective, injective A-module and A is a $\mathrm{PP}-$ ring by Proposition 5 and [3], Proposition 1. Hence, A is a QF-3 and PP-ring and not hereditary. If $[L: K]=\infty A$ does not satisfies the minimal conditions.

Let

$$
A=\left(\begin{array}{cccc}
K & 0 & 0 & 0 \\
K & K & 0 & 0 \\
K & 0 & K & 0 \\
K & K & K & K
\end{array}\right),
$$

then A is a QF-3 and partially PP-ring by [3], Lemm 5. However, A is not a PP-ring and hence, not hereditary.

Osaka City University

References

[1] H. Cartan and S. Eilenberg, Homological algebra, Princeton (1956).
[2] S. Eilenberg, Homological dimension and syzygies, Ann. of Math. 64 (1956), 328-336.
[3] M. Harada, On semi-primary PP-rings, Osaka J. Math. 2 (1965), 154-161.
[4] -, Semi-primary hereditary rings and triangular matrix rings, to appear in Nagoya Math. J.
[5] J. P. Jans, Projective, injective modules, Pacific J. Math. 9 (1959) 1103-1108.
[6] H. Y. Mochizuki, On the double commutator algebra of $Q F-3$ algebra, Nagoya Math. J. 25 (1965) 221-230.
[7] K. Morita, Duality of modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku 6 (1958) 85-142.
[8] H. Nagao and T. Nakayama, On the structure of M_{0} and $M_{u}-m o d u l e s$, Math. Z. 68 (1953) 217-226.
[9] M. Osima, Notes on basic rings, Math. J. Okayama Univ. 2 (1952-53) 103-110.
[10] R. M. Thrall, Some generalizations of quasi-Frobenius algebras, Trans. Amer. Math. Soc. 64 (1948) 173-183.
[11] D. W. Wall, Basic algebras of algebra with minimal faithful representations, Duke Math. J. 32 (1965) 53-63.
[12] M. Harada, $Q F-3$ and semi-primary $P P$-rings II, to appear in this journal.

[^0]: 1) $(A)_{n}$ means a ring of matrices over a ring A with degree n.
[^1]: 2) $[A e: B]_{r}$ means the dimension of $A e$ as a right B -module.
 3) Added in proof. We shall show in [12] that if A satisfies minimum conditions, then A is left QF-3 if and only if A is right $\mathrm{QF}-3$.
[^2]: 4) Added in proof. We shall give a simple proof in [12].
[^3]: 5) $L^{(n)}$ means a directsum of n-copies of L.
