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Recently the author has given a characterization of semi-primary
hereditary ring in [4]. Furthermore, those results in [4] have been
extended to a semi-primary PP-ring in [3], (a ring A is called a left
PP-ring if every principal left ideal in A is A-projective).

This short note is a continuous work of [3] and [4]. Let K be a
field and A an algebra over K with finite dimension. A is called a
QF-3 algebra if A has a unique minimal faithful representation ([10]).
Mochizuki has considered a hereditary QF-3 algebra in [6].

In this note we shall study a PP-ring with minimal condition or of
semi-primary. To this purpose we generalize a notion of QF-3 algebra
in a case of ring. We call A left (vesp. right) QF-3 ring if A has a
faithful, injective, projective left (rvesp. right) ideal, (cf. [5], Theorems
3.1 and 3.2).

Let 1=31FE; be a decomposition of the identity element 1 of a
semi-primary ring A into a sum of mutually orthogonal idempotents
such that E; modulo the radical N is the identity element of simple
component of A/N. If Ax is A-projective for all x€E;AE;, we call A
a partially PP-ring, (see [3], §2). Such a class of rings contains pro-
perly classes of semi-primary hereditary rings and PP-rings.

Our main theorems are as follows: Let A be directly indecomposable
and a left QF-3 ring and semi-primary partially PP-ring. Then 1) there
exists a unique primitive idempotent ¢ in A (up to isomorphism) such that
eN = (0) and every indecomposable left injective ideal in A is faithful,
projective and isomorphic to Ae. Furthermore, A is a right QF-3 ring.
2) Let B=Hom,,(Ae, Ae), where Ae is regarded as a right eAe-module.
Then eAe is a division ring and B=(eAe),”. B is a left and right injective
envelope of A as an A-module and B is A-projective. Furthermore, if A
is hereditary, then A is a geweralized uniserial ving whose basic rving is
of triangular matrices over a division ring. (Mochizuki proved in [6] the
above fact 2) in a case of hereditary algebra over a field with finite
dimension).

1) (A), means a ring of matrices over a ring A with degree n.
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We always consider a ring A with identity element 1 and every
A-module is unitary.

1. Preliminary Lemmas.

In this paper we make use of some results in [3], [4] very often
and we shall here summarize them.

t
Let 1=3FE; be a decomposition of 1 into a sum of mutually orthogo-
i=1

nal idempotents E;. We assume that E;AE;=(0) for i<j and E,AE; is
semi-simple with minimal conditions. Then

A=S,

(1) PEAEDS,

@E,AE,® - DE,AE, DS,

as a module, where S;=F;AE;.
By T(S;; WM, ;=E;AE;) we denote the above expression, and we call
it a gemeralized triangular matrix ring over S; (briefly g.t.a. matrix ring).

Let Sizg@ T;;: T;; is a simple ring. Then we can easily check
that =
M1,1 Ml,p(q)
(2) My g~ M,, M,y

Mp([f),l Mp(p),p(q)

as a S,—S, module, where M, isa T, ,— T,, module and the operations
of S, and S, are naturally defined on the right side of (2).
From [3], p. 160 and the proof of [4], Proposition 10 we have

Lemma 1. Let A be a semi-primary partially PP-ring. Then A is
isomorphic to TAS;; M, ;) such that every row of (2) is non-zero and AE,
is a faithful A-module. Furthermore, let {¢;} be a set of non-isomorphic
mutually orthogonal primitive idempotents e; such that e;N = (0), then
E.=>e; and every faithful projective A-module contains AE, as a direct
summand, where E,=T,1,, 0, ---,0;0) and 1, is the identity element in S,.

If A is isomorphic to T,(S;; M, ;) as in Lemma 1, we call TS, ; I, ;)
a normal vight representation of A as a g.t.a. matrix ring.

Lemma 2. Let A be as in Lemma 1. Then WM; ;QS;x~M; ;x and
¥S; QM =y, . for xeM; , and y&IN, ;. %
&, . . .

See [3], Lemma 5.
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Let K be a field and A a K-algebra with finite dimension. Jans
showed in [5] that A has a unique minimal faithful representation if
and only if A has faithful, projective, injective left ideal L. Since L
is projective, we know that Homg(L, K) is faithful, projective, injective
right A-module.

We are interested in a case of a triangular matrices with minimal
conditions. We shall generalize the above fact in this case.

Now we assume that A is a g.t.a. matrix ring over semi-simple rings
Si; A=Tu(S;; M, ;).

If ¢ is a primitive idempotent, then e¢Ae is division ring. By B we
denote eAe. Since A satisfies the minimal conditions, [Ae:B],” < oo
by [4], §5.

The following lemma is well known in a case of algebra over a field.

Lemma 3. Let A, B and ¢ be as above. If Ae is A-injective, then
Homy(Ae, B) is right A-projective and injective.

Proof. For a finitely generated left A-module M we have
Hompy(Ae, B)@MzHomB(Hom a(M, Ae), B) from [1], p. 120, Proposition

5.3. This isomorphism implies that Homz(Ae, B) is right A-flat. Hence,
Homj(Ae, B) is A-projective by [2]. On the other hand, from an iso-
morphism : Hom 4 (V, Homy(A4e, B))zHomB(N;X)Ae, B) in [1], p. 120 for

a right A-module N we know that Homg(Ae, B) is A-injective, since
Ae is A-flat.

Proposition 1¥. Let A be a g.t.a. matrix ving over semi-simple rings
with minimal conditions. If A has a faithful, injective, projective left
ideal, then A has a faithful, injective, projectve right ideal.

Proof. Let L be a faithful, injective, projective left ideal L =
SPAe;; e; primitive idempotent. Put B;=e;Ae¢; and C;=Homy,(A4e;, B;).
Then C; is right A-projective and injective. Let x=+0in A. Since L is
faithful, xAe;=+0 for some i. Since B; is a division ring, there exists
g in C; such that g(xAe;)=+(0). Therefore, if we put R'=>PC;, then
R’ is a faithful, projective, right A-module. Since C;~>@P¢}A, we have
a faithful, projective, injective right ideal.

If A has a faithful, projective, injective left (resp. right) ideal, then
we call A a left (resp. right) QF-3 ring.

If Ais a g.ta. matrix ring over semi-simple rings with minimal
conditions, then a left QF-3 ring is a right QF-3 and conversely by

2) [Ae: B], means the dimension of Ae as a right B-module.

3) Added in proof. We shall show in [12] that if A satisfies minimum conditions, then
A is left QF-3 if and only if A is right QF-3.
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Proposition 1. However, we do not know whether it is true in a general
ring with minimal conditions.”

We quote here the concept of basic ring following Osima [8].

Let

(3) Z

be a decomposition of the 1dent1ty element 1 of A into the sum of
mutually orthogonal primitive idempotents such that ¢; ;~e, , if and only
if i=h.

For each ¢ we denote ¢;, by ef. Let ¢*= Eel —2 e;,. We call
A*=¢*Ae* the basic ring of A relative to the decomp051t10n (3). We
can find elements c;,;E¢;,Ae; ; and ¢; ;;Ee; ;Ae;, such that c; ;c; ;,=e,,
and ¢; ;¢;;=¢; ;- Put ¢; ;p,=¢; ;:i¢; . We may assume ¢; ,=e¢;,. Then
we have

nM”

Ci ;kCi i’k = = J; :’8k RUSRTY
A can be written
A= ‘ 2 ci,le*ch,lk .
The following observation is a direct proof of [7], Lemma 7. 2.

Let M* be a left A*-module. We put
M = E(M*) = ZZ‘GBC,,I@ )

where c; jefM*~efM* as a module. We can directly check that M is a
left A—module and e¢*M=M?*. Conversely, let M be a left A-module.

Then M= ZZEBe, ;M and M*—Z@e, M is a left A*-module. We

i=1 j=1

define a mapping @ of M to E(M*) by setting
<P(ei,jmi,j = C; j:16; :M; ; -

Then we can easily check that M~E(M¥*) as a left A-module.
Let M and N be left A-modules. Then

Hom 4 (N, M) = Hom (3] ¢; le, ¢ ij) .
For elements f; ,,EHom, x4 (¢; ulN, ¢; wM) and f; ;;€Home,; ;4e; ;(c; 1N,

M) we consider a dlagram

t]l

Sin
cs,nN — ;.M
4
( ) Ci,jl f’. P c: 1
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Then we can easily see that the diagram (4) is commutative for f; ;
=flc; ;N and feHom, (N, M). Converely let M* and N* be left A*-
modules. For f¥= f*|efN of f* in Hom 4«x(N*, M*) we define f; ;, such
that f;,,=f¥ and the diagram (4) is commutative. Then we can show
that f=31f; ; is in Hom,(N, M). Thus we have

Lemma 4. A is a left QF-3 ring if and only if so is a basic ring
of A. (cf. [11], Proposition 5).

2. Main theorems.

In this section we consider a semi-primary QF-3 partially PP-ring A.
From Lemma 4, [4], Corollary 1 and [3], Remark 1 and Lemma 4
we have

Proposition 2. If A is a semi-primary left QF-3 and hereditary
(resp. PP- or partially PP-) ring, then so is a basic ring of A. In the
case of hereditary ring the converse is true.

By N we denote the redical of A.

Proposition 3. Let A be a left QF-3 and partially PP-ring and
semi-primary. Let {e;} be a set of mutually orthogonal primitive non-
isomorphic idempotents such that e;N=(0). Then L=>PAe; is a unique
minimal left faithful, projective, injective A-module.

Proof. It is clear from the definition and Lemma 1.

From Proposition 2 we may first restrict ourselves in a case where
A coincides with its basic ring. Then A/N=>PA;; A, a division ring.

Let A be a g.t.a. matrix ring over division rings A;; T.(A;; M; ;).
We put C(i)={k|M, ;+(0)} and R(j)={k|M; ,+(0)}.

Lemma 5. Let A be as in Proposition 3 and A=T(A;; M, ;). We
assume Ae; is A-injective. If t is the maximal index in C(i), then C(7)
=R(¥), where e;=T,0, 0,1;, 0, 0;0) and 1, is the identity element of A;.

Proof. Put C(¢)= {i(1)<i(2)<---<i(k)=¢}. Then M, ,;=(0) if ac=C(:).
We first show that

(5) M,,=0) a&C@)

If M,,+(0), we take x=+0in M, , and y=+0in M, ;. Since A is partially
PP-ring, for any element z in A 2x=0 impleis z& A(1—e¢,) by Lemma 2.
Hence, zy=0. Therefore, a mapping ¢ of Ax to AyCAe;: zx—>2y is
homomorphism. Since Ae; is A-injective, there exists an element w in
Ae; such that y=xw by [1], p. 8, Theorem 3.2. Therefore, w might be

4) Added in proof. We shall give a simple proof in [12].
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in M, ;. Since @ is non-zero, w is not zero, which contradicts the fact
M, ;=(0). We need a lemma to complete the proof.

Lemma 6. Let A and t=i(k) be as above. Then there exists an
index g=g(l) such that M, ;,,+(0) for any I, 1<I<k.

Proof. We assume M, ;y=(0) for all g and some /. Then My ;
is a non-zero left ideal contained in Ae;. Furthermore, M, ,=(0) for
all g’, because if M,/ ,+(0) (and hence g’>t), then (0)+M, M;;SM, ;.
Hence, Q=M;, ;PM, ; is a left ideal contained in Ae;. Let x+0in A;.
Then a mapping v of @ to Ae; defined by Y(n+m)=nx for n€M;, ;,
meM, ; is A-homomorphism. Since Ae; is injective, there exists an
element z in Ae; such that nz=nx and mz=0. This is a contradiction,
because n=M;,,;, meM:;;. QE.D.

We continue the prove of Lemma 5. We shall show that M, ;.,=(0)
for 1<s<k. We have M, ;=(0) for i(k—1)<b<t, t<b by the definition
of C(i) and ¢. If M;;_,,=(0) for an integer / such that i(k—1)</=¢
=i(k) then (0)M, ;oM SM,;;. Therefore, M, ,=(0) for all
/+t. Hence, we know M, ;4 ,,+(0) from Lemma 6. We assume
M, i.;#(0) for integer ¢> a fixed integer d. By the same argument
as above we obtain M, ,.,=(0) for g=i(r); d<r<k. Hence, we know
by Lemma 6 that there exists an integer f (>d) such that M,-(f),;(,,):t(O).
Therefore, (0)+=M, ;»Mis> ica> S M, ;s> Thus we can prove Lemma 5
by induction.

Theorem 1. Let A be a semi-primary, partially PP-ring. If A
contains a finitely generated projective, injective left ideal L, then A is a
directsum of two rings A,, A, such that A, is a left QF-3 and L is a
Jaithful, projective, injective left ideal in A, and A, is the annihirator
ideal of L in A. In particular if A is a left QF-3, A= PA; as a
ring and there exists a primitive idempotent e; in A; such that Ae; is a
unique minimal, faithful, projective injective ideal and e; is wuniquely
determined up to isomorphism with property e;N=(0), where N is the radial
of A.

Proof. Since A is semi-primary, L~> P Ae;, ¢; primitive idempotent.
As before we may assume that A coincides with its basic ring. Let
T, A;; M; ;) be a normal right representation of A as a g.t.a. matrix
ring. We assume ¢;=T,(o, ---,1;,0,---;0). Let C¥i)=iUC@G)= {i=1(0)
<i()<---<i(k)=t}. For j&C*i) (0)=M, ;2M, ;xM; ; and (0)=M; ;
2M; i»Micpy ;. Hence M, ;= M; ;=0 any i(s)<j and i(p)<j, re-
spectively. Put E= 3 e¢; and E’=1—FE. Then the above facts imply

I O)
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that M, ySEAE+E'AE’ for all k, k. Hence A=EAE®E’AE’ as a ring
and EAED Ae;. Furthermore, EAE~ T, /(A;jy; My p.ico) and Micy 5, =+
M iy are non-zero. Since Ae; is EAE-injective, Ae;=T,(A;», 0, -+,
0; M) i»=(0) if s=1) by the fact (5) in the proof of Lemma 5. Hence,
Ae; is faithful. Therefore EAE is a left QF-3 ring. It is lear that
E’AE’ is the annihitator of Ae;. Repeating the above argument we have
the first part of Theorem 1. The second one is an immediate con-
sequence from the first part and Proposition 3.

ReEMARK 1. Let A=T,(A;; M; ;) be a partially PP-ring and inde-
composable basic QF-3 ring. Then we have obtained in the above proof
that M; ,=+(0) for all ; and hence, M, ;#(0) for all i by Lemma 5.

REMARK 2. We shall see later that the set of those indecomposable
ideals A;e; coincide with the set of indecomposable injective left ideals
in A.

Next, we shall consider a QF-3 and semi-primary PP- (resp. heredi-
tary) ring. We restrict ourselves again to a case of basic ring.

Lemma 7. Let A be an indecomposable basic ring and semi-primary
partially PP-ring. A=T,A;; M; ;) be a normal right representation of
A as a gta. matrix ring. Then [M,;: A, ]=[M;,: A]=1 for all i.
Furthermore, if A is hereditary then [ M; ;: A;1=[M; ;: A 1=1if M, ;=(0).

Proof. We use the same notation as above. Since T,(A;;M; ;) is
a normal representation, Ae, is A-injective. From Remark 1 we know
M, ;+(0) and M;,#(0) for all 7. If [M,,:A,]>2, then we have two
independent elements x, y in M,, over A,. Let @ be a linear mapping
of M,, into itself such that ¢(x)=2x, @(»)=0. Then ¢ is A-homomor-
phism of M,, to Ae,. Since Ae, is injective, this is a contradiction. If
[M,,: A, ]1>2, then there exist two independent elements «’, " in M, ,
over A,. Let «» be a linear mapping of M, ,=A,x" to itself such that
P(x)=y" Injectivity of Ae, implies that there exists an element z in
A, such that x’z=3y’. This contradicts a fact of independency. Since
Mn 12Mn th 1 [Mn i- An]<[Mn i An] 1 and [M, g A1]<[Mn 1 Al] 1
We assume that A is heredltary Then M,,,@M, 1~M,, M, , as A,—A,

module by [4], Theorem 1. Hence 1= [M,,, A,.]>[M,1 Al If M
+(0), (0):!:M M; . =M;,. Hence, 1=[M;,: A;1>[M; ;:A;]. Similarly,

j1=

we have [M; ;:A;]1=1.

Theorem 2. If A is a left QF-3 and semi-primary hereditary ring,
then A is a directsum of rings whose basic ring is a ring of triangular
matrices over division rings. And hence, A is right QF-3 qnd A satisfies
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minimal conditions. The converse is also true, (see Remark 3 below).

Proof. We assume that A is an indecomposable, basic ring. Then
A=TJA;;M; ;) and M;,=+(0) and M, ;=(0) for all i from Remark 1.
We shall show that M; ;==(0) for all i<j. We quote the same notations
of [4], Theorem 1. Since M,,=+(0), we assume that M; ,=(0) for any
]'<i If Mi+1,i:Mi+1‘i—1:"':Miﬂ,t:(o) and Mi+1,£—1:’l:(0)’ then M:’—H,t—x

= i+1,t-1/2Mi+1,kMk,t—1:Mi+1,t—1- On the other hand, Mt,t—let,t~1
k=t

+ (0), since #<i. However, M, ;.. M;.,, =+ (0), M,,M,, =+ (0) and
M, ;M ,NM, M,, ,=(0) by [4], Theoreme 1. Which contradicts
a fact [M,,,: A,]=1. Therefore, we know M;,,; #(0). M, .2
M iM; ;Mg ,+(0). Thus we can prove the fact M; ;+(0) for all
i>j by induction. Since M; ;+(0), [M; ;:A;J=[M; ;: A;]1=1 by Lemma 7.
Therefore, A is isomorphic to a ring of triangular matrices by [4],
Lemma 12. Thus, we have proved Theorem 2.

In the above proof if we replace M;,,,, by a non-zero element x
in M;,,,., and M,,, by a non-zero element y in M,, ,, then M, ;. .x
and M, ,y are not zero by Lemma 2, provided A is a PP-ring. Since
[M,; ,:A,]J=1 by Lemma 7, M, ;.. x=M,,y. This contradicts [3], Pro-
position 1. Hence, we have similarly

Proposition 4. Let A be a left QF-3 and semi-primary PP-ring.
We assume A is indecomposable. Then A is isomorphic to a g.t.a. matrix
ring T,(S;;MM; ;) over simple ring S; and each component of WM; ; in (2)
is non-zero. Therefore, T,(S;; M, ;) is a right and left normal represen-
tation of A as a g.t.a. matrix ring and the nilpotency of the radical is
equal to n. Let S;~(A;)., A; division ring. Then A,~A, and A; is
isomorphic into A,~A,. Furthermore, we assume that A is K-algebra with
Sfinite dimension. Then A is hereditary if and only if A;~A, for all i.

ReMARK 3. Theorem 2 says that the class of the QF-3 and semi-
primary hereditary rings coincides with the class of the rings of di-
rectsum of g.t.a. matrix rings of the following form.

Let A be a division ring and A(x#Xxm) the module of rectangular
matrices of (nxm)-form over A and it is regarded as (A),—(A),, module.

(A)n, 0
A — A(nz X nl) (A)nz

...............

A, X 1) A, X 1)+ (A,

We consider the converse of the first half of Lemma 7.
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Proposition 5. Let A=T,(A;;M; ;) be a g.t.a. matrix ring over di-
vision ring A;. If Ais a partially PP-ring, then Ae, is A-injective and
M; ,+(0) and M, ;%(0) for all i if and only if [M;,:A]=[M,,:A]=1.
Conversely if Ae, is faithful and [M;,:A1=1, then A is a partially
PP-ring, where e,=T,1,, o, - ;0).

Proof. We assume that A is a partially PP-ring. We have proved
“only if” part of the first half in the proof of Lemma 7. We shall
prove “if” part. Since [M;,:A]=1, we put M; ,=x;A, (x,= the identity
element of A,). Since [M,,: A]=[M,,: A,,]zi, there exists an isomor-
phism @ of A, to A, such that x,6=8%, for SA,. It is clear that
Hom, (M; ,, M,.,)=A.f:, where f;&Hom, (M; ,, M,,) such that f(x;)=x,,
(for feHom, (M; ,, M, ,) f(x;)=x,6=8%%,=(8f;)(x;)). On the other hand
M, ;~M, ;x;=M,, by the assumption [M,,: A,]=1 and Lemma 2.
Hence, there exists a unique element g; in M, ; such that g;x; = x,,
(g.=the identity element in A,). Therefore, Hom,, (M;,, M,,) coincides
with the multiplications of elements in A,g; from the left side. Let
M*% = {f=Hom,,(4e,, A)|f(M;;)=(0) for j=i}. Then Hom, (Ae, A,

:i@M’f,l as a module. We have isomorphisms 6;: M, ;=A,g;— M*% |

=

by setting
0:(8g:)(x;) = 8" and 0:88:)x;) =0 for j=+1.

Hence, we have an isomorphism © of ¢,A to Hom, (Ae,, A,) via 0; as a
module. We shall show that ©® is A-isomorphic. Let 6,(8g;)=rM%,
Mg f

and m, ,=M,,. Then fm,,: M,, —> m, ,M,, — A,. Hence if k=i,
Smy,=gm,,=0. Let k=i. Since m;,x,EM;,= x;A,, m; %, = x;6 for
some §,€A,. Hence, 67'(fm;;)=588{g;. On the other hand, 8gm; ,x,
= 8g;x;8, = 8x,8, = 881x, = 887g,x,. Hence Sg;m;,= 88{g, by Lemma 2.
Therefore, ® is A-isomorphic Hence ¢,A4 is A-injective. It is clear that
Hom,, (Ae, A,) is A-faithful (cf. the proof of Proposition 1). Thus, A
has a faithful injective, projective right ideal ¢,A. If we replace a position
of M;, by M, ; in the above, then we have similarly that A is a left
QF-3 ring. Next, we assume that Ae, is faithful and [M;,:A,]=1.
Let x; ;, v, bein M; ;, M; ,, respectively. If x; jx;,=0, (0)=x; ;y; M,
=x; (y;&Mg,). Since Ae, is faithful, y; ,M,,=+(0) if y;,+0. Hence,
v; Mg, =M;,. We have shown that M,-,,,<§A§y,,,,-z i #¥si. Therefore, A
k

is a partially PP-ring by [3], Lemma 5.
Similarly to Theorem 2 we have

Theorem 3. Let A be a semi-primally PP-ring. A is a left QF-3
ring if and only if its basic ring is of the form T, (A;; M; ;) such that
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[M;,:Ad=[M,;:A,J=1. In this case A is also a right QF-3 ring.

Proof. It is clear from Theorem 1 and Proposition 5.

Finally, we shall generalize Mochizuki’s result [6], Theorem 2.3 in
a case of semi-primary partially PP-ring.

Let A be a basic QF-3 ring and semi-primary partially PP-ring.
We assume that A is indecomposable. Then A~ T,(A;; M; ;) and
[M;,: A]=[M,;:A,]=1 for all i by Lemma 7. Hence, we may asume
that A,=A,=A and A, is contained in A. Let L=T,(A4,0,--,0: M; ;=(0)
if 7#1). Then L is a unique minimal faithful projective, injective left
A-module. Let B=Hom,(L, L). Then B=(A),. Let B; ;= {f|€B,
fM; )=M;,, f(M,,)=(0) for k=j}. Then B; ;NA2M,; ;, where A is
regarded as a subring of B, since L is faithful. By virtue of this im-
bedding we can regard M;; as a A;—A; submodule in A. In such a
setting, we have

AA - A A A
B=|AAA|og=]|AA 0 SL=|: 0
AL A A Maats :

AA ceeennnn A A A ,

where M; ; is a A;—A; submodule in A and A; is a subdivision ring of
A. Since B~L™® as a left A-module, B is left A-projective and in-

jective.

Lemma 8. Let A and L be as above. Injective envelope of indecom-
posable left ideal Ae; is isomorphic to L.

Proof. Since M; ,=+(0), we can take x=0 in M;,. Then Ae;x~Ae;
by Lemma 2. Since Ae;xZL and L is indecomposable, L is an injective
envelope of Ae;x.

We note that the double commutator ring of module which is a
directsum of z-copies of a module M coincides with that ring of M up
to isomorphism.

Summarizing the above we have

Theorem 4. Let A be a semi-primary partially PP-ring and e be an
idempotent such that Ae is a faithful projective, injective left ideal. Then

the following facts hold.
(1) Both the commutator ring eAe and the double commutor ring B =

Hom, 4, (Ae, Ae) of Ae are semi-simple.

5) L™ means a directsum of n—copies of L,
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(2) B is an A— A module which is both the left and right injective envelope
of A and left and right A-projective.

(3) If Ais hereditary, then A is a generalized uniserial ring with minimal
conditions.

Corollary. Let A be as above. If L is an indecomposable A—injective
left ideal in A, then L is projective and L=~ Ae, eN=(0).

Proof. We may assume A is indecomposable. Let M be a minimal
left ideal contained in L, since A is semi-primary, (see [5], p 1106).
Then an injective envelope of M’ is contained in L and hence L is
isomorphic to an injective envelope of M’. Therefore, B in Theorem 4
contains an isomorphic image of L as direct summand by the proof of
Theorem 3.2 in [5]. Hence, L is A-projective by Theorem 4. The
second part is clear from Theorem 2.

We conclude this paper with the following examples.

ExaMmpPLE. Let K be a field and L proper extension of K. We put

LO0O
A=|L KO
LLL/,

where L at (2, 1)-component is regarded as K—L module and L at

(3, 2)-component as L— K module. Since a natural mapping LQL—L
K

is not monomorphic, A is not hereditary by [4], Theorem 1. It is clear

that (%88) is a faithful, projective, injective A-module and A is a PP-

ring by Proposition 5 and [3], Proposition 1. Hence, A is a QF-3 and
PP-ring and not hereditary. If [L:K]=oc A does not satisfies the
minimal conditions.

Let

KO0O0O
KKO0O
KO0OKO
K K K K|,

then A is a QF-3 and partially PP-ring by [3], Lemm 5. However, A
is not a PP-ring and hence, not hereditary.
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