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1. Introduction

The general theory of abstract algebraic systems (algebras) introduced
by Professor Shoda [7] has been successful not only to unify earlier
results about many algebraic systems (groups, rings, lattices, etc.) but to
develop further investigations into each individual system. The present
paper is an additional work in those lines. We shall first consider the
relation between congruence relations and congruence classes on universal
algebras and next inquire precisely into the same problem on lattices.

In the present paper by an algebra A we shall mean, following
Birkhoff [1], [2], a system with a number of operations f,: (x,, -+, %,)
EAX -+ XA— fi(xy, -+, x,) €A. A homomorphism ¢ of A onto an algebra
B=0(A) yields a congruence relation on A, which shall be written x==y(6)
or x8y; so

x0y = 6(x) = 6(y) .

Conversely a congruence relation ¢ on A yields a homomorphism of A
onto the algebra 6(A) of classes S(a, §)={x; x6a}, which we shall denote
also by the same notation é.

For the investigation into the structure of algebras such as groups,
rings, etc.,, the following properties on the congruence relations work
effectively :

(@) Every congruence relation is determined by the congruence class
containing a fixed element a; namely

S(a, 6) = S(a, ) implies 6 = @,

(B) Congruence relations on A are permutable.
Some algebras however do not necessarily possess those properties. In
this respect Birkhoff [2] has proposed the following problems.
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Problem 33. Let A be an algebra with a one-element subalgebra a
and permutable congruence relations. Can A have distinct congruence
relations §==¢ such that S(a, 0)=S(a, )?

Problem 73. Find necessary and sufficient conditions, in order that
the correspondence between the congruence relations and ideals of a
lattice be one-one.

About the latter problem we have got an answer in a previous paper
[5], but as stated there, many related matters remain unexplored. It is
rather easy to give examples of such algebras as mentioned in the former
problem, but the connection between the two properties («) and (8) is
not so easily clarified. So we intend in the present paper to deal with
those subjects.

First we shall state in §2 what effect the property («) or (&) of an
algebra A and that of its subalgebras (Theorem 2.1), homomorphic
images (Theorem 2.2) or direct unions (Theorem 2.3) will have on each
other. In §3 we shall give for lattices L some necessary or sufficient
conditions in order that («) or (8) hold, such as Theorems 3.2, 3.4 and
3.5. Especially we shall inquire into the connection between comple-
mentedness and the above properties (Cor. of Theorem 3.2, Theorems
3.3 and 3.6). Finally in §4 we shall deal with some stronger properties
on a lattice L, in reference to which we give a condition that L be
directly decomposed (Theorem 4.4) and clarify the structure of some
lattices (Cor. of Theorem 4. 4).

2. Properties (@) and (8) on universal algebras

We shall write a(¢) to mean that an element ¢ of an algebra A
satisfies the condition

(@) S(a, 0) = S(a, p) implies 0 = @,

and «@(A) to mean that every element a of A possesses the property a(a).

Now if we define <9 to mean that x0y implies xpy, then all
congruence relations on A form a complete, upper continuous lattice ®(A),
which we shall call the structure lattice of A. Let P be a set of pairs
(a, b) of elements of A. We define the congruence relation 6(P) generated
by P as the least of elements 0 of ®(A) satisfying a6b for every pair
(@, b) e P. It follows that O(P)=\/(,secrb(a, b), where 6(a, b) is the con-
gruence relation generated by one pair (@, b), which shall be called a
monomial congruence relation. Then the properties (@) and (8) can be
restated as conditions about monomial congruence relations.

Put @=\/sesca000(a, b). Then it is easily seen that » <@ and S(a, @)
=S(a, 0). Hence if a satisfies a(a), then 0=\/4cs..0,0(a, b). Further if



CONGRUENCE RELATIONS AND CONGRUENCE CLASSES IN LATTICES 73

¢ is monomial, we can find a finite number of b; € S(a, §) such that
0=\/;0(a, b;), since 0 is inaccessible in ®(A).® Conversely if every
monomial congruence relation 6(x, y) is written 6(x, ¥)=\/;0(a, b;), then
for any congruence relation 6 we get 0=\/,,0(x, y)=\/0(a, b;) =
\Vsesca.000(a, b)) <0, and hence S(a, 0)=S(a, @) implies #=@. Thus we have

Lemma 2.1. An element a of an algebra A possesses the property
a(a) if and only if, given x,y€ A, a finite number of elements b; exist
such that 0(x, y)=\/;0(a, b;).

If B(A) holds, from x=y(f(x, 2)\ (y, 2)) it follows that there exists
u €A such that x=u(f(y, 2)) and u=y(0(x, z)). Conversely if such =
exists, then xpzyy implies xJrupy, since 6(x, 2) <@ and 0(y, 2) <+

Lemma 2.2. Congruence velations on an algebra A are permutable if
and only if, given x,y, z€ A, an element u exists such that u=x(60(y, z)),
u=y(0(x, 2)).

Let S be a subalgebra of an algebra A. A congruence relation 6 of
A can be regarded as a congruence relation 6* on S, provided the range
of elements is restricted in S. When P is a set of pairs (a, b) in S, by
0*%(P) we denote the congruence relation on S generated by P. If 6* is
the congruence relation on S induced by 6=60(P)=\/6(a, b), then we have
ab*b, 0* =6*(a, b) and 6* =\/6*(a, b)=6*(P). Hence x=y(6*(P)) implies
x0*%y and x=y(0(P)). Next assume 0*(P)=6*(Q) in O(S) and (a, b) € P.
As shown above, from a=5b(0*(Q)) we can deduce a=0b(0(Q)), that is
0(a, b)) <0(Q) and hence 0(P)<0(®). In summary

Lemma 2.3. If x=y(0*(P)) holds in a subalgebra S of an algebra
A, then x=y(@(P)) holds in A. 0*(P)=60*%Q) in S implies 0(P)=06(Q)
in A.

Using the above lemmas, we can infer

Theorem 2.1.®. An element a possesses the property o(a) in an
algebra A if every triple {a, x, y} is contained in a subalgebra S satisfy-
ing o(a).

Proof. If @, x, y are contained in S satisfying «(a), we can choose by
Lemma 2.1 b; €S so that 0*(x, y)=\/;6*(a, b;), whence 0(x, y)=\/;0(a, b;)
by Lemma 2. 3.

Similarly from Lemmas 2.2 and 2,3 we can deduce

1) 6 is called inaccessible if a set {6.} satisfying \/0r =0 contains always a finite subset
{63 {0\} satisfying \/6;=0.
cf. J. Hashimoto [6, Lemma 2. 3].
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Theorem 2.1.8. Congruence relations on an algebra A are permutable
if every triple {x,y, 2} is contained in a subalgebra S on which congruence
relations are permutable.

Now it is naturally guessed that the property of an algebra A may
yield the same property of its homomorphic image 6(A). Let us affirm it.

Let @* and * be congruence relations on 6(A). Then @*f(x) and
J*0(x) are homomorphisms of A and generate congruence relations ¢
and ¥ on A such that ¢ =8, ¥ =0, and it is obvious that 0(x)=0(y) (¢*)
is equivalent to x=y (@). So S(@(a), p*)=S(0(a), ¥v*) implies S(a, )=
S(a, V) ; hence if a possesses the property «(a) in A, then S(0(a), p*)=
S(b(a), ¥*) implies o=+ and @*=+*. If @ and  are permutable, then
xpzyry implies xyrupy; namely 0(x)p*0(2)y*0(y) implies O(x)Y*0(u)p*6(y)
and hence @* and * are permutable. Thus we have

Theorem 2.2.&. If an element a possesses the property ca) in an
algebra A, then its homomorphic image 6(a) possesses the same property
in 9(A).

Theorem 2.2.8. If congruence relations on an algebra A are permu-
table, then congruence relations on its homomorphic image 0(A) are also
permutable.

Next we shall consider the case that A is decomposed into a (finitely)
restricted direct union of {A,;» € Q}; namely A is a subsystem of the
complete direct union ITA, satisfying that {x,} € A implies {y,} €A if
and only if the set of indices {»; x,=Fy,} is finite. If A possesses one
of the above properties, then each component A, satisfies the same
property, since A, is a homomorphic image of A. But the converse does
not necessarily hold. Indeed, let S be the (simple) semilattice of two
elements {0, 1} with an operation . Then it is easy to see that no
element of Sx S satisfies (@) and congruence relations on Sx S are not
permutable. Yet if the structure lattice ®(A) is distributive, then we
can prove the converse.

Theorem 2.3. Let A be an algebra with a distributive structure
lattice ®(A) and decomposed into a restricted dirvect union of algebras
{A,;0€Q}. Then

a: An element a={a,; » €Q} satisfies a(a) in A if and only if every
component a, satisfies &(a,) in A,,

B: Congruence relations on A are permutable if and only if congruence
relations on each A, are permutable.

2) cf. J. Hashimoto [6, p. 92].
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Proof. Let 6, be the homomorphism from x € A to its ®-component
x,: 6,(x)=x,. Given a congruence relation ¢ on A, we put @, =60, Jp.
Since x,=y, implies @ (x)=9. (), ¢¥(x,)=p.,(x) becomes a homomor-
phism of A, and x 9%y, is equivalent to x@,y. We first show A, @, ,=o.
Assume r=y(/\,P,) and A={o; x,==y,}. Then x=y(/\,ca-20,). Since
A is finite and ®(A) is distributive, we get N\, ca Po=PVV/ \ueab,. It
follows from /\_,0f,=0 that /\, co-20,N(@PV/\,cab,)=®. Hence we
have x=y(p), proving /\,®,=®.

Now suppose that every q, satisfies a(e,) in A, and S(a, ¢)=S(a, ¥)
in A. If x,9¥a,, then x=a(d,vp) and we can find y€ A such that
x0,ypa, since the decomposition congruence relation 6, is permutable
with ¢ in the distributive ®(A).® Then we have x0_ yJra, that is xyr a
and hence x,Yy¥*a,. Thus we can infer S(a,, ¢¥)=S(a,, ¥¥), p*¥=-y¥k,
@,=v, and hence @=1, proving a.

Next suppose that congruence relations on each A, are permutable
and r=y(puy) in A. Then we can find 2z, in each A, satisfying
x,P¥z ¥y, and an element % in A such that ,=z, for e €A = {0 ; x,==y,}
and u,=x, for ®€Q—A. It is easily seen that xp uy, y for all @ €Q
and hence xpuyry, which shows that ¢ and v are permutable.

The example Sx S mentioned before shows that the distributivity of
®(A) cannot be dispensed with even if A is completely reducible. In
that case however we can show that the condition B(A) implies the
condition a(A).

Theorem 2.4. Let A be an algebra with permutable congruence re-
lations and decomposed into restricted divect union of simple factors
{A,; »€Q}. Then every congruence velation is determined by any one
class.

Proof. Assume that S(a, ¢)=S(a, ¥) and ¢<+. Using the results
in our previous paper [6], we can find their complements ¢’ and v such
that @' =/\, embs, V' =/\went, wWith MCNCQ,” where 0, are the same
as defined in the proof of Theorem 2.3. If € N—M, then we can
choose an element x={x,} €A so that x,=a, for =% and =x,4a,;
accordingly x=a(¢’) and x==a(y’). Since ¥y’ =1 and they are permu-
table, y € A exists such that xJ/y{ra and hence ypa by the assumption.
If follows from y'x9’a and @’ =4’ that yp’a and y=a, since ¢’ =0.
Then we have xvy’aq, that is a contradiction. Therefore we can infer
M=N, ¢'=v’ and @=@\u'Nn{y)=(pu{’)ny=+, for permutable con-
gruence relations satisfy the modular law.

3) cf. J. Hashimoto [6, Theorem 6. 2].
4) cf. J. Hashimoto [6, Theorem 5.2 and Lemma 4.5].
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The main results about universal algebras that we have obtained are
mentioned above, but it seems that those theorems may hold under some
weaker conditions. For instance we propose

ProBLEM 1. Can the distributivity of ®(A) in Theorem 2.3 be re-
placed by the modularity ?

As to the property («) the way in which congruence relations are
determined shall be a matter of question. In a group with the identity
¢ a congruence relation 6 is determined by an operation xy from the
class S(e, 6) so that S(x, 0)={xy; y€S(, 6)}. In general if a congruence
relation ¢ on an algebra A satisfies

(r") S(x, 0) = {f(x, 9); y € S(a, 6)}

for a fixed element @, then it is shown that the permutability follows.
Indeed, x8zpy implies x=f(z, u) with u € S(a, ) and x=f(z, u) Pf(y,u)
0f(y, a) € S(y, 0), since a € S(a, 9).

Theorem 2.5. If a congruence velation 0 satisfies (v*) for a fixed
element a and an operation f, then 0 is permutable with any congruence
relation.

Let G be a quasi-group with operations xy, x/y, y\x and relations
xy/y=\yx=(x/¥)y=y(»\x)=x. Then 20x implies y=x\zaba and z=xy/a ;
hence ¢ satisfies (y*) for the operation f(x, y)=xy/a.

Corollary. Let G be a quasi-group with operations xy, x/y and y\x.
Then all congruence relations on G are permutable.

3. Properties (@) and (8) on lattices

In a lattice the substance of Lemma 2.1 can be expressed more
simply. Indeed, by putting b=/\b; and ¢=\/b; in that lemma, we infer

Theorem 3.1. An element a of a lattice L possesses the property
o(a) if and only if, given x,y €L, there exist b, c €L such that 0(x, y)=
O0(anb, avc).

It is obvious that 8(anbd, a)=0(b, a\ub) and if x’ is a relative comple-
ment of x in a closed interval [a, y], then 0(x, y)=0(a, x'). Hence the
following well-known proposition is immediately deduced from the
theorem.

Corollary. If all intervals [0, x] of a lattice with O are complemented,
then a(0) holds.

Now we shall introduce some terms about elements of lattices. An
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element a of a lattice L shall be called modular if
x <y implies xv(any) = (xva)ny,
and distributive if it satisfies
an(xvy) = (anx)v(any), av@xny) = (avx)n(avy)

for all x, y€ L. It is easy to show that « is neutral if and only if it is
both modular and distributive. In connection with those elements we
intend to deal with the properties («) and (B).

Theorem 3.2. Let an element a possess the property a(a) in a lattice
L. If a is distributive in L, then a satisfies &(a) in (a] and [a). Con-
versely let a possess the property a(a) in (a] and [a). If a is modular,
then a satisfies a(a) in L.

Proof. If a is distributive, then the mapping x—>anx is an endo-
morphism of L onto (¢]. So it follows from Theorem 2. 2.« that «(a)
in L implies (@) in (¢] and dually in [@). Conversely let @ possess the
property @(a) in (] and [«), and [x, y] be any interval in L. Then by
Theorem 3.1 we can choose b € (a] so that 6*(anx, any)=60%(a, b) in (a],
whence f(anx, any)=6(a, b) in L by Lemma 2.3. Similarly we have
Olavzx, avy)=6(a,c). Put @=0(anx, any)vllavx, avy). It is easy
to see p<<6(x,y). If a is modular, then we x=xv(anx)pxv(any)=
(xva)nyp(y\va)ny=y, showing p=6(x,y). Hence 0(x, y)=0(a, b)\vb(a,c)
=0(b, ¢) and by Theorem 3.1 a satisfies a(a) in L.

Referring Cor. of Theorem 3.1, we infer

Corollary 1. If a is a modular element in a lattice L and all intervals
of types [x, al, [a, y] are complemented, then S(a, ) =S(a, ¢) implies 0 =o.

The condition that @ is modular cannot dispensed with. In fact, in
the five-element non-modular lattice {a, b, ¢, 0, 1}, where d< ¢, anb=an
¢=0, avb=avc=1, the element «, which is distributive but not modular,
does not satisfy @(a); nevertheless all intervals containing ¢ are comple-
mented (see also Theorem 3.3). Further all congruence relations on
this lattice are permutable; hence this gives a simple example of such
algebras as stated in Birkhoff’s Problem 33.

As is shown in a previous paper [5], a distributive lattice L is
relatively complemented if every congruence relation on L having an
ideal as a congruence class is determined by that ideal. Hence

Corollary 2. The following conditions concerning an element a of a
distributive lattice are equivalent .
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(1) Every congruence relation is determined by the class containing a,

(2) All intervals of types [«x, al, [a, y] are complemented.

Though we have mentioned in Cor. of Theorem 3.1 that «(0) holds
when all intervals [0, x] are complemented, as a matter of fact not only
0 but all elements satisfy («) in that case. We first show

Lemma 3.1. Let an element a satisfy a(a) in a lattice L. If all
intervals containing a are complemented, then every element x in L satis-

fies a(x).

Proof. Let 8 be a monomial congruence relation. By Theorem 3.1
we can choose b, ¢ so that b<<a<c¢ and 0=46(b, c). Let y be a relative
complement of ¢ in the interval [, cux] containing @, and z a relative
complement of cn(x\vy) in [a@nx, ¢]. Then using the identity 8(unv, u)
=0(v, u\vv), wet get

0(b, c) = 0(y, cux) = 0(y, xIY)VO(x VY, cUKx), 0y, xIY) = 0(xNY, x)

and
O(x vy, cux) =0(cn(xVvy), ¢) =60@nx, z) =06z, xJ2),

since cvxuy=cux and xnz=anx. Hence 0=0xny, x)vo(x, x\z2)=
0(xny, xvz) and thus x satisfies a(x) by Theorem 3. 1.

Now let m be a modular element in a lattice L and all intervals
containing m complemented. Then by Cor. 1 of Theorem 3.2 m satisfies
a(m) and by Lemma 3.1 L satisfies @(L). Moreover we can show that
congruence relations on such a lattice L are permutable.

Theorem 3.3. Let m be a modular element in a lattice L. If all
intervals containing m are complemented, then (L) and B(L) hold ; namely

«: every congruence relation is determined by any one class,

B: all congruence relations on L are permutable.

Proof. It is sufficient to prove 8. We shall first show for ¢ <<c¢<0
that afcpb implies apc’0b for some element ¢’ with a<<c¢’<b. Let x be
a relative complement of ¢um in the interval [anm, bum] and y that
of (cvx)nm in [(avx)nm, m]. Then we get

x=xnbumypxn(cum)=anm, y=yu((avx)nmbyv((cvx)nm)=m,
and

a=av(@nmpavx = ((avx)nm)v(@vx) = ((cvx)nmny)J(a\x)
P((bvx)ynmny)u(avx)f((bvx)ynm)v(cvx) = (bux)n(myucux)
= bux)n(bum) =bux,
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Hence if we set ¢’ =bn(((bvx)nmny)vavx), then apcdb.

Now suppose that «, b, ¢ are any elements and afcpb. Then we can
deduce abacpasb\clbcpb and find by the above proof u, v such
that eu<<avbvuc=v=>b and apuba v bvcpvdb. It follows that u=un
(@vbyuc)ypunvd(avbuc)ynv=v and apunvdb, completing the proof.

The modularity of s cannot dispensed with. On the lattice of Fig.
1 shown below congruence relations are not permutable; nevertheless
all intervals containing m are complemented.

It follows from this theorem that a lattice L with O satisfies a(L)
and B(L) if all intervals [0, x] are complemented. Such a lattice in which
all intervals [0, x] are complemented is called section-complemented. For
a lattice L without O we shall define L to be section-complemented when
every element of L is contained in a section-complemented principal
dual ideal. If a lattice L is section-complemented, then any three elements
x, ¥, 2 are contained in a section-complemented dual ideal S=[«), in which
a(S) and B(S) hold ; hence by Theorem 2.1 we can infer

Corollary. In a section-complemented lattice every congruence relation
is determined by any one class and all congruence relations are permutable.

Again in a distributive lattice L with 0 we see that «(0) implies
a(L). Then one may question in general how the property of some
elements influences other elements. It may be conjectured that, if a(a)
and «(b) hold and @a<c=b, then so does «(c), but the conjecture is
affirmative only for an (upper) distributive element c.

We shall write [, b]—[x, y] if an interval [x, y] is contained in a
transpose of [a, b], and call [x, y] to be weakly projective into [a, b] if
there exist a finite number of intervals [x;, ¥;] such that

[d, b] = [xm yo] - [xu yl] > e > [xm yn] = [x> y] .
Then Dilworth [3] has proved

Lemma 3.2. x=y(0(a, b)) holds if and only if there exist a finite
number of elements z; such that

INY =2, =2, =" =2, =X\V)Y

and each [z;_,, z;] is weakly projective into [anb, a\vb].

If an element d is upper distributive, that is dvu(xny)=(dvvx)n
(dvy) for all x, yeL, then it is obvious that [a, b]—[x, y] implies
[evd, bud]—][xvd, ywd]; hence we obtain

Lemma 3.3. If [, y] is weakly projective into [a, b] and d is upper
distributive, then [xvd, yvd] is weakly projective into [avd, b d].
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Then we show

Theorem 3.4. Let d be an upper distributive element contained in
an interval [a, b]. If «(a) and a(b) hold, so does a(d).

Proof. Let 6 be a monomial congruence relation. Then by Theorem
3.1. we can choose s, £, 4, v so that s<a<#, u<b<v and 6=0(s, t)=
O(u, v), and it suffices to show 0=0(dnu, dt). Since dnubdnv=d=
dusbdut, 0 =p=60(dnu, dt). Since u=wv(d(s, t)), by Lemma 3.2 there
exists a chain u=wu,<u,<---<wu,=v such that every [u;_,, ;] is weakly
projective into [s, ¢] and hence [u;_,\d, u;\vd] is weakly projective into
[svd, tvd] & [dnu, dut]. Therefore we get uvdpv. On the other
hand drnupd implies upu\d. Thus we have wpv and ¢=6(u, v)=0,
completing the proof.

Further a distributive element d satisfying «(d) is neutral. We
show more generally

Theorem 3.5. If a distributive element a satisfies «(a) in a lattice
L, then every distributive element d in L is neutral.

Proof. @(x)=dnx and +(x)=dvux are endomorphisms in L. If
x=a(pn), then dnx=dna, dux=dvua. Hence we get

a=an(dva) =an(dvx) = (and)v(@nx) = {@nx)v(@nx)=x

and dually a=x. So S(a, pnY)=S(a, 0) and p=0. Then the map-
ping x—(dnzx, dux) is a subdirect decomposition; accordingly d is
neutral. If either d<<a or d =a, we can dispense with the distributivity
of a.

If a,anb and avub are neutral, then it is easy to show that & is
neutral. Using this fact, we can prove by induction that a lattice of a
finite length possessing a maximal chain which consists of neutral elements
is distributive. Hence from the above theorem we can deduce

Corollary. Let a lattice L of a finite length possess a maximal
chain which consists of distributive elements. If «(0) holds, then L is a
Boolean algebra.

In contrast with this the five-element non-modular lattice cited
before possesses a maximal chain {0, ¢, 1} whose elements are distributive.

As to the converse of Theorem 3.3, we can assert the following
theorem concerning distributive elements.

Theorem 3.6. Let all congruence relations on a lattice L be permu-
table. Then a distributive element d has a relative complement in every



CONGRUENCE RELATIONS AND CONGRUENCE CLASSES IN LATTICES 81

interval [a, b] containing it. If d possesses the property a(d) moreover,
then L= (d]x[d).

Proof. Put ¢(x)=dnx and Y(x)=dvx. Then aydpb. Since ¢ and
4r are permutable, we can find ¢ such that apcyb, whence dnc=dna=a,
dvuc=dvb=>b. The latter half is evident, since d is neutral by Theorem
3.5.

Corollary. On a distributive lattice L the following conditions are
equivalent :

) L is relatively complemented,

(2) Every congruence relation is determined by any ome class,

(3) Congruence relations on L are permutable.

One of our objects is to inquire into the connection between the
conditions (2) and (3) given above, but in arbitrary lattices we cannot
find such a close connection as in distributive lattices. Only on locally
finite modular lattices® L we can affirm that S(L) implies @(L). For
congruence relations on such a lattice L form a Boolean algebra; hence
if congruence relations are permutable, L is decomposed into a restricted
direct union of simple factors and accordingly all elements in L satisfy
(@) by Theorem 2.4. However not so does a modular lattice having an
interval of infinite length. The lattice of Fig. 2 shown below is modular
and congruence relations on it are permutable, but «(0) does not hold.
Again the converse «(L)—>B(L) does not hold even in a finite modular
lattice. Fig. 3 shows the simplest example of such lattices all of whose
elements satisfy («) but on which congruence relations are not permutable.

N D

'S

)

ko)

&

Fig. 1 Fig. 2 Fig. 3

4. A structure theorem for lattices

The property (v*) mentioned in §2 is meaningless in lattices, for

5) A locally finite lattice is a lattice in which every closed interval has a finite length,
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the set {f(x, y); y€S(a, )} is contained in the sublattice generated by
S(a, ) and x; so even the lattice 2x 2 does not satisfy (y*). But in a
section-complemented lattice a congruence relation 6 is determined by
some operations in the following way.

Let a be an element of a lattice L and @ a congruence relation on
L. By J(a, ) and J'(a, 0) we shall denote the ideal and the dual ideal
respectively generated by the class S(a, ). If x€ J(a, ) we can find
y=x with y0a, whence xvabxvuy=yfa; so we may write J(a, )=
{#x; xvaba}. Then a congruence relation & on a section-complemented
lattice possess the property

(v) If x6y, there exists s € J(a, ) satisfying xvy=(xny)Us.

Indeed, let a, x, y be contained in a section-complemented dual ideal
[6) and s a relative complement of xny in [b, xvy]. If x0y, we get
s0b, svaba and sé€ J(a,6). Even in the case that intervals [a, x] are
complemented, we see, by taking a relative complement s of av(xny)
in [a, avxvy], that the element « satisfies a somewhat weaker condition

(8) If x60y, there exists s € S(a, 0) satisfying x vy<(xNy)VUs.

We shall deal in the present section with those properties. By (v')
and (¢’) we shall mean the dual of (y) and (8) respectively. Further we
shall write (e, ) to mean that (y) holds for an element ¢ and a con-
gruence relation 6, v(a) that all congruence relations 6 satisfy y(a, ) and
v(0) that all elements a satisfy v(a, 6).

Now we shall call a lattice L to satisfy the restricted chain condition
if every closed interval of L satisfies either one of chain conditions.

Lemma 4.1. Let L be a section-complemented lattice satisfying the
restricted chain condition. Then every congruence relation 0 satisfies &(0).

Proof. Suppose 26y and x<y. Let [b) be section-complemented and
contain a, x,y. If [b, a] satisfies the ascending condition, we can find ¢
such that [b, a]nS(b, 0)=[b, c]. Let ¢ be a relative complement of ¢
in [b, @] and » that of xn¢ in [b, ynt]. Then we get udb, u=<c and
u<cnt=>b. Hence ynt=xnt<x with t0a. If [b, a] satisfies the de-
scending condition, then [b, a]nS(a, 0)=[t, a] for some ¢#. Let u be a
relative complement of xn¢ in [b, yn¢] and v that of » in [4, £]. Then
u0b, vba and v=t¢, whence v=¢ and u=b. So we have ynt=xnt with
tba.

ProBLEM 2. Can the chain condition in Lemma 4.1 be dispensed
with ?

We shall now state the relation between the above conditions and
the conditions (@), (8).
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Lemma 4.2, xvy=xny)us and xny=(xvy)nt with s< J(a, ),
t €S(a, ) imply x0y.

Proof. It suffices to prove for x=<y. It follows that y=xwv(yn
(sva)=xv((xvs)ns)=xus=y and xv(yn(sva))bxu(ynt)=x, since
svababt. Hence x0y.

Lemma 4.3. Let m be a modular element. xvy<(xny)vs and
xny=(xvy)nt with s, ¢ € S(m, ) imply x6y.

Proof. If x<y, we have x=xvu({ny)fxv(mny)=(x\um)nyd(x\s)
nNy=y.
From those lemmas the following theorem is immediately deduced.

Theorem 4.1. «v(a) and &(a) imply «(a). If m is a modular element,
then 8(m) and &(m) imply c(m).

Theorem 4.2. If a congruence relation 6 on a lattice satisfies &(0)
and &(0), then 0 is permutable with any congruence relation .

Proof. Suppose xfypz. If x=y=2z we can find s€S(z 6) such
that x<ywus and hence x=xN(yvs)pxn(z2vs)dxnz=z. Dually for the
case *<y<z we obtain u€[x, z] with xpufz. Then, whenever x0ypz,
we can derive xpufz in the same way as the proof of Theorem 3. 3.

Next we shall investigate direct decompositions of a lattice in con-
nection with the property (y). Let @ be a decomposition congruence
relation and suppose x6y with x<y. If we choose s so that afs&’y,
where ¢ is the complement of 6, then it is easy to see x\(sny)8y,
x\J(sny)@y and so xv(sny)=y with sny> J(a, ). Hence a decomposi-
tion congruence relation 0 satisfies y(0) and 7'(d). The converse of this
fact is our main object in this section. Before stating it, we must deal
with some related matters. Since ¢ <<b implies J(a, 6) < J(b, 0), we have
first

Lemma 4.4. If a<b, v(a, 0) implies (b, 6), and &(a, 6) implies 5(b, 6).

Lemma 4.5. Let 6% be the congruence velation induced by 6 on an
interval [b, c] containing a. If 0 satisfies y(a, 6) or &a, 0) in the whole
lattice L, then 0* satisfies the same condition in [b, c].

Proof. If y=xus, s€J(a, 0) for x, y€[b, c], then y=xubus, bus
€ J(a, On[b, cl=J(a, 6%). If y<xUt, t€S(a, 6) for x, y€[b, c], then
y=xvbut, buteS(a, )n[b, c]=S(a, 6%).

Lemma 4.6. Let X, Y be any ideals containing a and set J=J(a, 6).
If 0 satisfies 8(a, 0), then [V (XNY)=(JuX)Nn(JVY), and if 0 satisfies
v(a, 0), then XN (JuY)=(Xn]J)v(XnY).
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Proof. x€X, y€Y and t€]J, we set u=xva, v=yva. Then it is
easy to show (fvu)N(fuv)funv and un (fvv)dunw. If 6 satisfies 8(a, 0),
we can find s€S(q, §) such that (fvu)Nn(vv)<(mnv)us and hence
Euxr)n(tuy)<sunov) e Ju(XnY). If 6 satisfies (e, 0), we can find
s€J(a, 6) such that un(fvv)=@mnov)us. From s<u, s€ XnJ follows.
Then xNn(tvuy)<svuunov)e(XnJ)v(XnY).

According to Gritzer and Schmidt [4], an ideal J satisfying
XN(JuvY)=(Xn]J)u(XnY) for all ideals X, Y is called standard. Every
standard ideal J is upper distributive, ie. JU(XNY)=(JuX)Nn(JvY)
for all ideals X, Y. Now, given an ideal J, put 0(J)=\/,:;0, b). If
J is upper distributive, then 6(x)=Jv(x] is a homomorphism of the
lattice into its ideal lattice with the kernel J and it is easy to see 6=0(]).
If a€], then x0y and x<y imply y<xuUs for some s€ J=S(a, §);
namely 0 satisfies (e, ), and by Lemma 4.4 we can show that 9 satisfies
8(0). Moreover if J is standard, then the above y satisfies ye€(y]n
(Jy(x]D=(y]1nJ)v(x], whence there exists # € J such that y<(ynt)vzx;
namely y=xv(ynt) with ynt€J. Hence 6 satisfies vy(a, ) and so v(0).
Referring Lemma 4. 6 again, we get

Lemma 4.7. An ideal ] is upper distributive if and only if J is a
class of a congruence relation 0 satisfying 6(6), and standard if and only
if J is a class of 0 satisfying v(6).

Then we show the first main theorem.

Theorem 4.3. Let 0 be a congruence relation on a lattice L with 0, 1
satisfying the conditions (0, ) and v'(1, 6). If S, 0) has a maximal
element c, then c is in the center of L ; accordingly 0 is a decomposition
congruence velation.

Proof. It follows from Lemma 4.7 that xn(cuy)=(xnc)v(xny)
for all x, y€L, since (c]=S(0, 8). Accordingly it suffices to show that
xvu(eny)=(xvc)n(xvy) and ¢ has a complement ¢’. By v/(1, §) we can
find ¢’ such that O=cn¢ with ¢01. If a<c¢’ and afl, then by (0, 6)
we get 1=aqub for some b€ S(0, §)=(c] whence auc=1 and especially
cvc'=1. Moreover we see ¢’=c'Nn(cva)=('Nnc)u(c’Na)=a; hence we
obtain S(1, 6)=[¢’) and xv(c'Nny)=(xvc)N(xvy) by the dual of Lemma
4.7. Put u=xv(cny) and v=(xvc)Nn(xvy). Since y=yn(cvc)=(ynNc)
v(ync), we have yuc'=(ync)vce and uvc'=xvuyvuc =v. Then

v=(@vc)Nnmuv)=uu(c'Nnv)=uv(lc'N(cvr)Nn(xuy) =uu(dNnx)=u.

Further the theorem is true for a lattice L without 0, 1. If (c] is
a class of 0 satisfying (¢) and ¢’(f), then by Lemma 4.5 v(a, 6*) and
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v (b, 6*) hold in every interval [a, b] containing ¢ and hence ¢ is in the
center of [a, b]. Then corresponding (x,, x,), where x, €(c], x.€[c), to
the relative complement x of ¢ in [x,, x,], we have L=(c]x[c).

Corollary. Let 0 be a congruence relation satisfying v(0) and r'(0)
‘in a lattice L. If a principal ideal (] is a class of 0, then L==(c]x[c).

If the ideal J=S(0, ) is not principal, then J cannot become a direct
component of the lattice with O, 1; however we doubt if it should be
neutral.

ProBLEM 3. Let @ be a congruence relation satisfying v(f) and v/(9),
and possessing an ideal J as its class. Is J necessarily neutral ?

Theorem 4.4. Let L be a lattice satisfying the restricted chain
condition. Then a congruence relation 0 on L is a decomposition congruence
relation if and only if it satisfies v(6) and +'(0).

Proof. Assume () and +/(0). As @ is permutable with every con-
gruence relation, we need only show that 6 has a complement ¢. Let
{p,} be the set of all congruence relations @, satisfying é@,=0 and
put @ =\/@,. Then 610 =0, since (L) is distributive and upper conti-
nuous. We shall show 6ué =1. Let [q, b] be any interval in L. If
[a, b] satisfies the ascending condition, then we can find ¢ such that
S(a, O)n\[a, b]=[a, c] and, as is shown above, ¢’ such that S(b, )"\ [a, b]
=[c, b]. Put @=0(c, b) and assume x=y(@Nn@) with x<y. We can
choose a chain x=x,<x, <. -<x,=y so that each subinterval [x;_,, x;]
be weakly projective into [c¢, ]. Further, taking a sufficiently large
interval [ f, ¢] containing a, b, ¢, x, ¥, we can make every [x;_,, x;] be
weakly projective into [¢, ] in that interval [ f, ¢]. There exists d such
that S(f, )N f, el=[f, d]. Then, since d is neutral in [ f, ¢], [dnx;_,,
dnx;] is weakly projective into [dnc¢, dnb] by Lemma 3.3. On the
other hand we get (evd)nbba, (avd)Nb<c<b and hence dnc=dnb.
So we see dnx;_,=dNnx; and dnx=dny. Morever since x8y in [ f, ¢],
y<xvud and dux=dvuy. From those equalities and the neutrality
of d, we infer x=y, showing =0 and ¢<6¢. Then c¢=b(@) and
a=b(@v¥); hence 08 =1.

And we can immediately deduce

Corollary 1. Let L be a lattice satisfying the restricted chain condi-
tion. Then L is decomposed into a (vestricted) direct union of simple
lattices if and only if all congruence relations on L satisfy the conditions
(v) and (7).
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It has been proved that a congruence relation # on a section-comple-
mented lattice satisfies () ; hence we infer

Corollary 2. Let L be a section-complemented lattice satisfying the
restricted chain condition. If its dual is also section-complemented, then
L is a (restricted) direct union of simple lattices.

This is a generalization of the results about relatively complemented
lattices in Dilworth’s [3] and the author’s [6] previous papers.
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