PERTURBATION AND DEGENERATION OF EVOLUTIONAL EQUATIONS IN BANACH SPACES

Dedicated to Professor K. Shoda on his sixtieth birthday

By

MITIO NAGUMO

§ 1. Completely well posed evolutional equations

Let E be a Banach space and E_1 be another Banach space such that $E \subset E_1$ and the embeding of E into E_1 is continuous. Let A(t) be a continuous linear mapping of E into E_1 for every fixed t in the real interval [a, b] such that A(t)u is a continuous function on [a, b] into E_1 for every fixed $u \in E$. Then we can easily see, A(t)u(t) is continuous on [a, b] into E_1 , if u(t) is continuous on [a, b] into E.

As an E-solution in [a, b] of the evolutional equation

(0)
$$\partial_t u = A(t)u + f(t) \qquad \left(\partial_t = \frac{d}{dt}\right),$$

where f(t) is an E-continuous function on $[a, b]^{1}$, we understand an E-continuous function u=u(t) on [a, b] such that the strong derivative $\partial_t u = \lim_{h \to 0} h^{-1} \{u(t+h) - u(t)\}$ exists in E_1 for $t \in [a, b]$ and the equation (0) is fulfilled in E_1 for $t \in [a, b]$.

The equation (0) is said to be E-well posed (or simply well posed) in [a,b] when for any $\varphi \in E$ there exists one and only one E-solution u=u(t) of (0) with the initial value $u(a)=\varphi$. We say that the equation (0) is completely E-well posed in [a,b] when (0) is E-well posed for any closed subinterval of [a,b] and the solution $u=u(t,s,\varphi)$ of (0) with the initial value $u(s)=\varphi$ ($a\leq s\leq b$) is a continuous function of (t,s,φ) for $a\leq s\leq t\leq b$, $\varphi\in E$. If (0) is (completely) E-well posed in [a,b] then the associated homogeneous equation

$$(1) \partial_t u = A(t)u$$

¹⁾ f(t) is said to be E-continuous on [a, b] when f(t) is continuous on [a, b] into E.

2 M. NAGUMO

is also (completely) E-well posed in [a, b]. When (1) is completely well posed in [a, b] then the solution of (1) with the initial condition $u(s) = \varphi$ $(s \in [a, b])$ can be written in the form

$$(2) u = U(t, s)\varphi,$$

where U(t, s) is a continuous linear operator on E into E for $a \le s \le t \le b$ with the following properties:

- 1) $U(t, s)\varphi$ is continuous on $a \le s \le t \le b$, $\varphi \in E$ into E,
- 2) U(s, s) = 1 (identity) for $s \in [a, b]$
- 3) $U(t, \sigma)U(\sigma, s) = U(t, s)$ for $a \leq s \leq \sigma \leq t \leq b$,
- 4) $\partial_t U(t, s) \varphi = A(t) U(t, s) \varphi$ in E_1 for $a \leq s \leq t \leq b$, $\varphi \in E$.

Such an operator U(t, s) is called the fundamental solution of (1).

Especially when A(t) does not depend on t: A(t) = A, (1) is completely E-well posed in any finite interval [a, b], if and only if (1) is simply E-well posed in some finite interval. For, the fundamental solution of (1) has the form U = U(t - s). In this case, restricting the domain of A to such a set of u that $Au \in E$, A is the infinitesimal generator of the one-parameter semi-group $\{U(t)\}_{t\geq 0}$, since U(t+s)=U(s)U(t) for $s, t\geq 0$. Conversely, if A is the infinitesimal generator of a one-parameter semi-group $\{U(t)\}_{t\geq 0}$, then extending the domain of A on E in such a way that the range of A will be contained in E_1 as given in Remark 1, we obtain a completely E-well posed equation (1) with A(t)=A, for any finite interval, with the fundamental solution $U(t-s)=\exp((t-s)A)$.

We can easily obtain the following:

Theorem 1. If the homogeneous equation (1) is completely E-well posed in [a, b], and f(t) is E-continuous on [a, b], then the inhomogeneous equation (0) is also completely E-well posed in [a, b] and any solution of (0) satisfies

$$u(t) = U(t, s)u(s) + \int_{s}^{t} U(t, \sigma)f(\sigma)d\sigma$$
 for $a \leq s \leq t \leq b$

with the fundamental solution U(t, s) of (1).

REMARK 1. Let A(t) be a pre-closed linear operator in E for every t, and let there exists a closed operator A_0 with a domain in E such that for the adjoint operators $A^*(t)$ and A_0^* of A(t) and A_0 resp. we have

$$||A^*(t)u'|| < ||A_0^*u'|| + ||u'||$$
 for $u' \in \mathcal{D}^* = \mathcal{D}(A_0^*)$.

Then, defining a new norm of $u \in E$ by

$$|||u||| = \sup_{u' \in \mathfrak{D}^*} |\langle u, u' \rangle| (||A_0^*u'|| + ||u'||)^{-1},$$

we get $|||u||| \le ||u||$. Hence, denoting by E_1 the completion of E with respect to the new norm, we obtain that the injection of E into E_1 is continuous and the extension of A(t) on E is continuous on E into E_1 . Cf [1].

On the other hand, if there exists a closed operator $A_{\scriptscriptstyle 0}$ with a domain ${\mathcal D}$ dense in E such that

$$||A(t)u|| \leq ||A_0u|| + ||u||$$
 for $u \in \mathcal{D}$,

then difining a new norm of $u \in \mathcal{D}$ by

$$|||u||| = ||A_0u|| + ||u||$$

the vector space \mathcal{D} becomes a Banach space E_0 with the new norm, such that the injection of E_0 into E is continuous and A(t) is continuous on E_0 into E for every $t \in [a, b]$.

§ 2. Stability of solutions of evolutional equations containing a parameter

Now we consider an evolutional equation containing a parameter $\varepsilon \ge 0$:

$$(1)_{\varepsilon} = A_{\varepsilon}(t)u + f_{\varepsilon}(t).$$

Let $u=u_0(t)$ be an E-solution of $(1)_0$ in [a, b] for $\varepsilon=0$. $u=u_0(t)$ is said to be *completely E-stable* in [a, b] with respect to the equation $(1)_\varepsilon$ for $\varepsilon\to 0$, when the following condition is fulfilled: For any $\delta>0$ there evists $\eta(\delta)>0$ such that, if $0<\varepsilon<\eta(\delta)$, any E-solution $u=u_\varepsilon(t)$ of $(1)_\varepsilon$ on [s, b] for any $s\in [a, b]$ with $||u_\varepsilon(s)-u_0(s)||<\eta(\delta)$ satisfies the inequality

$$||u_{s}(t)-u_{o}(t)|| < \delta$$
 for $s < t < b$.

Lemma 1. Let the equation $(1)_{\epsilon}$ be completely E-well posed in [a, b] for $\epsilon > 0$. If an E-solution $u = u_0(t)$ of $(1)_0$ is completely E-stable in [a, b] for $\epsilon \to 0$ with respect to $(1)_{\epsilon}$, then the fundamental solution $U_{\epsilon}(t, s)$ of the associated homogeneous equation of $(1)_{\epsilon}$, for sufficiently small $\epsilon > 0$, with some constant C satisfies the inequality

(2)
$$||U_{\varepsilon}(t,s)|| \leq C \quad \text{for} \quad a \leq s \leq t \leq b.$$

Proof. Let $u=u_0(t)$ be completely stable in [a, b] for $\varepsilon \to 0$ with respect to $(1)_{\varepsilon}$, and $u=u_{\varepsilon}(t)$ and $u=v_{\varepsilon}(t)$ be solutions of $(1)_{\varepsilon}$ such that

 $u_{\epsilon}(s) = v_{0}(s)$ and $||v_{\epsilon}(s) - u_{\epsilon}(s)|| < \eta(\delta)$ resp. Then, if $0 < \varepsilon < \eta(\delta)$ we must have

$$||u_{\varepsilon}(t)-v_{\varepsilon}(t)|| \leq ||u_{\varepsilon}(t)-u_{0}(t)||+||v_{\varepsilon}(t)-u_{0}(t)|| < 2\delta$$
 for $s \leq t \leq b$.

Hence for any $w \in E$ with $||w|| < \eta(\delta)$ holds the inequality $||U_{\epsilon}(t, s)w|| < 2\delta$ for $a \le s \le t \le b$. This asserts Lemma 1.

In order to give our sufficient conditions for the complete stability of a solution, we shall prepare a definition of quasi-regularity of solutions. An E-solution $u=u_0(t)$ of

$$(0) \partial_t u = A_0(t) u + f(t)$$

is said to be *quasi-regular* in [a, b] with respect to an operator $A_1(t)$, when for any $\delta > 0$ there exists an E-continuous $v_{\delta}(t)$ on [a, b] such that $\partial_t v_{\delta}(t) - A_0(t)v_{\delta}(t) - f(t)$ and $A_1(t)v_{\delta}(t)$ are bounded and E-continuous on [a, b] and the inequalities

$$||v_{\delta}(t)-u_{\scriptscriptstyle 0}(t)|| < \delta$$
 and $||\partial_t v_{\delta}(t)-A_{\scriptscriptstyle 0}v_{\delta}(t)-f(t)|| < \delta$

hold for $a \leq t \leq b$.

Especially if $A_0(t) = A_1(t) = A$ and A is the infinitesimal generator of a 1-parameter semi-group and f(t) is E-continuous on [a, b], then an E-solution of (0) is quasi-regular in [a, b] with respect to A. Indeed in this case we have to set $v_{\delta}(t) = (1 - \lambda_{\delta}^{-1}A)^{-1}u_{0}(t)$ with sufficiently large $\lambda_{\delta} > 0$.

Now we assume that $(1)_{\varepsilon}$ is completely E-well posed in [a, b] for $\varepsilon \ge 0$ and the operator $A_{\varepsilon}(t)$ have the form:

$$A_{arepsilon}(3) \qquad \qquad A_{arepsilon}(t) = A_{0}(t) + \varepsilon A_{1}(t) \qquad (\varepsilon \geq 0).$$

Further let $f_{\varepsilon}(t)$ be *E*-continuous on [a, b] and converge to $f_{0}(t)$ uniformly on [a, b] as $\varepsilon \to 0$. Then we have:

Theorem 2. Let $u=u_0(t)$ be an E-solution of $(1)_0$ for $\varepsilon=0$ in a finite closed interval [a,b] and be quasi-regular with respect to $A_1(t)$ in [a,b]. In order that $u=u_0(t)$ be completely E-stable in [a,b] with respect to $(1)_{\varepsilon}$, it is necessary and sufficient that for sufficiently small $\varepsilon>0$, the fundamental solution $U_{\varepsilon}(t,s)$ of the associated homogeneous equation of $(1)_{\varepsilon}$ is uniformly bounded for $a\leq s\leq t\leq b$.

Proof. As the nessecity of the condition is already given by Lemma 1, we have only to prove the sufficiency.

For any $\delta > 0$ there exists an *E*-continuous $v_{\delta}(t)$ on [a, b] such that

 $h_{\delta}(t) = \partial_t v_{\delta}(t) - A_0(t) v_{\delta}(t) - f_0(t)$ and $A_1(t) v_{\delta}(t)$ are E-continuous on [a, b]with the conditions

$$(4) ||v_{\delta}(t)-u_{0}(t)|| < \delta \text{ and } ||h_{\delta}(t)|| < \delta \text{ for } a \leq t \leq b.$$

Then we get

$$\partial_t(u_s-v_{\delta})=A_s(t)(u_s-v_{\delta})+\varepsilon A_1(t)v_{\delta}+g_{s,\delta}(t)$$

where $g_{s,\delta}(t) = f_s(t) - f_0(t) + h_{\delta}(t)$. Hence, by Theorem 1,

$$egin{aligned} u_{arepsilon}(t) - v_{\delta}(t) &= U_{arepsilon}(t,\,s) \{u_{arepsilon}(s) - v_{\delta}(s)\} \ &+ \int^t U_{arepsilon}(t,\,\sigma) \{ \varepsilon A_{\scriptscriptstyle 1}(\sigma) v_{\delta}(\sigma) + g_{arepsilon,\,\delta}(\sigma) \} \; d\sigma \quad ext{for} \quad a \leq s \leq t \leq b \; . \end{aligned}$$

Thus by (2) we have

$$||u_{\varepsilon}(t)-v_{\delta}(t)|| \leq C\{||u_{\varepsilon}(s)-v_{\delta}(s)||+\int_{s}^{t} (\varepsilon ||A_{\iota}(\sigma)v_{\delta}(\sigma)||+||g_{\varepsilon,\delta}(\sigma)||)d\sigma\}.$$

There exist positive constants $\zeta(\varepsilon)$ and B_{δ} such that $\zeta(\varepsilon) \to 0$ as $\varepsilon \to 0$, $||f_{\varepsilon}(t)-f_{0}(t)|| < \zeta(\varepsilon)$ for $a \le t \le b$ and $||A_{1}(t)v_{\delta}(t)|| \le B_{\delta}$ for $a \le t \le b$. Thus, by (4), we get

$$||u_{\varepsilon}(t)-u_{\scriptscriptstyle 0}(t)|| \leq C\{||u_{\scriptscriptstyle \varepsilon}(s)-u_{\scriptscriptstyle 0}(s)||+\delta+(b-a)(\varepsilon B_{\delta}+\zeta(\varepsilon)+\delta)\},$$
 for $a \leq s \leq t \leq b.$

First taking $\delta > 0$ sufficiently small and then letting $\epsilon \to 0$, we complete the proof.

Remark 2. The sufficiency of the condition in Theorem 2 remains valid even for the case of infinite interval (a, ∞) $(b = \infty)$, if we add to it the condition

$$\int_{a}^{t} ||U_{\varepsilon}(t,s)|| ds \leq C \text{ for } a \leq t < \infty \text{ with some constant } C.$$

§ 3. Degeneration of evolutional equations

Let us consider the evolutional equation of the singular form in the parameter ε :

$$(1)_{\varepsilon}$$
 $\varepsilon \partial_t u = A_{\varepsilon}(t) u + f_{\varepsilon}(t) \text{ with } \varepsilon > 0$

and the degenerated equation

$$(1)_0$$
 $A_0(t)u+f_0(t)=0$

We assume that $A_{\varepsilon}(t)$ and $f_{\varepsilon}(t)$ have the forms

$$egin{align} A_arepsilon(t) &= A_0(t) + arepsilon A_1(t) \ , \ f_arepsilon(t) &= f_0(t) + arepsilon f_1(t) + arepsilon h_arepsilon(t) \ , \ \end{matrix}$$

where $f_0(t)$, $f_1(t)$ and $h_{\epsilon}(t)$ are *E*-continuous on [a, b] and $h_{\epsilon}(t) \to 0$ uniformly on [a, b] as $\epsilon \to 0$.

A solution $u=u_0(t)$ of the degenerated equation $(1)_0$ is said to be completely E-stable in [a, b] with respect to $(1)_{\epsilon}$ for $\epsilon \to 0$, when the following condition is fulfilled: For any $\epsilon > 0$ there exists some $\eta(\delta) > 0$ such that, if $0 < \epsilon < \eta(\delta)$, any E-solution $u_{\epsilon}(t)$ of $(1)_{\epsilon}$ in [s, b] for any $s \in [a, b]$ with

$$||u_s(s)-u_0(s)|| < \eta(\delta)$$

satisfies the inequality

$$||u_{\varepsilon}(t)-u_{0}(t)|| < \delta$$
 for $s \leq t \leq b$.

Theorem 3. Assume that $(1)_{\epsilon}$ is completely E-well posed in a finite closed interval [a, b] for $\epsilon > 0$ and $A_{\epsilon}(t)$ and $f_{\epsilon}(t)$ have the forms (2). Let $u = u_0(t)$ be a E-solution of $(1)_0$ on [a, b] such that $u_0(t)$, $\partial_t u_0(t)$ and $A_1(t)u_0(t)$ are E-continuous on [a, b]. In order that $u = u_0(t)$ is completely stable in [a, b] for $\epsilon \to 0$ with respect to $(1)_{\epsilon}$ with any E-continuous $f_1(t)$ on [a, b], it is necessary and sufficient that the fundamental solution $U_{\epsilon}(t, s)$ of $\partial_t u = \epsilon^{-1} A_{\epsilon}(t)u$ satisfies the following conditions:

1) There exists a constant C such that

$$||U_{\varepsilon}(t,s)|| \leq C$$
 for $a \leq s \leq t \leq b$ and sufficiently small $\varepsilon > 0$.

2) For any α , β , t, and $v \in E$ such that $a \leq \alpha < \beta \leq t \leq b$,

$$\int_{-\infty}^{\beta} U_{\varepsilon}(t, s) v ds \to 0 \text{ uniformly on } t \in [\beta, b] \text{ as } \varepsilon \to 0.$$

Proof. The necessity of 1) is obtained in the same way as in the proof of Lemma 1.

To prove the necessity of 2), setting $f_1(t) = \varphi(t) - A_1(t)u_0(t)$ with an arbitrary *E*-continuous $\varphi(t)$ on [a, b], we get from $(1)_{\epsilon}$, $(1)_{0}$ and (2)

$$\partial_t(u_{\varepsilon}-u_{\scriptscriptstyle 0}) = \varepsilon^{\scriptscriptstyle -1}A_{\varepsilon}(t)(u_{\varepsilon}-u_{\scriptscriptstyle 0}) + \varphi(t) + h_{\varepsilon}(t)$$
.

Hence for $a \leq s \leq t \leq b$

$$u_{\varepsilon}(t) - u_{\scriptscriptstyle 0}(t) = U_{\scriptscriptstyle \varepsilon}(t,s) \{u_{\scriptscriptstyle \varepsilon}(s) - u_{\scriptscriptstyle 0}(s)\} + \int_s^t U_{\scriptscriptstyle \varepsilon}(t,\sigma) \{\varphi(\sigma) + h_{\scriptscriptstyle \varepsilon}(\sigma)\} d\sigma.$$

By 1) we have if $0 < \varepsilon < \eta(\delta)$, as $\eta(\delta) \le \delta$,

$$||U_{\varepsilon}(t,s)\{u_{\varepsilon}(s)-u_{\varepsilon}(s)\}|| \leq C\delta$$

and

$$\left\| \int_{s}^{t} U_{\varepsilon}(t,\,\sigma) \, h_{\varepsilon}(\sigma) \, d\sigma \right\| \leq (b-a) \, C\zeta(\varepsilon)$$

for $a \le s \le t \le b$, where $\zeta(\delta) \to 0$ as $\varepsilon \to 0$. Hence we have only to show that

"
$$\int_{s}^{t} U_{\varepsilon}(t, \sigma) \varphi(\sigma) d\sigma \to 0$$
 uniformly on $a \leq s \leq t \leq b$

as $\varepsilon \to 0$ for any *E*-continuous $\varphi(t)$ on [a, b]" implies 2). Put $\varphi(\sigma) = \psi(\sigma)v$ with any $v \in E$ and a continuous real valued function $\psi(\sigma)$ on [a, b] such that $0 < \psi(\sigma) \le 1$, $\psi(\sigma) = 1$ for $\alpha + \delta \le \sigma \le \beta$, $\psi(\sigma) = 0$ for $\alpha \le \sigma \le \alpha$ and for $\beta + \delta \leq \sigma \leq b$. Then by 1)

$$\left\| \int_{s}^{t} U_{\varepsilon}(t,\,\sigma) \varphi(\sigma) \, d\sigma - \int_{a}^{\beta} U_{\varepsilon}(t,\,\sigma) v d\sigma \, \right\| \leq 2\delta C \|v\| \, .$$

Therefore we obtain 2), as δ can be taken arbitrarily small.

To prove the sufficiency of 2) with 1), we have only to show that by these conditions

$$\int_{s}^{t} U_{\varepsilon}(t, \sigma) \varphi(\sigma) d\sigma \to 0 \text{ uniformly for } a \leq s \leq t \leq b \text{ as } \varepsilon \to 0.$$

Divide the interval [a, b] into a finite number of consecutive intervals $[\tau_{\nu-1}, \tau_{\nu}] \ (\nu=1, \cdots, N)$ in such a way that $\tau_{\nu} - \tau_{\nu-1} < \delta$ and $||\varphi(\sigma) - \varphi(\tau_{\nu})||$ $<\delta$ for $\sigma \in [\tau_{\nu-1}, \tau_{\nu}]$. Then

$$\left\| \int_{s}^{t} U_{\varepsilon}(t, \sigma) \varphi(\sigma) d\sigma - \sum_{s < \tau_{v} \leq t} \int_{\tau_{v-1}}^{\tau_{v}} U_{\varepsilon}(t, \sigma) \varphi(\tau_{v}) d\sigma \right\|$$

$$< C(b-a) \delta + 2C\delta \| \text{Max} \| \varphi(\sigma) \|.$$

Thus by 2), taking δ sufficiently small and letting $\varepsilon \to 0$, we attain to the desired conclusion. Q. E. D.

When $f_{\varepsilon}(t)$ has the form, instead of (2),

$$f_{s}(t) = f_{0}(t) + h_{s}(t),$$

where $f_0(t)$ and $h_{\epsilon}(t)$ have the same meanings as before, we cannot easily have necessary and sufficient conditions for the complete stability of $u_0(t)$, but only sufficient conditions, while we can relax the conditions on $u_0(t)$ somewhat.

Theorem 4. Let $u=u_0(t)$ be an E-continuous solution of $(1)_0$ on [a, b]such that for any $\delta > 0$ there exists an E-continuous $v_{\delta}(t)$ on [a, b] with bounded and E-continuous $\partial_t v_{\delta}(t)$, $A_0(t)v_{\delta}(t)$ and $A_1(t)v_{\delta}(t)$ on [a, b] satisfying the conditions

$$||v_{\delta}(t)-u_{0}(t)|| < \delta$$
 and $||A_{0}v_{\delta}(t)+f_{0}(t)|| < \delta$ for $t \in [a, b]$.

Assume that the fundamental solution $U_{\epsilon}(t, s)$ of $\partial_t u = \mathcal{E}^{-1}A_{\epsilon}(t)u$, satisfies for sufficiently small $\mathcal{E} > 0$, the conditions with some constant C:

1)
$$||U_{\varepsilon}(t,s)|| \leq C$$
 for $a \leq s \leq t \leq b$,

2)'
$$\int_a^t ||U_{\epsilon}(t,s)|| ds \leq \varepsilon C$$
 for $a \leq t \leq b$.

Then $u = u_0(t)$ is completely E-stable in [a, b] with respect to $(1)_{\epsilon}$ for $\epsilon \to 0$.

Proof will be left to the reader.

REMARK 3. The sufficiency of the conditions 1) and 2)' in Theorem 4 remains valid even for the case of infinite interval (a, ∞) $(b=\infty)$.

\S 4. Degeneration of evolutional equation when $A_{\epsilon}(t) = A$

Consider the evolutional equation of singular form in ε :

$$\varepsilon \partial_t u = Au + f_{\varepsilon}(t) \qquad (\varepsilon > 0),$$

where A is the infinitesimal generator of a one parameter semi-group in a *reflexive* Banach space E. As it has been stated in §1, the operator A can be extended to a continuous linear operator on E into E_1 , and the equation (1), becomes completely E-well posed in any finite interval. The fundamental solution of the associated homogeneous equation has the form

$$U_{\varepsilon}(t, s) = \exp(\varepsilon^{-1}(t-s)A)$$
,

as $\exp(tA)$ $(t \ge 0)$ is the transformation generated by A.

Theorem 5. Let $u=u_0(t)$ be an E-solution in a finite closed interval [a, b] of the degenerated equation

$$Au+f_0(t)=0$$

with E-continuous $\partial_t u_0(t)$ on [a, b].

In order that $u_0(t)$ be completely E-stable in [a, b] with respect to $(1)_{\varepsilon}$ for $\varepsilon \to 0$, where f_{ε} has the form (2) with any E-continuous f_1 , it is necessary and sufficient that the following conditions are fulfilled:

- 1) With some constant C, $||exp(tA)|| \le C$ for $0 \le t < \infty$.
- 2) Av=0 with $v \in \mathcal{D}(A)$ implies v=0,

where $\mathcal{D}(A)$ denotes the proper domain of A before the extension of A on E.

Proof. From Theorem 3 we get easily the necessity of 1), as $U_{\varepsilon}(t,s) = \exp(\varepsilon^{-1}(t-s)A).$

By the mean ergodic theorem in a reflexive Banach space, we obtain from 1) a projective operator P on E into E such that:

(3)
$$\lim_{\tau \to \infty} \tau^{-1} \int_0^{\tau} \exp(tA) v dt = Pv \text{ for any } v \in E,^{2}$$

(4)
$$P \exp(tA) = \exp(tA)P = P^2 = P$$
,

and

$$(5) P(E) = \{u \in \mathcal{D}(A); Au = 0\}$$

Thus, for $a < \alpha < \beta < t < b$ and any $v \in E$, setting

$$\begin{split} \tau(\mathcal{E}) &= \mathcal{E}^{-1}(\beta - \alpha) \text{ we have by } (4) \\ &\int_{\alpha}^{\beta} U_{\epsilon}(t, s) v ds - (\beta - \alpha) P v \\ &= \int_{\alpha}^{\beta} \exp\left(\mathcal{E}^{-1}(t - s)A\right) v ds - (\beta - \alpha) P v \\ &= (\beta - \alpha) \exp\left(\mathcal{E}^{-1}(t - \beta)A\right) \left\{\tau(\mathcal{E})^{-1} \int_{0}^{\tau} \exp\left(\sigma A\right) v d\sigma - P v\right\} \,, \end{split}$$

hence by (3) and 1), we have

$$\left\| \int_{\alpha}^{\beta} U_{\epsilon}(t,s) v ds - (\beta - \alpha) P v \right\| \to 0 \text{ uniformly for } \beta \leq t \leq b,$$

as $\tau(\mathcal{E}) \to \infty$ for $\mathcal{E} \to 0$.

Hence the condition 2) in Theorem 3 with 1) is equivalent to:

$$Pv = 0$$
 for every $v \in E$.

Therefore, by (5) the condition 2) with 1) is equivalent to the condition 2) with 1) in Theorem 3. Q. E. D.

REMARK 4. The sufficiency of the conditions in Theorem 5 remains valid even for the case $b = \infty$, if we replace 2) by

$$\int_{0}^{\infty} ||\exp(tA)|| dt < \infty.$$

²⁾ Here the \lim means the strong \lim in E.

10 M. NAGUMO

OSAKA UNIVERSITY

(Received March 5, 1963)

References

- [1] M. Nagumo: Re-topologization of functional space in order that a set of operators will be continuous, Proc. Japan Acad. 37 (1961), 550-552.
- [2] M. Nagumo: Singular perturbation of Cauchy problem of partial differential equations with constant coefficients, Proc. Japan Acad. 35 (1959), 449-454.
- [3] H. Kumano-go: Singular perturbation of Cauchy problem of partial differential equations with contant coefficients II, Proc. Japan Acad. 35 (1959), 541-546.
- [4] K. Yosida: Mean ergodic theorem in Banach spaces, Proc. Imp. Acad. Japan (1938), 292-294.
- [5] E. Hille and R. S. Phillips: Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ. 31, Providence, 1957.