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O Introduction and notations

In [3], Amitsur introduced a complex defined for any extension field
F of a field C and proved that the second cohomology group, H2(F/C),
of this complex is isomorphic to the Brauer group of central simple C-
algebras split by F in case F is algebraic over C. Thus the nth cohomo-
logy group of Amitsur's complex provides a kind of higher dimensional
analogue of the Brauer group. If F is normal, separable over C with
Galois group G, Amitsur showed that this analogue is exactly Hn(G, F*),
the nth cohomology of G with coefficients in the multiplicative group
of F. These results were generalized to commutative rings in [12]. At
the other extreme, if F is purely inseparable of exponent one over C,
the Brauer group and H2(F/C) can be described as a group of Lie algebra
extensions of the algebra of C-derivations of F. Thus in this case one
would hope that the nth cohomology group of Amitsur's complex should
provide some further information on this Lie algebra. The present paper,
using a result of A. J. Berkson, shows that in fact this is not the case, that
purely inseparable extensions play a small role in determining Amitsur's
cohomology groups. Specifically, if CczKczF is a tower of commutative
rings of characteristic p and every element of K has peth power in C for
some fixed positive integer e, then there is an exact sequence of Amitsur
cohomology

> Hn(K/C) -> Hn(F/C) -+ Hn(F/K) -> Hn+1(K/C) -> •••

Berkson's result asserts that if C and if are fields and e = l, then Hn(K/C) = 0
for «Φ2, which then immediately extends to the case of arbitrary e, and
moreover proves Hn(F/C) = Hn(F/K) for nφ2. Furthermore, for n = 2,
we have an exact sequence

1) Written with the partial support for both authors of N. S. F. Grant G-9508 and with
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0 - H2(K/C) -> H2(F/C) -> H2{F/K) -> 0

which gives new proofs of several known results on Brauer groups.
This is the principal content of sections 4 and 6. Sections 2 and 3
contain the necessary lemmas, many of which are of intrinsic interest.
In section 5 we show how the same spectral sequence techniques used
in section 4 simplify the proofs in [4], and demonstrate that the short
exact sequences derived there are, in the case of purely inseparable fields,
the early terms of our long exact sequence. Section 7 provides some
partial connection between Hn(F/C) and Hn(FJC) where Fs is the
maximal separable subfield of F. Section 1 is a parenthetical section
computing some homology groups, as contrasted with the cohomology
groups of the rest of the paper.

Throughout this paper C will denote a commutative ring with unit.
We shall be concerned primarily with commutative C-algebras (also with
unit) which we shall denote by F, K, L. The only exceptions to this
commutativity will be in sections 4, 6 and 7, where we shall use A for
a central separable C-algebra.

Tensor products will always be tensor products over C unless other-
wise indicated. Repeated tensor products will be denoted by exponents :
Fn = F®cF®c--®cF to n factors (F° means C).

For any commutative ring F we denote by F * the group of units
of F.

With these notations, we recall several definitions connected with
Amitsur's complex [3], [8, p. 15], [12] :

Let F be a C-algebra (commutative, as per our conventions) and
for each n = 0,1, ••• define C-algebra homomorphisms βi:F

n->Fn+1 (ί = l,
2, ...,Λ + 1) by £i(aι® ~®an) = a1® ~®ai_ι®l®ai®-®an. If Λ = 0, the
lone 8 is the unit map C->F defined by c->ol . These £'s then also
send the multiplicative group of units Fn* into (Fn+1)*. We define

Δί : Fn -> Fn+1 by K = Σ(-1)< + 1S,

which makes the sequence of groups > {0} —* C -> F ->F2 -> and
mappings Δ+(Δ^ = 0 for n<^0) into a complex20 [3, Th. 5.1] which we
denote E+(F/C). Amitsur's complex proper is the multiplicative analogue :

An : Fn* -> (Fn+1)* is defined by An(x) = Π£, (*)c-1)έ+1

which makes the sequence of groups >{\}^c*^F*-^F2*-*-- and
mappings Δ into a complex [3, Th. 5.1] which we denote (£(F/C).

We denote by Hn(F/C) (resp. Hn(F/C)+) KerΔM+1/ImΔw (resp.

2) The indices of groups in a complex run from — °° to
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ί+i/ImΔ^). We write these cohomology groups additively. They
obviously vanish when n<C—2.

If F is a finitely generated free C-module, Amitsur [4] has also
defined homology groups Hn{F/C) as follows: In this context, Fn+1 is
a free, finitely generated module over £, F M so that the usual norm func-
tion is available (norm,- of an element x of Fn+1 is the determinant of
the (£, Fw)-linear endomorphism y-^xy of Fn+1) furthermore, in this
context, Gg is a monomorphism, and we define u^x) to be Sγ1 (norm,- x)y

and δn(x) = π»i(xy-iy'+\ This gives a complex [4, §1]

with mappings δ, and we denote by Hn(F/C) the homology group
KeτδJImδH+1.

Our primary interest is in the cohomology groups Hn

y but we begin
with a short section calculating some homology groups Hn. Amitsur
showed in [4] that if F is a normal separable extension field of C with
Galois group G, then Hn(F/C) = Hn(Gy F*) we treat the other extreme,
where F is a purely inseparable field extension of C of finite degree.

1. Homology for purely inseparable fields

We begin with a calculation of norms for purely inseparable rings.

Lemma 1.1. Let C be a field of characteristic ^ φ θ and F a purely
inseparable extension field with \F: C] = q. If C is any commutative C-
algebra, if F' = F®C and if N' denotes the norm from Ff to C'y then
N\x) = xq for all x in F\

Proof. If F' were a field, the lemma would result from [14, p. 91,
(15)]. We reduce to this case by the familiar device of computing N'
for a "general element". Specifically, let Xl9 —>Xq be independent in-
dependent indeterminates over C, let C1 = C(Xly •••, Xq) and F1 = F®C1.
Then by [14, Corollary p. 186] Fx is an integral domain. Since
q = \_Fλ: C!] = [F:C]<^oo, Fx is a field, clearly purely inseparable over
Cj. Let Ni denote the norm from Fx to Cly and let -X"=Σe, (g).Xy where
ely •••, eq form a basis of F over C. Since the basis {^(8)1} of F1 over
Cλ is equally a basis of F2 = F(g)C2 over C2 = C[Xly •••, Xq~\y the matrix of
the endomorphism produced by multiplication by X in Fx is the same as
the matrix of the endomorphism produced in F2y so that N^X) is also
the norm of X in F2 over C2. In fact, if we replace Xly --yXg by
elements xly --yxq of any commutative C-algebra C\ this same matrix
specializes to the matrix of multiplication by Λr = 2βy®Λry in F'
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over C, and the corresponding norm N'(x) is just the specialization of
N,{X). Now N1{X) = Xq by the result for fields just quoted. This equality
of polynomials still holds in C2, and in C after specializing the Xj.
Since Xq specializes to xq

y this shows N\x) = xq, as desired.

Theorem 1. 2. Let F be a purely inseparable extension field of a field
C with [_F:C^\ = q. Let Rn be the radical of Fn. Then the Amitsur
homology groups are the following {all groups written multiplicatively)

Hn{F/C) ̂  lJrRn+1 if n is even

Hn{F/C) ̂  F*jF*q x (1 + Ru+1) if n is odd.

Proof. We apply Lemma 1.1 to C=SiF
n

y so that F' is isomorphic
to Fn+\ We conclude that norm,- x = xq

y which is in C and independent
of i. Thus vi{χ) = χq\ and 8n(χ) = l if n is odd, Su(χ) = χ9 if n is even.

We let βn: Fn-^Fn+1 be the ring homomorphism x^xq (the image is
actually in C, thought of as a subring of Fn+1)y and let β* be the group-
homorphism of Fn* which is the restriction of βn. Then according as
n is even or odd, HJJF/C) is the kernel or the cokernel of β$+1. These
groups can best be calculated by introducing another ring homomorphism
θn:F

n->F defined by θH(f1<g>.> ®fH)=f1f2.~fH again 0* denotes the
restriction of θn to FM*. Since Ker/3wczKer0w = the ideal generated by all
/(g)l(g) (g)l-l(g) (g)l(g)/(g)l(g) (g)l (cf., for example, [7; X, Prop.
3.1]), which is in turn contained in Ker/3W, we have Ker θn = Ker βn

which is a nil ideal with residue class ring F. Thus Ker θn = Ker βn = Rn

and Ker 0* = Ker/3* = 1 + 7?w, proving the theorem for even n.
Furthermore, Fn* = XnxKer0* where Jfn = F*®l(g). (8)l, since θ*

induces an isomorphism Xn->F*. Since /3*(Xw)czZw+1 and /9J(Ker0i) = l,
we have Coker β* = (Xn+Jβ*XM)xKeτθ*sz(F*/F*g)xKeτθ*, completing
the proof.

2. Faithful flatness and the acyclicity of (£+

Following Bourbaki [6, Ch. I, § 3] we say a C-module F is faithfully
flat provided a sequence X->Y->Z of C-modules and mappings is exact
if and only if the induced sequence I®F->F®f->Z(g)F is exact. If
F is a C-algebra, then F is a faithfully flat C-module if and only if

(2.1) The unit map v:C->F {defined by v{c) = cΛ) is a monomorphism
and its cokernel F/C l is a flat C-module. [6, Ch. I, §3, Prop. 9] (This
condition makes (C, F) a flat couple in the sense of Serre [13].)

If F is any C-algebra which is a flat C-module and whose unit map
is a split monomorphism (i.e., there exists a C-module map μ:F->C
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such that /ίov is the identity) then F is faithfully fiat, because then
Coker y is a direct summand in the flat module F.

In [[12, Lemma 4.1] the hypothesis that F has a split unit map was
used to prove the acyclicity of &+(F/C), which, together with the assump-
tion that F is flat, was then used to investigate &(F/C). The preceding
remark suggests that this acyclicity might be proved assuming only that
F is faithfully flat. In the present paper we need this and slightly more,
as in the next two lemmas. The main idea of the proof (Lemma 2. 2),
which consists of regarding F ® F as an (F(g)l)-algebra with split unit
map, is due to Grothendieck [8, Lemme 1.1, p. 18].

Let F-^F' be a homomorphism of C-algebras with kernel U. This
induces a homomorphism Fn->F/n commuting with the £'s, hence a mapp-
ing of complexes (£+(F/C)->(£+(F7C). The kernel of this mapping is a
subcomplex ©+(£/) of (£+(F/C) whose nth term Un is the canonical image
inF*+ 1of (£7®F (8)F) + (F®t/® .-®F) + +(F® ®F(g)t7) (UH= {0}
for n<^0). This formula for Un also shows directly that (£+(£/) is a
subcomplex, because each $ carries Un into Un+1, hence so does Δ+.
Since each 6 is an algebra homomorphism, it will also carry any power
Un of Un into Un+i. Thus the sequence of groups •••, ί/J, U{> ••• also
forms a subcomplex, which we call <£+(£7)'. We let (£+([/)° mean K+(F/C).
These subcomplexes form a chain

(2.2) e+(F/c) - e+(c/)°iDg:+(ί7)^(ε+([/)2iD.

If U is nilpotent, then each Un is nilpotent (though of higher index) and
so this chain of subcomplexes is finite in each dimension. Note that
the nth term of (£+(ϊ7)f consists of all sums of terms /i® ®/i, in F w + 1

such that fke Uju* with

Lemma 2.1. Let F be a C-algebra with a split unit map, i.e., with
a C-module homomorphism φ: F->C such that φov is the identity {i.e.,
φ(cΛ) = c). Let U be an ideal in F such that voφ(UJ)czUj for all j .
Then &+(UY is acyclic for all i>0 ([12, Lemma 4.1] is the case U=F,

Proof. As in [12, Lemma 4.1] or [8, A4], K+(F/C) has a contract-
ing homotopy 5 : FH+1->F" defined by 5(/ 1 ®-®/ w ) = ̂ (/i)/2®/8(8>-(8)/«-
The factor φ(fϊ)f2 may equally well be written (*> ° 9>) (/i)/2. Thus if
fke £/*» with τkj(k)>i, then φ(f)f2e t/*1>+*2> andXΛ®. -®jQ€ UU
This shows s(£/*)dt/*_i so that 5 is also a homotopy in K+(J7)**, proving
the latter is acyclic.

Lemma 2. 2. Let F-+F' be an epimorphism of C-algebras with kernel
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U. If either F is faithfully flat over C and U=FUQ with UoczC or if Ff

is faithfully flat over C (which implies t/ΠC l = 0), then dί+(Uy is acyclic
for all * > 0 .

Proof. Take K=F or F/ in the two cases envisioned in the lemma,
so that K is an F-module in a natural way and is faithfully flat over
C. It will suffice to show /f®(£+(£/)'" is acyclic. Since K is flat,
K®&+(U) is the kernel of K®&+(FIC)-*K®&+(F'IC) and the latter
two complexes may be identified33 with &+(K®F/K) and &+(K®F'/K).
This identifies K®&+(U) with (£+(F) where V is the kernel of K&F-+
K®F\ i.e., V=K®U. Similarly, K®^{UY is identified with <E+(V>.
To apply Lemma 2.1 to the ϋΓ-algebra K® F, we notice that the unit
map k->k®l is split, the reverse map being φ(l<ki(&fi) = ?<kifi. We
need to check that (yoφ){Vi)cz VK In the first case where K=F9 we
have Ψ = (K® U0F)* = t/J (ϋΓ(g> F), Ψ(F) = t/^(ίΓ(g)F) = C7S/5Γ, (?oφ)( Vή =

= jRΓ® t/JczF1'. In the second case where K=F', we have
y = F'(g) U\ φ(Vi) = F'Uicz:F/U=O. This completes the proof.

3. Reduction of
We now pass to the multiplicative complex &(F/C). An obvious

corollary of Lemma 2. 2 in low dimensions is

Lemma 3.1. // F is a faithfully flat C-algebra then H~1(F/C) =
H\F/C) = 0.

Proof. Lemma 2.2 with U=0 and i = 0 asserts that Hn(F/C)+ = 0
for all n. The cases # = — 1 and n = 0 may be expressed thus: The unit
map v : C^F is a monomorphism and if xeF then S1χ = £2χ if and only
if #e y(C). If we restrict to units, we see that v : C*->F* is a monomor-
phism and if * e F * then ( ^ ( S ^ - ^ l if and only if jtrG^C*), which
proves Lemma 3.1.

The results on (£+ in section 2 can also be made to yield results on
Hn(F/C) for larger n by the following device: Just as we had a chain
of additive complexes (2.2), we can define a chain of multiplicative
complexes

(3.1) &(F/c) = e(t/)0=Dg:([/)=Dg:(ί7)2=D..

for any ideal U in F. If U is the kernel of the homomorphism F-*F\
is to be the complex whose ^th term is the multiplicative group

3) For example, Kc$Fn = (K& F)^κ (K&F^Qir-'i&K (K&F') to n factors. In fact, we
shall have much occasion to identify K0Fn with the w-fold tensor product of K(g)F over K.
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of units contained in ! .+ £/£ where Un, as before, is the kernel of
F»+i-+F'n+\ Again (£(£/) is the kernel of (£(F/C)->(£(F7C) since a unit
x in Fn+1 maps to 1 if and only if x—1 maps to 0 (i.e., x — lG £/„). If
ί/ is a nilpotent ideal, then so is £/£, and the ^th term of (£({/)»" is just
l + £/£; furthermore, in each dimension, the chain (3.1) will terminate
with {1} in a finite number of steps.

The device we use is the fact that the factor complexes in the chain
(3.1) are isomorphic to those of the chain (2. 2):

Lemma 3.2. // U is an ideal in F, there is an isomorphism of
complexes

for each / > 1 . The isomorphism is induced by the mapping 1 + u-^u for

Proof. Clearly if u and v are in Ufβ then (l + «)(l + t ;)6l + (« + ί;) + ί/£+1.
Thus the given mapping induces an isomorphism of (l + C/ )̂/(l + C/̂ +1)
to Un/Un+1. That this commutes with the boundary operators is direct
and immediate.

Proposition 3. 3. Let F-+F' be an epimorphism of C-algebras with
nilpotent kernel U. Assume either that F is faithfully flat over C and
U=FU0 with £/oczC or that F; is faithfully flat. Then the mapping
of complexes (S,(F/C)-+&(F'/C) induces an isomorphism

HH(F/C) ^ HH(F'/C) for all n.

Proof. By Lemma 2.2 K+(ί/)f* is acyclic for every /. Using the
homology sequence corresponding to the sequence 0-^©+(ί7)*+1-^K+(J!7)ί'
-^(£+(t7)f/e+([/)-+1-->0, we deduce the acyclicity of e+(C7)f/S;+(C7)<+1,
which is isomorphic to K(t/) ί/(£(£O i+1 by Lemma 3.2. Returning via the
analogous homology sequence for the complexes (£, we have Hn(&(U)£)^
Hn(&{U)ί+ι) for all n and all i > l . But for each n there is a j such
that l-v-£/£={l}, so that HM(β{U)s) = 0. These facts together imply
Hn)&{Uy-1)=- =Hn(&(U)) = 0. The homology sequence corresponding
to the exact sequence 1->&{U)->&{F/C)->&(F'/C)->1 then shows that
K(F/C) and &(F'/C) have isomorphic homology.

Theorem 3.4. Let F be a commutative C-algebra and Ff a commuta-
tive O-algebra, each faithfully flat (so that C and Cf may be considered
to be subrings of F and Ff cf. (2.1)). Suppose that F^Ff is a ring
epimorphism with nilpotent kernel U which carries C onto C. Then the
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natural mapping of complexes &(F/C)^&(F'/C) induces an isomorphism
of cohomology

Hn(F/C) ^ Hn(F'IC) for all n.

Proof. We factor the given epimorphism as follows

F->F®CC -*F'.

The first of these mappings is a mapping of C-algebras with kernel
F(Ur\C) so that the first set of hypotheses in Proposition 3. 3 is satisfied.
The second mapping is a mapping of C'-algebras satisfying the second
set of hypotheses in Proposition 3. 3. Two applications of Proposition
3. 3 thus complete the proof.

We shall need an easy generalization of Theorem 3. 4.

Corollary 3.5. Let {a} be a directed system, {Ca} a directed set of
rings, {Fω} and {F }̂ directed sets of C^-algebras with mappings F^F*
for each a that commute with the mappings of the directed sets. Assume
that Fa is faithfully flat over CΛy F'a is faithfully flat over C£ ( = image
of Ca under the mapping F^^F*) and Keτ{Fΰίt-^Ff

a) is nilpotent. Let F,
F', O denote the direct limits of Fay Ca, F'Λ, Cf

Λ. Then there is an in-
duced isomorphism of cohomology

Hn(F/C) ^ Hn(F'IC) for all n.

Proof. Since tensor product commutes with direct limits, we have
Fn=ϊϊmFZ whence Fn* = ϊϊmFZ* [if *GF M * there are xΛ9 yω in Fl
mapping on x and x'1 respectively then x^y^ — 1 maps to 0 so for some
β^>ocy χaya — l maps to 0 in Fv

β•; the image of xΛ in F% is a unit which
maps to x in Fn~] and <£,(F/C) = limQZ(FJCΛ). Since homology commutes
with direct limits [7, Prop. 9.3*], we have Hn (F/C) ̂ l im Hn(FJCa)^

REMARK. It is clear that we could also generalize Proposition 3. 3
to direct limits in a similar fashion.

Corollary 3. 6. Let F be a faithfully flat C-algebra and let K-+K'
be an epimorphism of C-algebras with nilpotent kernel. Then the mapping
of complexes &(K®F/K)-+(H(K'f(g)F/K') induces an isomorphism of coho-
mology

Hn{K®FIK) ^ Hn(K'®FIKf) for all n .

Proof. K®F and K'®F are faithfully flat K- and ^-algebras
respectively, since they verify (2.1). Since the kernel of
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is still nilpotent, Theorem 3. 4 is applicable and yields the result.

4. Spectral sequences and the basic exact sequence

Let K and F be C-algebras and denote by E™>n the group of units
in Km®Fn

y rn,n>0. If m or n is negative, E^n is to be the trivial
group. If we fix m and vary ny we get exactly the terms in
&(Km(g)F/Km) (cf. footnote33); the corresponding coboundary operator
we denote by AF

 n. If we fix n and vary m, we get &{K®FnjFn) its
coboundary operator we denote by Δ£if\ These two operators make E™ n

a double complex [4, Th. 3.1] [7, p. 60]. As usual, Ek = l,m+H=k+1EV'n

is an ordinary complex whose &th cohomology group we denote by
Hk(K, F/C). Corresponding to this double complex are two spectral
sequences, both converging to Hk(K,F/C) [7, XV §6]. For the first
of these, the Ex term is just the homology of Eo with coboundary AF :

ΈT'n = Hn-1(Km®FIKm).

On this Έ19 Aκ induces a coboundary operator A%n: 'ET^-^'E?*1 >n the
corresponding homology is Έ2. The second spectral sequence reverses
the roles of Aκ and AF :

"E?-n = Hm-\K®FnIFn)

and "E2 is the homology "E19 using the operator Δ F induced by AF.
The restriction map pn: Hn(F/C)->Hn(K(g)F/K), introduced by

Amitsur [4, § 2] as a generalization of the ordinary restriction map of
Galois cohomology is induced by the mapping f-*f®l from Fn to
Fn®K, and is exactly the mapping Δ^Λ + 1: Έ°ϊn+1-+Έ\'n+\ We shall
use the shorter notation pn instead of Δ^n+1 when convenient. We shall
use the same notation, pn9 occasionally for the corresponding mapping
with K replaced by Km. Note that Έ°2

 n is just Ker/o^: Hn-1{FIC)->
Hn-χ{K®FIC\ since Έ?-n = 0 when m or n is negative, so that

Furthermore, Ker p2 has a simple interpretation: Under suitable
hypotheses, H2(F/C) may be identified with the Brauer group of central
separable C-algebras with F as splitting ring [12, Th. 3] with this
identification, p2 becomes the mapping which associates with such an
algebra A the Zf-algebra K®A (which, of course, is split by K®F).
Thus Ker p2 is the subgroup of the Brauer group determined by the C-
algebras split by both F and K [4, Proof of Th. 3. 2].

One final introductory remark: We use only the most elementary
properties of the later terms Έr and "Er in the spectral sequence [7, XV],
viz.,
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(4.1) Έ?iΐ = Ker (ΈTιn -> ΈT+r n-r+1)/Im ('JE«-r

(exactly what the mappings are plays no role)

(4. 2) Έ™'n = Έ ? w /orα// fer^ r

(4.3) Hk(Ky F/C) has a chain of subgroups with corresponding factor
groups {'E™'n\m + n =

Immediate corollaries of these are

(4.4) Έ? * = 0 implies ΈT>ri = 0 for s = r,

(4.5) if, among the Έ™n with mJrn = kJrl there is only one nonzero one,
then this one is isomorphic to Hk(K, F/C)

(4.6) 'EZ'» = 'E?'n if all Έz

r'
3 vanish for i+j=m + n + l, i>m + r, and

also vanish for i+j=m + n — l> i<^m — r.

The same properties hold for "E except that the roles of m and n
must be interchanged. For example, we shall need (4. 6) for "E only in
case r = l n = 0; it reads

(4.60 "E™'Ό = "E? ° if all "£{•' = 0 for i+j = m + 1, j> 1 (and all
"E{ ό = 0 for i+j = m—ly i < — 1, but this is automatic).

Proposition 4.1. Let K and F be C-algebras. Suppose that F is
faithfully flat over C and that the homomorphism θ: Km -> K given by
Θ(k1(£)k2(g)' (g)km)==k1k2 km has a nilpotent kernel for each m^>l. Then
there is an exact sequence

>Hn-1(K®FIK)->Hn(KyF/C) >Hn(FjC) >Hn(K®F/K)-> •••
Pn-l Pn

Proof. Since Fn is also faithfully flat, Corollary 3.6 asserts that
the map 0 ® 1 : Km®Fn^K®Fn induces isomorphisms

am,n . / Ί?m,n /T?l,n

for m > l . To compute Έ2, we compute the operator on Έ\>n into which
Δ^ is carried by these #'s. Since the following diagram commutes

0®1
Km®Fn > K®Fn
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and A%n is an alternating product of m + 1 £'s, we have a commutative
diagram

gm,n

where dm is the identity for even m and the zero map for odd m. Thus
the complex {ΈTn

y Δ^*1, m = 0, 1, •••} is isomorphic to the complex
{Έ{'n, dm, m=0, 1, •••}, which is acyclic for m > l . It follows that
Έ ? w = 0 for m > l , and the map Δ^M: Έϊ n-*'£?•" is zero. Thus Έ2 has
only two nonzero columns, viz., m = 0 and m = l. By (4.4) and (4.6),
ΈΞ " = '£?•" and by (4.3) there is an exact sequence

(4. 7) 0 -> Έl-n -> Hn(K, F/C) -> Έ°2

 n+1 -> 0 .

Furthermore, since Δ ^ = 0 as above, /El'n = Έϊ'ίl/lmA0

It'
i = Cokerpn-.1 and

/E2n = K e r Δ ^ = Kerpn_lm Thus the short exact sequences (4.7) can be
combined into the long exact sequence of the Proposition.

Lemma 4. 2. Let F be a K-aίgebra and K a C-algebra. Then

Hk(Ky F/C) ^ Hk(K/C) for all k .

Proof. This is a slight generalization of [4, Theorem 3. 3] and is
proved in fundamentally the same way: The mapping u: K
Km-χ®Fn defined by u(k1®'"®km®f1®-®fn) = k1®-®kn_1®knf
is a contracting homotopy in &(K(&Fn/Fn). Thus //JSΓn = O when w > l .
(The double complex has exact rows except for the row n.= 0 the spectral
sequence "E collapses.) Therefore, by (4. 4), (4. 5) and (4. 6), H\K9 F/C)

Theorem 4.3. Let F be a K-algebra and K be a C-algebra and
assume F is faithfully flat over both K and C. Assume further that the
mapping Θ: Km-^K has a nilpotent kernel as in Proposition 4.1. Then
there is an exact sequence

.. — Hn-\F/K) - Hn(K/C) -+ Hn(F/C) -> Hn(F/K) - -

Proof. By Proposition 4.1 and Lemma 4.2 we see that we need
only show Hn(F/K) ^ H\K®F/K). Let iV be the kernel of θ : K®K^Ky

so that 0^N-^K(g)K^K-^0 is exact. Consider this as a sequence
of if-modules, with K acting on N and on K 0 K as 1 0 K tensor over
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K with F to get an exact sequence §->N®KF^K®F-^F->0. Thus
the kernel of the (l(χ)iΓ)-algebra epimorphism K®F->F is nilpotent,
and Proposition 3. 3 gives the required isomorphism of homology groups.

REMARK. It is not difficult to trace the mappings through the various
isomorphisms in our proofs to see that the mapping Hn(K/C)^Hn(F/C)
is the analogue of the lift mapping in Galois cohomology and is induced
by the natural mapping κn+1->Fn+1 (in turn induced by K-+F); and
the mapping Hn(F/C)->Hn(F/K) is the analogue of the restriction and
is induced by the natural mapping

Corollary 4.4. Suppose {KJ is a directed set of C-algebras with
direct limit Ky and suppose that the kernel of θ : ϋf J -> KΛ is nilpotent for
every m and every cc. If F is any faithfully flat C-algebra then the
sequence in Proposition 4.1 is exact.

If, besides, F is a K-algebra {hence a Ka-algebra for each OL) and is
faithfully flat over each Ka, then the exact sequence in Theorem 4. 3 is
exact.

Proof. As in Corollary 3. 5, the complexes &(Ka/C) form a directed
system with limit &(K/C). Similarly S (/ζ, (g) F/ϋΓJ has direct limit
&(K®F/K), the double complex {£?•*} defined for KΛ and F has direct
limit equal to the double complex defined for K and F, and 0Z(F/KΛ)
has direct limit &(F/K) [7; VI, Ex. 17]. Since direct limit commutes
with homology, Hn(K/C)y Hn(K, F/C), and Hn(F/K) are the direct limits
of Hn(KJC), Hn(Kay F/C) and HH(F/KΛ) respectively. Since direct
limit is an exact functor, the exact sequences for F and Ka given by
Proposition 4.1 and Theorem 4. 3 are carried by direct limits into the
corresponding exact sequence for F and K.

5. Remarks on £4]

The techniques in the previous section can also be used to prove
many theorems in [4], resulting in shorter proofs and in slightly weaker
hypotheses. We reproduce some of these shorter proofs here, since the
spectral sequence technique demonstrates that Amitsur's exact sequences
are exactly the same as the early terms in the exact sequences of the
preceding section. All these exact sequences are inspired by those of
Hochschild-Serre [11, Th. 2 and § 5] read down to Galois cohomology.

Proposition 5.1. [4, Theorem 3.2]. Let F be a faithfully flat
C-algebraandKany C-algebra. Then H°(K,F/C) = OandH1(K,F/C)^Keτp1

where px: Hι(FIC)->H(K®FIK) is as defined at the beginning of §4. //
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H1 (K 0 F/K) = H1 (K2 <g) F/K2) = 0 (or, more generally, H1 (F/C) -*
H\K®FIK)-^Hι(K2®FIK2)->H\K"®FIK") is exact, all the mappings
being of the form p^, then also H2(K, F/C)^Ker p2 where p2: H2(F/C)->
H2(K®F/K).

Proof. By Lemma 3.1, ΈT° = Έ?'1 = 0. Hence Έ ? B = 0 when
m + w = l ; by (4.4) and (4.5), H°(KyF/C) = 0. When m + n = 2y Έ?'n = 0
except for Έf2. Thus by (4.4) and (4.5), H1(KyF/C) = Έt2 which, by
(4. 6), equals Έl'2 = Keτ px. The last hypotheses of the Proposition assert
Έ\ 2 = Έl'2 = 0 (or, more generally, Έl 2 = fEl 2 = 0) so that when
ΈT'ι = 0 except Έl'8 = Keτp2. Similarly, H2(K,

REMARKS. 1. By [4, Th. 3.8], W(Km® F/Km) = 0 whenever Km is
a finite direct sum of (not necessarily Noetherian) local rings. Thus the
hypotheses in Proposition 5.1 are surely satisfied if C is a field and F
and K are finite dimensional C-algebras, so that in this case Hλ{K, F/C) = 0
and H2(K,F/C) = Kerp2.

2. For the significance of Kerp2, see the comments above Proposi-
tion 4.1.

Proposition 5.2. [4, Corollary 3.4] // F and K are C-algebras
and if Hm(K®Fn/Fn) = 0 whenever «=)=0 and m + n is either k or
then Hk(Ky F/C)^Hk(K/C).

Proof. The assumptions translate to; "E?'n = 0 when
or k + 2 and n>l. By (4.4), (4.5) and (4.60, H*(K9 F/C) = "EhJ1 ° =

For the next proposition we use the notation H2(K(&F/K)° for the
kernel of the mapping Δk3: Έ\'3->Έls namely, the set of elements x
in H2(K®FIK) ( = 'E\-*) such that S*x = e*χ where the Sf are the
mappings induced by the £,: K^K2 used in defining K(JK"/C).

Proposition 5. 3 [4, Theorems 4.1 and 4. 2]. Let F and K be faith-
fully flat C-algebras. If

W{K®FIF) = H\K®F2/F2) = H2(K®F/F) = H

= H\K2®FIK2) - 0

then there is an exact sequence

0 - H2(K/C) - H2(F/C) P-X H2(K®F/K).

//, besides,
this can be extended to an exact sequence
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0 - H2(K/C) -> H2(F/C) ^ H2(K®F/K)° -> H3(K/C) -> if8 (F/C).

Proof. Proposition 5.1 with F and K interchanged shows that

H2(K, F/C) = Ker {pi: H2(K/C) - H2(K®F/F)) = H2(K/C).

Also, Proposition 5.1 in its original form shows

0 — H2(K, F/C) -> H2(F/C) ?X H2(K®F/K)

is exact. These two facts prove the first conclusion of Proposition 5. 3.
Finally, we examine fEZ'n with m + n = 4. Lemma 3.1 asserts that

ΈT° = ΈT1 = 0 for all m. Then by (4.4), ΈtΌ = Έt1 = 0. By hypothesis
and (4.4), 0 = H1{K2<g>F/K*) = Έϊ2 = Έ*z. The last hypothesis on Έ is
0 = H\K3(g>F/K3) = /El'2 which allows us to compute 'Eh* by (4.6) with
r = 2 since Έϊ3 = 0 automatically for ί < l - 2 . Thus Έh3 = Έ\ 3 =
KerΔ^/Im^ = H2(K®F/K)°flm p2. Lastly, by (4.1), Έh\ =
Ker(ΈΌ

r

Λ-^Έr

r

 5-r)/{O}czΈΌ

r \ so that Έ^CZLΈΪ*. By (4.3) we get
an exact sequence 0-^Έl:s->H3(K, F/Q-^Έ^-^O, which, in view of
the facts just computed for the Έ^, gives an exact sequence

H2(F/C) ?l H2(K®F/K)° -+ H3(Ky F/C) -* H3(F/C).

The last set of hypotheses in the Proposition allows us to use Proposi-
tion 5.2 to show H3(K,F/C)^H3(K/C), which completes the proof.

REMARKS. 1. As we remarked before, if C is a field and K and F
are finite-dimensional over C, all the Hlys in the hypotheses of Proposi-
tion 5. 3 will vanish. If, besides, F is a if-algebra, the remaining hypo-
theses will also be satisfied ([4, Theorem 2. 9] or rather the fact, proved
in the proof of Lemma 4.2, that "ETvι = Hm(K(g)Fn/Fn) = 0 when nφΰ).

2. In case F is a normal, separable extension field of C and K an
intermediate field, the exact sequences in the proposition reduce to the
Hochschild-Serre sequences for Galois cohomology [11, §5].

3. From the constructions involved, it is clear that these exact
sequences coincide with the early portions of the long exact sequence
of Theorem 4. 3, when the latter is applicable.

6. Inseparable fields

In the rest of this paper we assume C is a field of characteristic
^Φθ. If F is an extension field, we shall use the notation Fm pe to denote
{xpe\xeF} to distinguish this from the /-fold tensor product Fp\ We
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recall that F is said to be purely inseparable over C of exponent e if
FmpeczC but F'pe~1φC. A key result in this direction has been proved
by A. J. Berkson [5, Th. 4] : Let F be a purely inseparable extension
field of C of exponent one with [ F : C ] finite. Then Hn(F/C) = 0 for all
nφ2. It follows from [3] or [12] that H2(F/C) may be identified with
B(F/C), the Brauer group of central simple C-algebras split by F, so
that H2(F/C) is usually not zero. Berkson's result extends immediately,
using Theorem 4. 3 :

Theorem 6.1. Let F be a purely inseparable extension field of C with
finite exponent. Then Hn(F/C) = 0 for all nφ2.

Proof. F is a union of subfields FΛ with [FΛ: C] finite (and, of
course, Fa is purely inseparable with finite exponent). As in Corollary
3. 5, we have Hn(F/C) = ϊϊm Hn(FJC), so it suffices to prove the theorem
when F is finite dimensional over C. We proceed by induction on the
exponent of F. The case of exponent one is Berkson's theorem. Now
let K=FmpC so that if is a field of smaller exponent over C, and F is
purely inseparable of exponent one over K. The pure inseparability of
K implies that Km has only one simple homomorphic image namely K,
so that the kernel of Θ: Km->K is the radical of Km

y hence nilpotent.
Thus Theorem 4.3 applies to yield exact sequences Hn(K/C)->Hn(F/C)
->Hn(F/K) whose extreme terms vanish for nφ2 by the induction
hypothesis. Thus Hn(F/C) = 0 for nφ2.

Corollary 6. 2. Let K be a purely inseparable extension field of C
with finite exponent and let F be a commutative K-algebra. Then
Hn(F/C)^Hn(F/K) for all nφ2. For n = 2, we have an exact sequence

Proof. If [ # : C ] is infinite, the kernel of Km-+K wil be nil but
not nilpotent, so Theorem 4. 3 does not apply. But Corollary 4. 4 does
and, together with the fact that Hn(K/C) = 0 for nφ2y yields the result.

Corollary 6. 3. Let F be a normal, but not necessarily separable ex-
tension field of C with \F: C] finite. Let G be the group of C-algebra
antomorphisms of F. Then Hn(F/C)^Hn(G, F*) for all nφ2.

Proof. Let K be the maximal purely inseparable extension of C
which is contained in F. Then F is normal and separable over K [14,
Cor. 3, p. 74] and its Galois group is G. By Corollary 6.2, Hn(F/C)^
Hn(F/K) and the latter is Hn(GyF*) by [3, Th. 6.1] or [12, Th. 1].

We now identify H2(F/C) with the Brauer group 3B(F/C) of all
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central simple C-algebras split by F [3, Th. 5. 4] or [12, Th. 3]. It is
straightforward to trace the mappings £(K/C)-*$(F/C) and SB (F/C)->
33(F/K) in the exact sequence of Corollary 6. 2. The first associates to
a central simple C-algebra A the same algebra (if A is split by K, it
is split by F since KczF) the second associates to A the /f-algebra
K®A. From this it is already clear that 0 -> % (K/ C) -> SB (F/ C) -> 55 (F//JΓ)
is exact. In fact, we shall think of 35(K/C) as a subgroup of SB (F/C).
The major content of Corollary 6.2 is the fact that the last of these
mappings is an epimorphism. Since every central simple C-algebra is
split by some F containing K, we have

Corollary 6.4. Let K be a purely inseparable extension field of C with
finite exponent. Then every central simple K-algebra is similar to an
algebra of the form K®A for some central simple C-algebra A. If A
is split by F over C for some F containing K, then, K®Ais split by F over
K. The correspondence A-+K&A induces an epimorphism SB (F/C)-»
£(F/K); 33(F/K)^93(F/C)/33(K/C).

REMARK. Corollary 6. 4 is due to Hochschild [10, Th. 5]. Amitsur
attempted a proof using his complex, but the proof is invalid because
of a gap in [3, Lemma 8.1], This lemma is also correct and provable
by means of Amitsur's complex in fact it appears as Corollary 7. 6 (c)
below.

Corollary 6. 5 (cf. [10, p. 140]). If F is a purely inseparable field
extension of C with finite exponent, then 35(F/C) contains a finite
chain of subgroups 33(F/C)zD33(CFmp/C)zD35(CF'p2/C)=D- with factor
groups isomorphic to Brauer groups of extensions of exponent one, viz.,
35{F pi/C)/θ3(F pί+1/C)^θ3(CF pί/CF pi+1). If [ F : C ] < o o , the latter
Brauer groups can be described in terms of certain Lie algebra extensions
[9, Th. 6] or [3, Th. 6].

Corollary 6.6 (cf. [1, Ch. VII, Ths. 26 and 28]). // K19-,Kt are
purely inseparable extension fields of C, each with finite exponent, and if
F=HiKi is the (necessarily unique) composite of the Kiy then SB (F/C) =

Proof. Clearly it is sufficient to deal with the composite of two
fields KX = K and K2 = L. By writing K and L as unions of extension
fields of finite degree, we see that it is also sufficient to treat the case
where K and L are finite over C. We proceed by induction on the
maximum of the exponents of K and L. If this maximum is one, the
result is contained in [12, p. 354, Corollary]. The induction needs a
lemma:
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Lemma 6.7. // Θ3(KL/C) = 33(K/C)S3(L/C) for all Ky L and C with
K and L of exponent <^ e over C, and if Kf and U are purely inseparable
extensions of Cf with exponents <^e and if C is purely inseparable of
finite exponent over C, then $(K'L'/C) = ̂ (K//C)Θ5(L//C)35(C/C).

Proof. By Corollary 6. 4 fi(K'L'/C), £(K'/C) and SB(Z//C) all contain
33(C'/C) and the respective factor groups are £(K'L'/C), SB(/Fr/C) and
33(L'/C). By hypothesis, Θ5(K/L//C') = Θ3(K//C')33(U/C). Taking inverse
images in 33(K'L'/C) gives the lemma.

We now complete the induction in the Corollary. Take K and L
with maximum exponent e, F=KL, and apply the lemma with C' = CFmp

9

K' = KF9p and L' = LF'P to get θ5(F/C) = 35(KFmp/C)65(LF'p/C)^(CFΦp/C).
Apply the lemma again with C' = CK*P, Kf = K, L' = CFmp and
yet again with C' = CL'P, K' = CF*P, U = L to get 3B(F/C) =

But CK'pczK and CLmpczL, so 35(CKmp/C)cz33(K/C) and
S3(CLΦp/C)czθ3(L/C); and by the induction hypothesis, 35{CF'P/C) =
%{CK'p/C)β3{CLmp/C)cz33(K/C)S3(L/C). Inserting these into the formula
for %(FIC)y we get %(F/C) = 35(K/C)33(L/C).

7. Separable subfields

In this section F is an algebraic extension field of C and we adopt
the following notations: Fs and F{ for the maximal separable and purely
inseparable extensions of C contained in F; q=pe for the smallest power
of the characteristic p such that F'qczFs (we assume that q is finite);
and K for the field of all #th roots of elements of C. Note that FiCuK.

In section 4 we have given connections between Hn(F/C) and
Hn(F/Fi). One would expect some connection also with Hn(FJC). This
section is devoted to giving a few such connections under special
hypotheses, with applications to Brauer groups.

Raising to #th powers gives a ring homomorphism Fn~>Fn

s (not an
algebra homomorphism it is not the identity on C) which commutes
with the operators £f and thus gives a mapping of complexes K(F/C)->
(£CF5/C). This in turn induces the homomorphism κn : Hn(F/C)^Hn(FJC)
which we intend to study. We factor κM thus :

(7.1) Hn(F/C) — Hn(KF/K)^iHH{{KFyg/Kmq) = Hn(FJC),

where the first mapping is induced by the mapping Fn

defined by x1®—®xn-*x1®K"'®κXn> a n d the second mapping is induced
by the mapping KF®K»-®KKF^{KF)mq®K.*»-®K-*<<KF)mq given by

χl- The second mapping is clearly an iso-
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morphism of rings and thus π is an isomorphism. We prove the last
fact (KFYg=Fsy in a lemma.

Lemma 7.1. With the notations above, KFS = KF and (KF)Φq = Fs.

Proof. Since Fs = CF;q [14 II, Th. 8], we have Fs = CFs'
q = (KFsY

q

) m q = CF9qcz.Fsy so that all the inclusions are equalities and the
lemma follows.

Corollary 7.2. // Kcz.Fy then F=KFs=FiFs.
In this section we shall deal exclusively with the special case

F=FiFs (equivalently, F is separable over a purely inseparable extension
of C; or F^Fi®Fs [1, Th. 2.31 and Lemma 7.7]; this includes the
case where F is normal over C [14, p. 74, Cor. 3]). In this case we
can factor the first mapping in (7.1) further:

(7.2) Hn(F/C) σΛ Hn{FIFi) PΛ Hn(K®FiF/K) = Hn(KF/K),

where σn is the mapping in Theorem 4. 3 with K there replaced by F t

(induced by ^ i ® " ' ® ^ ^ ^ ® ^ 1 " ® ^ ^ Pn is defined at the beginiung
of §4 (induced by xλ®Fi ••• ®FiXn->(X®FiXi)®κ- ®κ{\®FiXn)), ancί the
last equality follows from K®FiF=KF [1, Th. 2.31].

This factorization of κn with n = 2 already explains a lemma of
Amitsur [2, Lemma 4.1] :

Proposition 7.3. Let A be a central simple C-algebra. The iso-
morphism x-^xq of K to C extends to an isomorphism of A® K to a central
simple C-algebra Aλ. Then Aλ is similar in the sense of Brauer to A9.

Proof. Let F be a separable splitting field of A so that FS = F and
Fi = C. Consider the mapping κ2 factored as in (7.1) and (7. 2) since
σ-2 = l here, we have κ2 = τr2o p2. When we identify H2(F/C) with SB(F/C),
etc., the mapping p2 is identified with the correspondence A->A®K of
C-algebras to if-algebras and τr2 becomes the correspondence of K-
algebras and C-algebras described in the proposition. Thus κ2 is iden-
tified with the composite A-*A®K-+A1. But /c2(x) = xq so that κ2 is
also identified with the correspondence A->Aq. This proves A1 and Aq

are in the same Brauer class.
We can prove the most explicit result under the hypothesis KczFy

which, according to Corollary 7.2, is still stronger than F=FiFs. In this
case, Fi = K, so that pn in (7.2) is the identity and Kn

 = 7Tno(rn-

Theorem 7.4. // KczF then κH: Hn(F/C)->Hn(FJC) is an iso-
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morphism for nφ2 and κ2 is an epimorphism with kernel isomorphic to
H2(K/C).

Proof. Since τtn is an isomorphism, κn =
 7Cnoσn is an epimorphism if

and only <rn is, and Ker /eM = Ker o-n. But the required properties of σn

are asserted by Corollary 6. 2.
This theorem proves the following results on Brauer groups. Recall

that 35 (C) denotes the group of similarity classes of central simple C-
algebras, and SB (F/C) is the subgroup defined by the algebras split by F.

Corollary 7.5. Associating to a central simple C-algebra A the
algebra J¥ = A®-~®A induces an endomorphism K' of 25(C) {raising to
qth powers) which, for any separable extension field L of C sends 35(KL/C)
onto 35(L/C) with kernel 35(K/C).

Proof. Take F=KL, identify H2{F/C) with 35(F/C), etc., and apply
Theorem 7.4.

Corollary 7.6. (a) The endomorphism K! of 35 (C) in Corollary 7.5
is an epimorphism with kernel 35(K/C).
(b) The group 35 (C) is divisible by q.
(c) Every central simple C-algebra A is similar to A\ for some central

simple Aλ.
(d) A9 is a matrix algebra if and only if A is split by K (cf. [1, Th. 8. 21]).

Proof. SB(C) is known to be the union of 35(L/C) as L ranges over
the separable extensions of C i.e., every central simple C-algebra is
split by some separable extension field [1, p. 62 Cor.]. By Corollary 7. 5,
Im/cr contains every SB (L/C) so that K! is an epimorphism. Moreover,
if xe35(L/C) then also xe35(KL/C) so by Corollary 7.5, # e K e r * / only
if xe35(K/C). This proves (a). The other conclusions are direct transla-
tions of (a).

REMARK, (C) is the promised corrected version of [3, Lemma 8.1].

If instead of KczF we return to the weaker hypothesis F=FiFsy it
is no longer true that κn is an isomorphism for nφ2. For example, if
C is the field of formal power series in x and y over the field of two
elements and F is the field of power series in \/~x and y over the field
of four elements, then F is normal over C with cyclic automorphism
group G, so that Hn(F/C) can be interpreted as the cohomology of G
with coefficients in F* and thence calculated more or less explicitly. The
condition for κn to be an epimorphism when n is even turns out to be
C* = Ff2NFs/c(Fs)y which is false in this case.
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Under one rather obvious hypothesis we can still prove κn is an
isomorphism for wφ2. To do this we introduce the lift mapping Xn:
Hn(FJC)^Hn(F/C) induced by the injection of Fn

8 into FM. It is easily
verified that Xn°κn (resp. κnoχn) is the operation of multiplication by q
in Hn(F/C) (resp. in Hn(FJC))— or raising to qth powers if Hn(F/C)
is written multiplicatively.

Proposition 7. 7. // the degree of Fs over C is prime to the charac-
teristic then, for all n, /c/λΛ is an automorphism of Hn(FJC) so that κn

is an epimorphism Hn(F/C)->Hn(Fs/C) and Xn is a monomorphism
Hn(FJC)^Hn(F/C). If besides F=FiFSJ then κn and Xn are isomorphisms
for nφ2.

Proof. By [4, Th. 2.10], every element of Hn(FJC) is annihilated
by the degree [ F 5 : C]. Hence multiplication by q is an automorphism
of Hn(FJC)y proving the first part of the proposition. If F=FiFs = Fi®Fs9

then [ F : F J = [F,:C] and, for nφ2, Hn(F/C) = Hn(F/Fi) by Corollary
6. 2 thus the same argument applies to show that Xn o κn is an automor-
phism of Hn(F/C), which proves Xn and κn are isomorphisms.

REMARKS. 1. In the example mentioned above, not only is κn not
an isomorphism, but neither is Xn however, Hn(F/C) and Hn(FJC) are
in fact isomorphic for nφ2. We do not know whether such an isomor-
phism always exists for all F and C.

2. Using the same kind of argument, if KczF and [_FS :C] is a
multiple of q, then λM = 0 for nφ2y since κn is an isomorphism by Theorem
7.4 and /cMoλΛ is the zero map on Hn(Fs/C).

We conclude with an exact sequence involving the κn's. This exact
sequence comes from the double complex dercribed in §4, but with F,
replacing C. From here on it will be convenient to change our conven-
tions and consider all tensor products to be tensor products over Fiy

including the iterated tensor products Fn = F§§Fi ••• (g)F.F. Then besides
the notations £?•", "E?'n> etc. as in §4, we shall use the notation

^-2/ΊmΔj;*-3 for k>3.

This is the homology of the complex whose terms are "El>k~2 =

Proposition 7.8. Let F be a field of finite degree over a purely
inseparable extension F{ of finite exponent over C (equivalently, F=FiFs with
[Fs: C] finite and F{ of finite exponent). Then there is an exact sequence

H3 -> H3(F/C) ^ H\FJC) -> W - H4(F/C) t
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Proof. By Corollary 4. 4 we have an exact sequence

H"(K, F/Fi) -> Hn(FIFt)
PΛHn{K®FiFIK) -

But for n>3 we have isomorphisms σn: Hn(F/C)-^Hn(F/Fi) (Corollary
6.2) and τtn: Hn(K®FiF/K)->Hn(FJC) furthermore according to (7.1)
and (7.2), πnopnoσ n = κn. Thus we have an exact sequence

... - H*(K, F/Fi) - Hn(F/C) *Λ H»(FJC) - ...

It remains to show Hn(Ky F/Fi) = Hn. We compute this cohomology group
of the double complex by computing "E. Since F is separable of finite
degree over Fiy Fn is also separable and hence is a finite direct sum of
separable extension fields of F{, say Lλ® - φ Lt. Consequently
&(K®FnIFn) is the direct product of complexes &(K®LJILj) and
Hn(K®FiF

nIFn) is the direct sum of Hn{K®LJILj), Since K is purely
inseparable over F£ and Lj is separable over Fiy K®Lj is a field [1, Th.
2.31] and is purely inseparable over Lj. Then Corollary 6.2 implies
that /fE? n = τJH

m-1(K(SlLj/LJ) = O for m φ 3 . Thus "E™ ™ = 0 for mφ3
and "El.» = "El-n (by (4. 6), say) which is Hn+\ By (4. 5) Hn(K, FIFt) = Hn.

Corollary 7.9. //, besides the hypotheses of Proposition 7.8, F is
normal over Ft {equiυalently Fs is normal over C) with Galois group G,
then Hn = Hn2(Gy H2(K(g)FiF/F)) so that we have an exact sequence

... -> Hn\G, H\K®FiFIF)) - Hn(F/C) - Hn(FJC) -> - (n > 3).

Note also that Hn{F/C) = Hn(G, F*) and Hn(FJC) = Hn(Gy F*).

Proof. Essentially the same proof as used in [12, Th. 1] to show
Hn(FJC) = Hn(GyFf) will show the desired result here.

REMARK. If F{ = K (equivalently, KczF)y Proposition 7.8 recovers
the fact that κn is an isomorphism for τz>3 (Theorem 7.4), since then
»E\ *-2 = H2(K®FiF

k~2IFk-2) = H2(Fk~2/Fk-2) = 0. Thus also Hk- "E\k~2 = 0
proving κn is an isomorphism.
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