# A NOTE ON TRANSITIVE PERMUTATION GROUPS OF DEGREE $p$ 

By<br>Noboru ITO<br>Dedicated to Kenjiro Shoda on his sixtieth birthday

Let $p$ and $q$ be odd prime numbers such that $p=2 q+1$. Let $\Omega$ be the set of symbols $1, \cdots, p$ and let $\mathbb{C S}$ be an insoluble transitive permutation group on $\Omega$. Then by a famous theorem of Burnside © 8 is doubly transitive on $\Omega$. In particular the order of $\mathfrak{G}$ is divisible by $q$. Let $\mathfrak{\Omega}$ and $N s \mathfrak{Q}$ denote a Sylow $q$-subgroup of (5) and its normalizer in (5). Moreover let $\mathfrak{S}$ be the maximal subgroup of $\mathfrak{G}$ consisting of all the permutations of $\left(\mathscr{S}\right.$ each of which fixes the symbol 1 and let $L F_{2}(n)$ denote the linear fractional group over the field of $n$ elements.

Now the purpose of this note is (i) to give a proof for an unpublished result of Wielandt in 1955:

Theorem 1. If $\mathfrak{S}$ is imprimitive on $\Omega-\{1\}$, then $\mathfrak{G}$ is isomorphic to $L F_{2}(7)$ with $p=7$, and (ii) to prove the following theorem :

Theorem 2. If $N s \cong$ has order $2 q$, then (Ss is isomorphic to either $L F_{2}(7)$ with $q=3$ or $L F_{2}(11)$ with $q=5$.

## § 1. Proof of Theorem 1.

1. Let $\mathfrak{F}$ and $N s \mathfrak{F}$ denote a Sylow $p$-subgroup of $\mathbb{F}$ and its normalizer in © ${ }^{(5)}$ We assume that $N s \Im$ has order $p x$. If $x=1$, then by the splitting theorem of Burnside (8) contains a normal subgroup of index $p$. Hence $\mathfrak{S}$ is normal in (S). Since $(\mathscr{S}$ is transitive on $\Omega$, we have that $\mathfrak{S}=1$ and $\mathfrak{G}=\mathfrak{F}$. Then $\mathfrak{G}$ is soluble against our assumption. If $x=2$, let $J$ be an involution in $N s \mathfrak{\beta}$. Then the cycle structure of $J$ consists of $q$ transpositions. Since $q$ is odd, $J$ is an odd permutation. Let (5)* be the subgroup of $(5)$ consisting of all the even permutations of $(\mathbb{F})$.


[^0]insoluble. But we have that $N s \mathfrak{B} \cap \mathscr{S}^{*}=\mathfrak{F}$. This is a contradiction as before. If $x=2 q$, then by a theorem of Wielandt ([5], (27.1)) ©5 is triply transitive on $\Omega$. Hence $\mathfrak{S}$ is doubly transitive and necessarily primitive on $\Omega-\{1\}$. This is against our assumption. Hence we can assume that $x=q$.
2. $(5)$ is simple. Otherwise let $\mathfrak{R}$ be a proper normal subgroup $(\neq 1)$ of $(\mathscr{F}$. Then since $(\mathscr{S}$ is doubly transitive on $\Omega, \mathfrak{R}$ is transitive on $\Omega$. Therefore $\mathfrak{R}$ contains $\mathfrak{F}$. Using Sylow's theorem we have that $\mathbb{B}=N s \mathfrak{P} . \mathfrak{R}$. Therefore we have that $\mathfrak{B} \subseteq N s \mathfrak{\beta} \cap \mathfrak{R} \subseteq N s \mathfrak{B}$. Since $N s \mathfrak{B}: \mathfrak{B}=q$ is a prime number, we have that $N s \mathfrak{ß \cap} \mathfrak{M}=\mathfrak{B}$. This implies the solubility of $\mathfrak{R}$ and (8) as before. This contradiction shows the simplicity of (8).
3. The order of $\mathfrak{Q}$ is $q$ and the cycle structure of every element $(\neq 1)$ of $\Omega$ consists of two $q$-cycles. Otherwise $\mathfrak{\Omega}$ contains a $q$-cycle. Then by a classical theorem of Jordan $(\mathbb{S}$ must be the alternating group of degree $p$, which is obviously triply transitive on $\Omega$. This is a contradiction as before.
4. Let $\Re$ be the subgroup of $\mathfrak{C}$ consisting of all the permutations of $\mathfrak{G S}$ each of which fixes each of the symbols 1 and 2 . Now since $\mathfrak{F}$ is imprimitive on $\Omega-\{1\}, \mathfrak{R}$ is not a maximal subgroup of $\mathfrak{S}$. Let $\mathfrak{M}$ be a maximal subgroup of $\mathfrak{S}$ containing $\Omega$. Since $\mathfrak{K}: \mathscr{\Omega}=2 q$ two cases arise : (i) $\mathfrak{M}: \mathfrak{R}=q$ and $\mathfrak{S}: \mathfrak{M}=2$ and (ii) $\mathfrak{M}: \mathfrak{R}=2$ and $\mathfrak{S}: \mathfrak{M}=q$.
5. Case (i). Since $\mathfrak{M}$ has index two in $\mathfrak{S}$ and is intransitive on $\Omega-\{1\} \Omega-\{1\}$ is divided into two domains of transitivity $\Omega_{1}$ and $\Omega_{2}$ of $\mathfrak{M}$ each of which has length $q$. Let $C s \mathfrak{\Omega}$ denote the centralizer of $\mathfrak{\Omega}$ in (8). Then we have that $C s \mathfrak{Q}=\mathfrak{Q}$, because otherwise $C s \mathfrak{\Omega}$ must contain a $2 q$-cycle, which is an odd permutation against the simplicity of $(\mathbb{S}$. Now using Sylow's theorem we can assume that $\mathfrak{\Omega}$ is contained in $\mathfrak{K}$. Then $\mathfrak{Q}$ is contained in $\mathfrak{M}$ and we have that $\mathfrak{S}=N s \mathfrak{M} \mathfrak{M}$, whence follows that $N s \mathfrak{\Omega}: \mathfrak{M} \cap N s \mathfrak{Q}=2$. Let $\mathfrak{I}$ be a Sylow 2 -subgroup of $N s \mathfrak{\Omega}$. Then $\mathfrak{I}$ is cyclic, because of $C s \mathfrak{\Omega}=\mathfrak{\Omega}$. Anyway we have that $\mathfrak{I} \neq 1$. Let $T$ be a generator of $\mathfrak{I}$. Then since $\mathfrak{I}$ is not contained in $\mathfrak{M}, T$ must permute $\Omega_{1}$ with $\Omega_{2}$. Hence we have that $\alpha(T)=1$, where $\alpha(X)$ denotes the number of symbols of $\Omega$ which are fixed by a permutation $X$ of $\mathbb{B}$. If $T$ is an involution, then the cycle structure of $T$ consists of $q$ transpositions and $T$ must be an odd permutation, contradicting the simplicity of (8). Hence the order of $T$, say $2^{T}$, is greater than two. Now we have that $\alpha\left(T^{t}\right) \leqq 3$ for $T^{t} \neq 1\left(t\right.$ is an integer.), because otherwise $T^{t}$ fixes at least two symbols of either $\Omega_{1}$ or $\Omega_{2}$. This means that $T^{t}$ is commutative with the elements of $\Omega$, which is a contradiction since $C s \mathfrak{\Omega}=\mathfrak{\Omega}$. Since $2 q \equiv 0(\bmod 4)$ the cycle structure of $T$ must contain a transposition. Hence if $t$ is even and $T^{t} \neq 1$ we have that $\alpha\left(T^{t}\right)=3$.

Therefore the cycle structure of $T$ consists of one transposition and $\left(2 q-2 / 2^{T}\right) 2^{T}$-cycles. Since $T$ must be an even permutation, we have that $2 q-2 / 2^{\tau}$ is odd. Anyway we obtain the following equality:

$$
\begin{equation*}
2 q=2+2^{\tau}\left(2 q-2 / 2^{\tau}\right) \tag{I}
\end{equation*}
$$

where $\left(2 q-2 / 2^{T}\right)$ is an odd number. On the other hand, $T$ is contained in $N s \mathfrak{Q}$ and $C s \mathfrak{Q}=\mathfrak{\Omega}$. Therefore we obtain the following congruence:

$$
\begin{equation*}
q \equiv 1\left(\bmod 2^{r}\right) \tag{II}
\end{equation*}
$$

(I) and (II) give us a contradiction. Hence the case (i) cannot occur.
6. Case (ii). Since $\mathfrak{M}: \Re=2$, the length of the domain $\Gamma$ of transitivity of $\mathfrak{M}$ containing the symbol 2 of $\Omega$ must be two. Let us assume that $\Gamma$ consists of two symbols 2 and 3 of $\Omega$. Then since $\Omega$ is normal in $\mathfrak{M}, \Omega$ must fix also the symbol 3. Now let $\Phi$ denote the set of symbols of $\Omega$ which are fixed by $\Omega$. Then the length $f$ of $\Phi$ is at least three. By a theorem of Witt ([5], (9.4)) the normalizer $N s \Omega$ of $\Re$ in ( 8 is doubly transitive on $\Phi$. In our case then $N s \Re$ clearly has order $f(f-1)$. Since $f(f-1)$ must divide $2 p q$ and $f$ is smaller than $p$, we must have that $f=q$ and $f-1=2$. Thus we obtain that $q=3$ and $p=7$. Now it is easy to show that $\mathbb{C S}^{5}$ is isomorphic to $L F_{2}(7)$.

## § 2. Proof of Theorem 2.

If $N s \mathfrak{Q}$ is cyclic, then $\mathfrak{G}$ contains by the splitting theorem of Burnside a normal subgroup $\mathfrak{R}$ of index $q$. Since $N s \mathfrak{\beta} \cap \mathfrak{R}$ has order at most $2 p$, $\mathfrak{N}$ and (\$) must be soluble as before in $\S 1.1$ against our assumption. Hence $N s \mathfrak{Q}$ must be a dihedral group of order $2 q$. Therefore Theorem 2 is a special case of the following

Theorem 3. Let $n$ be an integer such that $n=2 q+1$, where $q$ is an odd prime number. Let $\Omega$ be the set of symbols $1, \cdots, n$ and let $\mathscr{E}$ be an insoluble doubly transitive permutation group on $\Omega$. Let $\Omega$ be a Sylow $q$-subgroup of $\mathbb{S 5}$ and $N s \mathfrak{\Omega}$ be the normalizer of $\mathfrak{\Omega}$ in $\mathfrak{S}$. If $N s \mathfrak{\Omega}$ is a dihedral group of order $2 q$, then $\mathbb{E}$ is isomorphic to either $L F_{2}(7)$ with $q=3$ or $L F_{2}(11)$ with $q=5$.

Proof of Theorem 3.

1. (S3 is simple. Otherwise let $\mathfrak{R}$ be a maximal normal subgroup $(\neq 1)$ of $\mathfrak{B}$. If $\mathfrak{R}$ contains $\mathfrak{Q}$, then we have that $\mathfrak{R} \cap N s \mathfrak{\Omega}=\mathfrak{\Omega}$, since $N s \mathfrak{Q}: \mathfrak{Q}=2$ and by Sylow's theorem $(N s \mathfrak{Q}) \mathfrak{R}=\mathfrak{G}$. Hence by the splitting theorem of Burnside $\mathfrak{R}$ contains a normal subgroup $\mathfrak{R}^{*}$ of index $q$. Since $N s \cong$ is a dihedral group of order $2 q$, every element $(\neq 1)$ of $\mathfrak{R}^{*}$
is not commutative with any element $(\neq 1)$ of $\Omega$. Therefore $\mathfrak{R}^{*}$ is nilpotent by a theorem of Thompson [4]. Then $\mathfrak{R}$ and $(\mathbb{S}$ become soluble against our assumption. If the order of $\mathfrak{R}$ is prime to $q$, then let us consider the subgroup $\mathfrak{R} \Omega$. Again by a theorem of Thompson $\mathfrak{N}$ becomes nilpotent. Let $\mathfrak{R}^{*}$ be a minimal normal subgroup of $\mathfrak{A}$ contained in $\mathfrak{M}$. Since $\mathbb{E S}^{5}$ is doubly transitive on $\Omega$, every normal subgroup ( $\neq 1$ ) of $\mathbb{F S}$ is transitive on $\Omega$. Therefore $\mathfrak{R}^{*}$ must be an elementary abelian $p$ group for some prime number $p$ and we have the following factorisation of $\mathfrak{G S}: \mathfrak{S}=\mathfrak{R} * \mathfrak{S}, \mathfrak{R} * \cap \mathfrak{S}=1$, where $\mathfrak{S}$ denotes the maximal subgroup of (G) consisting of all the permutations of $\mathfrak{( 5 )}$ each of which fixes the symbol 1. Since $\mathfrak{N}$ is nilpotent, $\mathfrak{R}^{*}$ is contained in the center of $\mathfrak{R}$. Since $\mathfrak{S}$ does not contain any normal subgroup ( $\neq 1$ ) of $\mathbb{B}$, we have that $\mathfrak{R} \cap \mathfrak{F}=1$ and $\mathfrak{R}=\mathfrak{R}^{*}$. On the other hand, since $\mathfrak{B}$ is insoluble, $\mathfrak{K}$ must be insoluble. Moreover since $\mathfrak{R}$ is also a maximal normal subgroup of $\mathfrak{G}, \mathfrak{F}$ is simple. Let $p^{\nu}$ be the order of $\mathfrak{R}$. Then we have the equality

$$
n=2 q+1=p^{\nu}
$$

Since $\mathfrak{S}$ is insoluble, we have that $\nu$ is greater than one. Hence we have that $p=3$ and $q=\frac{1}{2}\left(3^{\nu}-1\right)$. In particular we have that $\nu$ is greater than two. Then $\mathfrak{S}$ is isomorphic to a subgroup of the $\nu$-dimensional special linear group $S L_{\nu}(3)$ over the field of three elements. But then $N s \cong$ has order $\nu q>2 q$ [3]. This is a contradiction. Hence (5S must be simple.
2. In the first place let us assume that $\mathfrak{S}$ is imprimitive on $\Omega-\{1\}$. Let $\Omega$ be the subgroup of $\mathfrak{F}$ consisting of all the permutations each of which fixes each of the symbols 1 and 2 of $\Omega$. Then $\Omega$ is not a maximal subgroup of $\mathfrak{S}$. Let $\mathfrak{M}$ be a maximal subgroup of $\mathfrak{K}$ containing $\Omega$. Since $\mathfrak{S}: \mathfrak{\Re}=2 q$, we have two cases: (i) $\mathfrak{A}: \mathfrak{M}=2, \mathfrak{M}: \mathfrak{R}=q$ and (ii) $\mathfrak{A}: \mathfrak{M}=q$, $\mathfrak{M}: \Re=2$.
3. Case (i). Using Sylow's theorem we can assume that $\mathfrak{\Omega}$ is contained in $\mathfrak{S}$. Then $\mathfrak{\Omega}$ is contained in $\mathfrak{M}$. Hence by Sylow's theorem we have that $(N s \mathfrak{Q}) \mathfrak{M}=\mathfrak{L}$. Since $N s \mathfrak{Q}: \mathfrak{Q}=2$, we have then that $N s \mathfrak{Q} \cap \mathfrak{M}$ $=\mathfrak{\Omega}$. By the splitting theorem of Burnside $\mathfrak{M}$ contains a normal subgroup of index $q$, which necessarily coincides with $\Omega$. Since $\mathfrak{F}$ is transitive on $\Omega-\{1\}$, we have that $\Omega=1$. Then it is easy to show the solubility of $\mathbb{E}$ against our assumption. Thus Case (i) cannot occur.
4. Case (ii). If $\mathfrak{F}$ is simple, then by a previous result ([2], Theorem II) $\mathfrak{S}$ becomes primitive on $\Omega-\{1\}$. Hence in our case $\mathfrak{S}$ cannot be simple. Let $\mathfrak{R}$ be a maximal normal subgroup of $\mathfrak{K}$. If the order of $\mathfrak{R}$ is divisible by $q$, then $\mathfrak{R}$ has index two in $\mathfrak{S} \mathfrak{R} \cap N s \mathfrak{Q}=\mathfrak{O}$, because $N s \Omega$ is a dihedral group of order $2 q$ and we have that $\mathfrak{A}=\mathfrak{R} N s \mathfrak{\Omega}$ by Sylow's theorem. Now by the splitting theorem of Burnside $\mathfrak{R}$ contains a normal
subgroup $\mathfrak{R}^{*}$ of index $q$. Since $\mathfrak{N}$ is transitive on $\Omega-\{1\} \mathfrak{R}^{*}$ is semitransitive on $\Omega-\{1\}$ ([5], 11). Hence the length of domains of transitivity of $\mathfrak{R}^{*}$ from $\Omega-\{1\}$ equals two and $\mathfrak{R}^{*}$ is an elementary abelian 2 -subgroup. Let us consider the subgroup $\mathfrak{Q}^{*}$. Since $N s \mathfrak{\Omega}$ is a dihedral group of order $2 q$, every element $(\neq 1)$ of $\mathfrak{R}^{*}$ is not commutative with any element $(\neq 1)$ of $\Omega$. Hence we see in particilar that the order of $\mathfrak{R}^{*}$ is congruent to 1 modulo $q$.

Since $\mathbb{B}^{(8)}$ is simple and $N s \mathfrak{\Omega}$ is a dihedral group of order $2 q$, we see, using a method of Brauer-Fowler ([2], §1.3), that there is only class of conjugate involutions in $\mathbb{B}$. Now let us consider the subgroup $N s \mathfrak{\Omega}$. Every element of $N s \mathfrak{\Omega}$ of order $q$ has a cycle structure consisting of two $q$-cycles. Then it is easy to show that every involution in $N s \cong$ fixes just three symbols of $\Omega$.

Since $\mathfrak{M}: \mathfrak{R}=2$, the length of the domain $\Gamma$ of transitivity of $\mathfrak{M}$ containing the symbol 2 of $\Omega$ must be two. Let us assume that $\Gamma$ consists of two symbols 2 and 3 of $\Omega$. Then since $\mathfrak{R}$ is normal in $\mathfrak{M}, \Omega$ must fix also the symbol 3. Let $\mathfrak{T}$ be a Sylow 2 -subgroup of $\Omega$. Then $\mathfrak{I}$ must be semi-regular on $\Omega-\{1,2,3\}$ ([5], §4). Therefore the order of $\mathfrak{I}$ is a divisor of $2 q-2$. Since the orders of $\mathfrak{I}$ and $\mathfrak{R}^{*}$ are same, we see that the order of $\mathfrak{I}$ equals $q+1$ and that $2 q-2=q+1$. Thus we obtain that $q=3$. Now it is easy to show that $\mathbb{\$}$ is isomorphic to $L F_{2}(7)$.

If the order of $\mathfrak{R}$ is prime to $q$, then as before (see No. 1 of this proof) by a theorem of Thompson [4] $\mathfrak{R}$ itself becomes a nilpotent, therefore, an elementary abelian 2 -group and the order of $\mathfrak{R}$ is congruent to 1 modulo $q$. If $\mathfrak{R}$ has index $q$ in $\mathfrak{K}$, then we must have that $N s \mathfrak{\Omega}=\mathfrak{Q}$ against our assumption. Since the factor group $\mathfrak{K} / \mathfrak{R}$ is simple, the order of $\mathfrak{S} / \mathfrak{N}$ is divisible by 4. Hence the order of $\mathfrak{N}$ is at most a half of that of $\mathfrak{I}$. Thus we obtain an absurd inequality $q-1 \geqq q+1$.
5. So we can assume that $\mathfrak{S}$ is primitive on $\Omega-\{1\}$. Then $\mathfrak{S}$ is simple. Otherwise let $\mathfrak{R}$ be a proper normal subgroup $(\neq 1)$ of $\mathfrak{K}$. Since $\mathfrak{S}$ is primitive on $\Omega-\{1\}, \mathfrak{R}$ is transitive on $\Omega-\{1\}$. Hence the order of $\mathfrak{R}$ is divisible by $2 q$. Since $N s \mathfrak{\Omega}$ is a dihedral group of order $2 q$
 $\mathfrak{R} \cap N s \mathfrak{Q}=\mathfrak{\Omega}$. Then by the splitting theorem of Burnside $\mathfrak{R}$ contains a characteristic subgroup $\mathfrak{R}^{*}$ of index $q$. If $\mathfrak{R}^{*} \neq 1$, then the order of $\mathfrak{R}^{*}$ is divisible by $2 q$. Therefore we obtain that $\mathfrak{R}^{*}=1$, which implies the solubility of $(\mathbb{S}$ against our assumption.
6. If $\mathfrak{S}$ is doubly transitive on $\Omega-\{1\}$, then by a previous result ([2], Theorem I), $\mathfrak{S}$ is isomorphic to $L F_{2}(r)$ with $2 q=r+1$, and hence only the identity element of $\mathfrak{S}$ fixes at least three symbols of $\Omega-\{1\}$. Therefore $\mathbb{C}$ is triply transitive on $\Omega$ and only the identity element fixes
at least four elements of $\Omega$. Now using a theorem of Gorenstein-Hughes [1] we obtain that $2 q+1=2^{v}+1$. This is a contradiction, since $q$ is an odd prime number.
7. If $\mathfrak{S}$ is not doubly transitive on $\Omega-\{1\}$, then also by a previous result ([2], Theorem II) $\mathfrak{S}$ is isomorphic to the icosahedral group with $q=5$. Thus we have obtained that $n=11$ and the order of $\mathbb{F}$ is 660 . Now it is easy to show that $\left(53\right.$ is isomorphic to $L F_{2}(11)$.

University of Illinois and Nagoya University
(Received April 6, 1962)

## Bibliography

[1] D. Gorenstein and D. R. Hughes: Triply transitive groups in which only the identity fixes four letters, Illinois J. Math. 5 (1961), 486-491.
[2] N. Ito: On transitive simple permutation groups of degree $2 p$, Math. Z. 78 (1962), 453-468.
[3] N. Ito: A note on $S L_{r}(q)$, to appear in Arch. d. Math.
[4] J. Thompson: Finite groups with fixed-point-free automorphisms of prime order, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 578-581.
[5] H. Wielandt: Permutationsgruppen, Vorlesungsausarbeitungen von J. André, Tübingen, 1955.


[^0]:    * Supported partially by N. S. F. contract G-9654.

