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ON THE ABSTRACT EVOLUTION EQUATION
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BY

Tosio KATO and HIROKI TANABE

§ 0. Introduction. The present paper is concerned with the abstract
evolution equation

duldt+A(t}u = f(f) , 0 < t < T , (0. 1)

in a Banach space X. u = u(f) and f(f) are functions on [0, T] to X and
A(f) is a function on [0, T"] to the set of unbounded operators acting
in X.

We have already published a number of papers on the integration
of this equation based on the theory of semi- groups of operators in
particular the reader is referred to Kato [3] for a survey of recent
results, including those obtained by other authors. In most (but not all)
of these papers of ours, —A(f) are assumed to be infinitesimal generators
of analytic semi-groups exp( — sA(t)) of bounded linear operators on X;
this is equivalent to assuming that the resolvent (λ/ '+ A(f))~l of —A(t)

covers a closed sector of the form |argλ|<-^-f<9, 0>0, and satisfies
£

the inequality

(0.2)

Regarding the dependence of A(t] on t, it has so far been necessary
to assume that the domain D(A(t)} of A(t) or at least the domain D(A(f)h)
of a certain fractional power A(t}h of A(f) is independent of t, with
other auxiliary assumptions such as the Holder continuity of A(f)hA(ϋ)~h

(see [3]).
The main object of the present article is to eliminate such an

assumption on the domain of A(f) or of A(t)h. We shall prove the exist-
ence and the uniqueness of the solution of (0. 1) or what comes essentially
to the same thing, of the evolution operator U(t, s) associated with (0. 1)
in addition to the condition that —A(f) be the infinitesimal generator of
an analytic semi- group, our principal assumption will be that an inequality
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of the form

<N'/\\\1-' (0.3)

is valid with a constant p such that 0</°<C1 Of course (0.3) implies
that A(t)~l be differentiate in t, but it does not imply that D(A(t)h) be
constant for any A^>0. In this respect (0. 3) is weaker than the assump-
tions used in our previous papers and is believed to be an essential
improvement.

The condition (0. 3) is not very easy to verify in a given problem.
We have given a criterion for the validity of (0. 3) (Theorem 2.1). Also
we have a rather general case in which (0. 3) is satisfied (see § 7) it is
interesting to note that this case is a generalization of a case dealt with
in detail by Lions in his recent book [6].

Actually we find it difficult to construct a strict solution of (0.1)
under the assumptions stated above alone : we had to assume further
the Holder continuity in norm of the derivative dA(t)~1/dt. It must be
admitted that this is a rather strong assumption. It is possible, however,
to construct a solution (and the associated evolution opepator) which
satisfies (0.1) in a weak sense and yet is determined by the initial value
w(0), without assuming this Holder continuity of dA(tγιjdt.

§ 1. Analytic semi-group and its infinitesimal generator. For the sake
of convenience, we state some results from the theory of analytic semi-
groups which will be used in the sequel.

Let A be a linear operator from a complex Banach space X into
itself. Let us assume
(A) A is a densely defined, closed linear operator. The resolvent set
ρ( — A) of —A contains a closed sector 2: |argλ <Jτr/2 + 0, 0<^#<^/2.
The resolvent of — A satisfies

\\(\I+AYl\\<M/\\\ for λ e 2 , (1.1)

where M is a constant independent of λ.
Note that the assumption Oe/°( — A) is contained in (A).
Under the assumption (A), —A generates a semi-group exp( — tA)

by means of the formula

exp (-tA) = —m ( ext(\I+AYld\ , (1. 2)
ΔTΐl Jr

where Γ is a smooth contour running in 2 from ooβ~ίCιe/2+β) to ooe»'Cιr/2+β).
exp(-tA) is analytic in the sector |arg£|^0, ίΦO. For any real a
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with 0<^#<O we define

A'* = *™^ Γλ-(λ/+ A)-WX . (1. 3)
7Γ Jo

A~" has an inverse and we define A* by

A" = (A-«Yl . (1. 4)

For a = n + oίr with some natural number n and some ctf satisfying
0<tf'<l we define A« = AnA«f and then A~* = (A*Y\ In this way A*
has been defined for any real <X

The fractional power can be defined for more general operators and
for the details see Kato [1] and [2]. A~*> #>0, is bounded; however,
A", tf>0, is bounded only when A is bounded. For any real a and β,
we have

and A1 = A. For any positive number <*0 there exists a constant MΛo such
that for any a with 0^<2^<*0 we have

| |^exp(-M)||<MΛ oU|-Λ, (1.6)

in the sector |argί|<0. Furthermore to each <x in [0,1] there cor-
responds a constant CΛ such that we have

CJ\\\l- (1.7)

for any λ 6 2. This can be proved by

(1.8)

where the integral path runs from 0 to oo along the upper or the lower
boundary of the sector argί|<^#, according to Imλ<^0 or Imλ^>0
respectively.

§ 2. Assumptions and Definitions. In what follows, we denote by 2
a fixed closed angular domain (as in the previous section) :
2-{λ; |λ |<τr/2 + (9}, 0<0<τr/2.

We first state the assumption to be made in the theorems.
(E.I) For each £e[0, T], A(t) is a densely defined, closed linear
operator. The resolvent set p( — A(t)) of —A(t) contains Σ. The resolvent
of —A(t) satisfies

(2.1)
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for any λe2 and ίe[0, T], where M is a constant independent of λ
and t.
(E. 2) A(tγι, which is a bounded operator for each t> is continuously
differentiate in £G[0, T] in the uniform operator topology.
(E. 3) For any λ e Σ and /e[0, T], the following inequality holds:

(2. 2}
ar — |xrp

where TV and p are constants independent of t and λ with 05£/
(E. 4) dA(tγιjdt is Holder continuous in /6[0, T] in the uniform
operator topology :

\\dA(tγιldt-dA(sY*lds\\^K\t-s\ , -ff>0, tf>0. (2.3)

In what follows, we denote by C constants which depend only on
the constants appearing in the above assumptions.

As a sufficient condition for (E. 3), we have

Theorem 2. 1. // there exist positive numbers p, p1 and a natural
number I satisfying I = lp-+-p19 0^/o^/x^l, such that both A(tγί> and
A(tγpι are continuously differentiate in t in the strong operator topology,
then (E. 3) is satisfied.

Proof. First we remark the relation

(d/dt)(λI+A(t)Yl = A(t}(\I+A(t}Yl dA(tγιldt A(t}(\I+A(t}Y* . (2. 4)

Using A(tγl = (A(tYΎA(tγ\ we have

= A(t)Q(,I+A(t)Yl

jdt}A(t)Q(J+A(t)Y1 =
Q~j*-^^^^

whence using (1. 7) we readily obtain (2. 2).

REMARK. Let X = Lp\_a,b] (l<p<^) with the norm | |« | | =
Γfb -γ/p

\ I u(x) I pdx , and let A(t) be a multiplication operator defined by

with some constant k^>l. Then it is easily seen that the assumptions
(E. 1)~(E.4) are all satisfied, Especially (2.2) holds good with p=k~\
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but A(t)-p' is differentiable in (0, T}r\(ay V) only when p'k^l. Hence if
k is sufficiently near 1, the assumption of Theorem 2. 1 is not satisfied
because then A(t}~pι is not differentiable. Thus, Theorem 2. 1 does not
give a very satisfactory sufficient condition for the validity of (2. 2).
Note that the domain of A(f)h does change with t in (0, T}r\(a, b) for
any h^>0 in this example.

In what follows the inhomogeneous term f(f) of (0. 1) will be assumed
to be strongly continuous unless otherwise stated.

Definition 2. 1. We call u(t) a strict solution of (0. 1) in (s, T] if
(1) u(f) is strongly continuous in the closed interval [s, T~] and

strongly continuously differentiable in the open-closed interval (s, T]
(2) for each ίe(s, T], u(f) belongs to D(A(t))
(3) u(t) satisfies (0. 1) in (s, T].

Definition 2. 2. We call u(t) a weak solution of (0. 1) in (s, T] if
(1) u(t) is strongly continuous in [s, T]
(2) we have

(«(ί), φ'(t)-A(t)*φ(t))dt + Γ(/m <P(t))dt+(u(s), φ(s)) = 0 (2. 5)

where φ(t) is any function with values in X* with the properties
( i ) for each ί, <p(f) belongs to D(A(f)*\
(ii) φ(f), φ'(f)( = dφ(f)ldf) and .A(/)HV(/) are strongly continuous

in [5, T],
(iii) ιp(T) = 0.
By the assumption (E.I) each —A(s) generates an analptic semi-

group exp( — tA(s)). The derivatives of exp ( — (t—s)A(t)) satisfy

|| (3/aθ exp (-(t-s)A(ty)\\ ^ C(ΐ-sΓ , (2. 6)

|| (3/35) exp (-(f-s)A(f)) || ̂  C(ί-ί)-1 . (2. 7)

(2.7) is a direct consequence of (1.6) with α = l and the relation

(3/35) exp (-(t-s)A(t)) = A(t) exp (-(ί-

(2.6) follows from (2.7), the relation

and the uniform boundedness of (3/3ί)(λ/+>l(ί))~1 which is a consequence
of (2. 4) (for the proof of (2. 7), (E. 3) is not necessary).

Supposing that the assumptions (E. 1) — (E. 3) hold, we will prove that
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there exists a unique weak solution to (0.1), and assuming (E. 4) in
addition to (E. 1)—(E. 3), we will show that the weak solution is actually
a strict one.

§ 3. Existence and uniqueness of weak solutions. Let us construct the
evolution operator in the form

U(t, s) = exp (-(f-5)4(f)) + Γexp (-(t-r)A(t))R(r, s)dτ . (3. 1)
Js

Calculating formally, we get

Ά. u(t, s) = — exp (-(t-s)A(t)) + R(t, s)+ Γ — exp (-(t-r)A(t))R(r, s}dr ,
dt dt Jsdtdt dt

A(t)U(t, s) = -?-exp(-(f-s)4(/))4- Γ-^-exp(-(/-τ)4(/))#(r, s)dr .
ds Js 3τ

Putting

Rtf, s) = -(d/dt+d/ds) exp (-(t-s)A(t)) , (3. 2)

we obtain

— £/(/, 5) + ̂ (ί)£/(ί, 5) - -#,(*, 5) + !?(/, 5)- ['Rtf, r)R(r,s)dr.
C)t Js

Therefore we will determine R(t, s) as the solution of the integral equation

R(t, s)- ('̂ (ί, τ)fi(τ, S)rfr = !?,(/, 5) . (3. 3)

Lemma 3.1. RΎ(t> s) is continuous in Q^s<^t^T in the uniform
operator topology and satisfies

)\\^ίCί(t-sYf. (3.4)

Proof. This follows from the integral representation

Rtf. «) = ~. \ e^-s^(λI+A(t)Γdλ (3. 5)
2πi Jr dt

and (E.3).
By Lemma 3. 1 the integral equation (3. 3) can be solved by suc-

cessive approximation :

) = Rm(ί,s), (3.6)
W:=l

Rm(t, s) = £,(/, ^Rm-^, s)d* , m = 2,3, - . (3. 7)
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Lemma 3.2. R(t, s) is continuous in 0<^s<^^T in the uniform
operator topology and satisfies

s)-^ (3.8)

Proof. This follows from

CmΓ(Λ n\m(f oV»-ιχι-p)-p
l i p (4- <Λ 1 1 <r L / i / \*-~P) \τ~s) _ /Q q\
I I K m\τ9 S; 1 1 ̂  - ̂  - 7: -- TV - 9 V° V)

Γ(m(l-p))

where C1 is the same constant as in (3. 4), and from the preceding
lemma.

Lemma 3. 1 and 3. 2 show that ί/(ί, s} is well defined by the formula
(3. 1).

For sufficiently small positive h, we define

Uh(t, s) = exp (-(t-s)A(f))+ Γ*exp (-(t-r)A(t))R(r, s)dτ . (3. 10)
J s

Then we have

-hA(t))R(t-h, s)- Γ " R,(t, τ)R(r, s)dτ .
Js

The right member is uniformly bounded in h and

(d/dt)Uh(t, s) + A(t)Uh(t, s) - 0 (3. 11)

strongly as h \ 0. The solution of (0. 1) in (sy T] is formally given by

U(t) = U(t, S)U(S} + (' £7(ί, σ}f(σ)dσ . (3. 12)

We can, however, only prove that this is a weak solution unless we
assume (E. 4). Let φ(f) be any function satisfying (i), (ii) and (iii) in
Definition 2. 2. Then,

\T(U(t, s)u(s), φ'(t}}dt
Js

= lim lim Γ (Uh(t, s)u(s), φ'(t))dt .
A r l O Λ | 0 Js+k

Hence we have

(T (Uh(t, S)U(S), φ'(t))dt
Js+k

= -(Uh(s+k, s)u(s), φ(s+k)~)
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-Γ (((d/dt)UH(t,s) + A(t)Uh(t,s))u(s), φ(t})dt
Js k

(Uh(t, S)U(S), A(t)*φ(t)}dt

+ JT (U(t, s)u(s), A(t)*φ(t)~)dt (as HO)

-* -(u(s), φ(s)) + (T(U(t, s)u(s\ A(t)*φ(t))dt (as ,
Js

which implies

Γ(ί/α *)U(S\ φ\t)-A(t)*φ(t))dt + (u(s), φ(s)) =0. (3. 13)
Js

Similarly,

- lim lim lim Γ * Γ (Uh(t, σ)/(σ), φ'(f))dtdσ .
k l f O s o Λ i O Js Jσ-fδ

However

), φ'(t))dtd<r = -fT"*(C7Λ(σ 4.δ, σ)f(σ\ φ(
Js

), φ(t))dtdσ
s Jσ+8

T (Uk(t,>r)f(<r), A(t)*φ(t))dtdσ
s Jσ+8

(U(t,<r)f(σ), A(t)*φ(t))dtdσ (as A j 0)
s Jσ+δ

~ -)/(o-), A(t)*φ(f))dtdσ

(as δ I 0)

(as HO),
and hence we obtoin

s(/H> ̂ (σ))^ = 0 . (3. 14)

Adding (3. 13) to (3. 14), we get (2. 5).
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In order to prove the uniqueness of the weak solution, we will
first construct a bounded-operator-valued function V(t, s) which has the
following properties :

i) V(ty s) is continuons in 0<Ls^t^T in the strong topology
ii) V(t, t) = I for any f e[0, T] :
iii) for any u€D(A(s))> lim h~\V(t, s + h) — V(t, s))u exists and is

h-*o

equal to V(t, s)A(s)u.

Such a V(t, s) can be constructed by setting

V(t, s) = exp (-(t-s}A(s})+^Q(t, T) exp (-(*-s)A(s))d<r , (3. 15)
Js

where Q(t, s) is the solution of the integral equation

Q(t, s)- Γθ(f, r)Q,(r9 s)dτ = Qtf, s} (3. 16)
Js

with kernel and inhomogeneous term

,(t, s) = (d/dΐ + d/ds) exp(-(t-s)A(s)) =
Jr

As in Lemma 3. 1, it can be shown that Qtf, s) is continuous in
in the uniform operator topology, and satisfies

s)-'. (3.17)

Therefore (3. 16) can be solved by successive approximation as before.
The solution Q(t, s) is continuous in 0<^s<^^T in the uniform operator
topology and satisfies

\\Q(t,s)\\^C(t-sY*. (3.18)

If we set

Vh(t, s) = exp (-(t-s)A(s))+ [ Q(t, T) exp (-(τ-s)A(s))dτ (3. 19)
Js+h

for a sufficiently small positive h, then (d/ds)Vh(t, s) and Vh(t, s)A(s)
( = the bouuded extension of Vh(t, s)A(s)} are continuous in s£\_a> t—H\

in the uniform operator topology. Furthermore (3/9s)Vh(t, s)—Vh(t, s)A(s)
tends to 0 strongly as h \ 0.

Let u(f) be any weak solution of the homogeneous equation of (0.1)
in (s, T]. We have then by definition

s\ ψ(5)) = 0 (3. 20)
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for any ̂  satisfying i), ii) and iii). Let ί0 be an arbitrarily fixed number
in (s, T], and let φ(f) be a continuously differentiate function with
value in X* and with support in (s, ί0). Then, if h is sufficiently small
depending on the support of φ, tyh(f)= Vh(tQ, f)*φ(f) has all the properties
required of ψ in (3. 20). We have also

ί)u(t\ φ'(f))dt = lim (7Λ(ί0, t)u(t),
Λ|0 Js

= lim '° («(/), VΛ(tt, t)*φ'(f))dt = lim
A i O J s Λ ^ O

-lim f '"(«(*), (3VA(ίβ, t)*/dt-A(t)*VM, t)*)φ(t))dt.
A 4 - 0 Js

The first term vanishes because w(£) satisfies (3.20) with γ = ψh and be-
cause ψA(s) = 0. Therefore the right member is equal to

lim Γ0((37A(ί0, ί)/3ί- FA(ί0, ί)A(ί))«(0, 9>(OXί = 0 .
A i O Js

This implies that the distribution derivative of V(tQ, f)u(f) vanishes, and
hence that V(tQ, f)u(f) = const, in (s, f0). Letting ί ^ s and then t \ tQy

we get u(t0}= V(tQ, s)u(s). As ^0 was an arbitrary number in (5, T], it
follows that

u(t) - V(t,s)u(s) (3.21)

for any ί^5. This shows that the weak solution of (0.1) is uniquely
determined by its initial data and the inhomogeneous term. As (2. 12)
was seen to be a weak solution, we have also proved

V(t,s)= U(t,s), (3.22)

E7(f, r)f/(r, s) = U(t, s) , s^r^t. (3. 23)

We do not know whether the range of U(t, 5), s<^t, is contained in
D(A(t)) without assuming (E. 4), but the following weaker result is
obvious :

A(t)βU(t, s} is bounded if 0 < β < 1 and t > s j

and we have \\A(t)βU(t, s)\\ < C(t-s)~β J '

Summing up, we have established

Theorem 3. 1. Under the assumptions (E. 1) ̂  (E. 3), the operator-
valued function U(t, s) determined by (3. 1) and (3. 3) satisfies (3. 23), (3. 24)
and

U(s, s) = I for any 0<s^T, (3. 25)
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The function u(t) determined by (3. 12) is a unique weak solution of (0. 1)
in (s, T], u(t) belongs to D(A(t)β) for each t£(s, T] if 0^/3<1, and
A(ffu(t) is strongly continuous in t€(s, T].

§4. Existence of the strict solution. In this section, we will prove
that the weak solution whose existence was proved in the previous section
is a strict solution under the additional assumption (E. 4). We assume
(E. 1)~(E. 4) throughout this section.

Lemma 4.1. For Q^s<^r<^t^T, we have

\\R(t, S)-R(r, 5)|| ̂
t—s (t—sY (t—s

(4.1)
Proof. First we have

R1(t,s)-R1(τ,s)= --L( e«'-"{|-(X/+^(/))-1-|.(X/+^(τ))-1}<iλ
Jr (.dt 9τ i

(4.2)

and by (2. 4),

Since

we have

Making use of this inequality together with (E. 4), we get

IKa/aWM+^ίO)-1-^/^^ >

and therefore
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(4.3)

As for II, we have

= '"JL f_L( e^^-
τ-s 3σ \2iri Jr θr

"S **—
3τ

Noting

we get

f λeλ'-?-
Jr Qr

X<17 λ

— S

= c
t-s

Combining (4. 2), (4. 3) and (4. 4), we obtain

(4.4)

— s r — t—S

From the identity

we get

(cf . Lemma 1. 2 in [7]), which completes the proof of the lemma.
We denote by W(t, s) the second term in U(t, s\ i.e.

W(t, s) = Γ exp (-(t-r)A(t))R(r, s)dτ , (4. 5)
Js
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and for a sufficiently small positive number h we set

Wh(t, s) = Γ*exp(-(f-τ),l(/))l?(r, s)dτ .
J s

Then, we have

—W h(t,s) =
dt

119

, s)-R(t,

, s)-exp (-hA(t))R(t, s)

+ exp(-(t-s)A(t))R(t,s).

Letting h j 0, it follows that

-W(t, s) =
at

- /?,(/, r)dr.R(t,

, s)-R(t, s))dr

It follows from (3. 4), (3. 8) and (4.1) that

t-s' dt
W(t, s)

(4. 6)

(4.7)

As regards A(f)U(t, s), we can show in a similar way that

A(t)U(t, s) = A(f) exp (-(t-s)A(t))

+ (Ά(i) exp (-(t-r)A(t))(R(r, s)-R(t, s))dr
Js

-R(t, 5) + exp (-(ί_

(4. 8)

Using (4.8), we can also deduce estimates similar to (4. 7) for \\A(f)U(ty s)\\
and \\A(f)W(t, s)\\. However, if we use (3.11), we can show this and
the equality (d/dt)U(t, s) + A(f)U(t, s) = Q at the same time without veri-
fying (4.8). Making use of U(t, s)=V(t, s), it can also be proved that
(d/ds)U(t, s) is bounded when s<^t and that we have

as well as

(d/3s)U(t, s} = U(t, s}A(s)

\\(3/ds)U(t,s)\\^C/(t-s).

(4. 9)

(4.10)

In order to deduce this property, we have only to calculate (d/ds)V(t, s)
just as we did for (d/dt)U(t, s) using the following lemma which can be
proved in just the same way as Lemma 4. 1.
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Lemma 4.2. For any > we

((t-s)(t-τγ t-s (t-sY (t-s]

Thus we have established

Theorem 4.1. Under the assumptions (E. 1)~(E. 4), there exists an
evolution operator U(t, s) for the equation (0,1) which satisfies

_a_
dt

Il-ia*

Moreover U(t, s) satisfies (4. 9) and (4.10), and

II a

t-s'
(4.11)

as well as (3. 23) and (3. 25).

Theorem 4. 2. // w# suppose that f ( t ) is Holder continuous in

F\t-S\ ', F>0, γ>0,

and that (E. 1)~(E.4) hold, then (3.12) is the strict solution of (0.1).

Proof. We have only to notice that

§5. Analyticity of the solution. In this section we assume that A(f)
is defined in a convex complex neighborhood Δ of [0, T~\ and that

(A.I) for each ^GΔ, A(t) is a densely defined, closed linear operator;
(A. 2) the resolvent set of —A(f) contains 2 for each ίeΔ and the
resolvent of —A(t) satisfies

where M is a constant independent of / and λ
(A. 3) A(f)~1 is holomorphic in Δ in the uniform operator topology
(A. 4) for any λ e Σ and £6Δ, the following inequality holds:
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II (a/a/)(λ/+4(/))-ΊI < N/ |λ i *-> ,

where N is a constant independent of £ and λ.

For any λeΣ, (XZ+A^))'1 and (a/a/)(λ/-f ^(O)""1 are holomorphic in
£ G Δ with A(tγ*. Hence we have

Lemma 5.1. exp ( — (t—s)A(t)) and R±(t, s) are both holomorphic in
the domain t, seΔ, |arg (t~ s)\<^Θ. exp ( — (t— s)A(t)) is uniformly bound-
ed in this domain and Rλ(t, s) satisfies

Lemma 5. 2. Let P(t, s) and P\t, s) be two bounded-operator -valued
functions defined for t, s G Δ and |arg (t— s)\<^θ. If they satisfy

— °° <C ^2 <C ι> — °° <C p3 <C i >
and are holomorphic with respect to two complex arguments t and s in the
above domain, then

l

yr}P'(r,s)dr

is defined in the same domain as above and holomorphic in t and s there.
It satisfies, moreover,

is *P(t,r)Q(r,s)dr

The proof is quite similar to that of Lemma 3 in Komatsu [4].
By Lemma 5.1 and 5.2, R(ty s) is holomorphic in the domain

mentioned above, and so are W(t, s} and C7(ί, s). To see this we have
only to note that

\\Rm(t, s}\\^C^Γ(l-pr\t-sΓ-^-^/Γ(m(l-p))

and that the uniform limit of a series of holomorphic functions is
holomorphic. Thus we have proved

Theorem 5.1. Under the assumptions (A. 1)~(A. 4), the evolution
operator U(t, s) constructed in § 3 can be extended holomorphically to the
domains, £ G Δ , |arg (t—s)\<^θ.

We can also prove easily

Theorem 5.2. Under the assumptions of Theorem 5.1, the solution
u(t) of the inhomogeneous equation (0.1) is holomorphic in the domain where
f(t) is holomorphic.
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§6. Perturbation theory. We consider a perturbed equation

du(t)ldt+A(t)u(t) + B(t)u(t) = f ( t ) . (6.

for each λe2 and f e[0, T].
(E. 6) There exist positive constants K2 and β such that

(E. 5) For each £G[0, T], B(t) is a closed linear operator whose domain
contains that of A(t). There exist positive constants M and 7' such that

Λ (6.2)

(6.3)

(6.4)

for />0, and hence

(6.5)

for each s, fe[0, T],
By (E. 5) we readily obtain

where J70(ί, 5) is the evolution operator for (0. 1). The evolution operator
U(t, s) of (6. 1) is formally constructed by

U(t, s) = % Um(t, s) , (6.6)
m — Q

where

Um(t, s) = (-1Γ Γ U0(t, σ)B(σ)Um^(o , s)dσ , m = Ί, 2, 3, - . (6. 7)
Js

If C2 is a constant such that || U0(t, 5) || ̂ C2, we easily obtain by induction

|| Um(t, 5)|| < C2C?Γ(l-7)
m(ί-5rcι-γVA(w + l)(l-7)) , (6. 8)

- 7)) (6.9)

For the formal constrution of C/(ί, 5), it is not necessary to assume (E. 4)
and (E. 6), and U(t, s) thus constructed can be used to form a weak
solution of (0. 1). In this section, however, we do not consider weak
solutions.

Lemma 6.1. For s<^τ<^t, we have

1 1 B(t) U(t, S) -B(r) U(τ, S)\\^C { *-J
((t~s)(t—sY

(6.10)
t— s (i—sY t—τ
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where p' = max(p, 7) and 8 is any constant with
The proof follows from

1 1 B(t} exp (-(t-s)A(t))-B(r) exp (-

t-τ (t-r}β t-r ,~(6

Γ (B(t) exv(-(t-<r)A(0)-B(r) exp (-(r-σ)A(r))}R(<τ, s)dσ
J s

- -

(t-s)1+p t-s

— τV~Ύ(τ — s) (t — τ)"(τ — sY~p (t—T)^ -i t — 5
'- i '- -f —± -+- — lOSf

(t-s)1+p t-s (t-sY t-τ

exp (-(/-<
(6 13)

(6.11) and (6.13) are easily proved the proof of (6.12) is tedious but
straight forward and may be omitted.

As is easily seen, we have

U(t, S) = U0(t, S)+ Σ \ U0(t, o)B(a)Um^(σ, s)dσ
«=ι Js

Js

= £/„(/, s) + (* U(t, σ)B(σ)C70(σ, s)d<τ, (6.14)
Js

and

3 f*
— I exp ( — (t — r)A(t))B(r)U(r, s)dr

= j^exp (-(t-r)A(t)){B(r)U(r9 s)-B(t)U(t, s}}dτ (6.15)

I exp (-(t-r)A(ty)dτB(f)U(ty s) + exp (-(t-s)A(f))B(f)U(t, s).

The norm of the first term is dominated by C3{(t— s)~p' + (t— 5)β-1}, and
hence we have

\\(d/dt)U(t,s)\\^C/(t-s). (6.16)

If we define

Uh(t, S) = U0(t, 5)+ Γ* £/0(ί, <r}B(<r)U(<r, S}d<τ (6. 17)
Js
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we have

(d/dt)Uk(t, s)-(A(t) + B(t)Wh(t, s) = U0(t, t-K)B(t-K)U(t-h, s)

-B(f)U*(t, S) - (*'" B(f)U0(t, σ)B(σ)U(σ, s)d<r -> 0 (6. 18)
Js

as h I 0. This implies that U(t, s) is the evolution operator with the
desired property.

In order to prove the uniquencess of the solution, we will show that

lim h~l{U(ty s + h)u- U(t, s)u} = U(t, s)(A(s) + B(s))u (6. 19)
Λ-*0

for any u£D(A(s)). For this purpose, we will investigate the limit of
each term on the right of

tτl{U(t, s + h)u-U(t, s)u} = h-l{U,(t, s + h)-U0(t, s)}u

(' C7(ί, σ)β(σ)(£70(σ, S + h)- t/0(σ, s))ίidσ
Js+h

l> U(t, σ)B(a)U,(σ, s)ud<r = I+Π+III . (6. 20)

We will begin with the second term.

-£70(σ, s))u = h^B(σ)U.(σ9 r&Ufa, S + h) -Ufa, s))u

, s)A(s)u = -B(σ)Ufa s)A(s)u

as A->0, where σx is an arbitrary number satisfying s^σ^σ. On the
other hand, we have

~U0(σ, s))u = B(σ)Ufa s + h)h~\I - U0(s + h, s))u

and

, r) exp (-(r-s)A(s))dr u . (6. 21)

The norm of the second term on the right in (6. 12) is dominated by

|| h'1 (S+hQ(s + h, r)(A(s)-1-A(r)~1) exp (-(r-s)A(s))A(s)udr\\

, r)A(r)-1e 3Lp(-(τ-s)A(s))A(s)ud r\\^C\\A(s)u\\

where we used an easily verifiable inequality \\Q(s + h, r)A(r)~l\\<^,C.
Hence the norm of the integrand in II is not larger than
C(σ-s-h)~y\\A(s)u\\. Thus, II tends to
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- U(t, σ)A(<τ}Uft(σ, s)A(s)ud<r
Js

as Λ-^0. Next, let us consider ///.

B(<r)U0(σ, s)u-B(s)u = B(σ) exp (-(<r-s)A(σ))u-B(s)u

(σ ) Γexp (-(<r-r)A(<r))R(r, s)udτ
J s

exp (-(σ-s)A(σ))(A(s)-1-A(σ )-1)A(s)u

exp (-(σ -s)A((r))A(σ )-1A(s)u-B(s)u

+ B(cr) Γeχp(-(«r-τ)Λ(σ ))#(τ, s)(A(s)-l-A(r)-l)A(s)udr
J s

+ B (σ) { * exp ( - (σ- - r)A(<r))R (T, s)A(τ) - ̂ (s) W</τ -> 0 (as
Js

where we used \\R(r> s)A(r)~l\\ ^C, which is easily proved. Thus, we
have proved that

> -U(t, s)B(s)u

as A->0. / tends to C70(ί, 5)̂ (5)̂  as was shown in §3. In this way we
obtain (6. 19). Hence, for any strict solution of (6. 1) we have

)u(σ)) = U(t, <r)du(<r) / dσ - [/(/, σ)(A(σ) + B(σ))u(σ) = U(t,σ)f{σ).

which implies the uniqueness in question. Summing up, we have proved

Theorem 6. 1. Under the assumptions (E. 1)~(E. 6), and evolution
operator U(t> s} exists for the perturbed equation (6. 1), and it satisfies
(6. 16), (6. 19) and

\\A(t)U(t, s}\\^Cj(t-s}y \\B(f)U(t, s}\\^Cj(t-s}\ (6.22)

U(t, r}U(r, s) = U(t, s) , s<r<t. (6. 23)

Let f ( t ) be Holder continuous ίu (sy T]. Then the unique strict solution
in (s, T~] of (6. 1) is given by

U(t] = U(t, S)u(s) + f ' U(t, σ)f(σ)dσ . (6. 24)
J s

§ 7. Applications

In this section we shall show that our basic assumptions (E. 1) to
(E. 4) are satisfied in a rather general case in which A(t) is defined by
certain sesquilinear forms in a Hubert space.

We follow the terminology and notations of Lions [6]. Let H be a
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Hubert space, the inner product and norm in H being denoted by (/, g)
and |/|. Let K be another Hubert space such that K(^H algebraically
and topologically, the inner product and norm in K being denoted by
((u,v)) and \\u\\. Thus there is a constant M0 such that \u\^M0\\u\\
for u£K. The norms of bounded linear operators on H to itself and of
those on K to itself will be denoted by | | and || || respectively.

Let a(t\ uy v), O^^T, be a family of continuous sesquilinear forms
on KxKy and let V(t) be a family of closed subspaces of K. We now
introduce the following assumptions.
(K.I) For each fG[0, T], V(f) is dense in H.
(K. 2) There exist two families P(t) and Q(t) of (not necessarily ortho-
gonal) projection operators on K onto V(t), depending on t continuously
differentiably for te [0, T] in the strong topology of K. (P(t) and Q(t)
may or may not be identical).
(K. 3) For any u,v£K, a(t uy v) is continuously diff erentiable in if G [0, T~\
and the derivative a(t\ u> v) = (d/dt)a(t; u, v} satisfies

\a(t]u,v}\^Ml\\u\\ \\v\\ (7.1)

for any u, v£K and Q^Lt^T, where M1 is a constant independent of
uy υ and t.
(K. 4) There exists a positive constant S such that for any /£[0, T]
and u e V(f) we have

Reα(t; u, u)^8\\u\\2. (7.2)

(K. 1)~(K. 4) are generalizations of the assumptions used in |[6], p. 138.
It follows from the assumptions stated above that there exists a

constant M2 such that

\α(t\ u,v)\<M2\\u\\ \\v\\ for any u,v£K and ίe[0, Γ], (7.3)

for any /€[0, T] , (7.4)

where P(t) = dP(t)/dt and Q(t} = dQ(f)j dt. In this section we use the
notation C to denote constants which depend only on M0 , M1 , M2 and δ.

Let us define the operator .4(0 for each ίe[0, T] in the following
manner :

ue V(t] belongs to D(A(f)) and A ( f ) u = f £ H Λ

if «(ί ;w,ι;) = (/, «;) for each «; G V(t) . J

In the terminology of [2], A(0 is the regularly accretive operator
associated with the regular sesquilinear form α(t uy v) with domain
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V(t). The following lemmas are direct consequences of this remark (see
Theorems 2. 1, 2. 2 of [2]).

Lemma 7.1. For each /£[0, T], — A(t] is the infinitesimal generator
of an analytic semi-group of bounded linear operators on H. The resolvent
set p( — A(t)) of — A(t) contains some fixed angular domain Σ= {λ arg|λ
^τr/2 + 61}, where θ is an angle with 0<^θ<^τr/2. Furthermore, there
exists a constant C such that

< C / | λ | (7.6)

for any λ e Σ and t€ [0, T].

Lemma 7. 2. Let v and g be elements in V(t} and H respectively.
Then v£D(A(t)*) and A(t)*v=g if and only if we have a(t\ u, v) = (u, g)
for any u 6 V(t).

Lemma 7. 3. For any fyg^H and ty s£ [0, T], we have

\\A(tYlf\\^C\f\, \\A(f)*-*g\\^C\g\, (7.7)

^C|/-5| I / I , (7.8)

g\\<C\t-s\ \g\. (7.9)

Proof. Let u be any element in D(A(t)). Then by definition we have

a(t ;u,v) = (A(t)u, v}

for any v£ V(f). Putting v=u(e V(f)\ we have by (7.2)

8\\u\\2^Rea(t; u, u) = Re (A(t)u, u) ̂  | A(t)u \ \u\^M0\A(t)u\\\u\\,

showing that (7.7) holds with C = MJ§.
Before proving (7. 8) and (7. 9) we notice that

P(t)A(tγι = A(t}~1 and Q(ί)A(t^ = A(t}*~"

hold for any t€ [0, T] because D(A(t)) and D(A(t)*) are both subsets of
V(t). Let v be an arbitrary element in V(t). Then by the above remark

*f, v} = a(t; A(tγ*f, v}

-a(t; (P(t)-P(s))A(sY1f9 v)-a(t; A(sY*f9 v) .

Noting that a(t; A(tγιfy v) = (f, v) = a(s; A(sYlf, v), we see that the right
member is equal to

-a(t (P(f)-P(s))A(sY*f, v)- (a(t A(sY1f, v}-a(s A(sYlf, v)} .
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Therefore

Re a(t A(tYίf-P(t)A(sY1f9 v)

<M2\\(P(t)-P(s))A(sYίf\\\\v\\+Ml\t-s\ \\A(sY1f\\ \\v\\
lf\\\\v\\^C\t-s\ \f\\\v\\.

As v was an arbitrary element in V(t\ we can set v = A(t)~1f— P(i)A(sYlf.
Then,

and hence

Using (7.10) together with

\\P(ί)A(sY*f-A(sY*f\\ = \\(P(t)-P(s}}A(sΓf\\

<C\t-s I/I

we obtain (7.8). The proof of (7.9) is similar.

Theorem 7.1. Under the assumptions (K. 1), (K. 2), (K. 3) and (K. 4),
we have

-, C
11/2

(7.11)

for any λ e Σ and ίe[0, T].

REMARK. The right member of (7.11) may be replaced by C / | λ | if
= Q(t)=IK (identity operator of K).

Proof. First, let us notice the relation

(A(trιf-A(sΓf, g) = -a(t;A(tΓf, A(sγ-ίg) + a(s ,A(tY^f, A(s)*~lg)

+ ((P(t)-P(s))A(t)-1f, g) + (f, (Q(t)-Q(s))A(sΓ-1g') (7. 12)

-a(t A(tΓf, (Q(t)-Q(s)}A(sr'1g)-a(s (P(f)-P(s))A(t)-lf, A(sT~lg) .

This can be verified from the following relations

a(t; A(tY*f, A(s)*-1g) = a(t; A(tΓf, Q(t)A(s)*~lg)

+ a(t A(tΓf, (/-

a(s;A(t)-1f,A(s)*'1g)
= a(s;P(s)A(tΓf, A(s)*

, g) + a(s (P(t)-P(s))A(t)-1f, ^(s)*-^) , etc.
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Next, we devide both sides of (7.12) by t—s and then let s-*t. We
can easily calculate the limit of each term on the right member. For
example

a(t; -'/, A(sr-ιg) ...
t—s

a(t;A(tγιf,
t-s

a(t A(tYlf, A(t)*-lg)-a(s A(tγιf, A(t)*~lg) _ά(t

t-s

By (K. 3) and Lemma 7. 3, the first term is domainated by

C\t-s\ \\A(tY*f\\ \g\^C t-s I/I \ g \ ,

and tends to 0 for s-*t, and so does the second term. Similarly,

t—s

/—

/Q(t)-Q(s)_
V t-s

t-

:''g 0.

Dealing analogously with the remaining terms, we obtain

= -ά(t',A(tY1f,A(t)*~ίg) + (P(f)A(tγιftg) + (f,

-aV AVY1/, $(f)A(t)*~lg)-a(t, P(f)A(tYlf,

Therefore, for any λ e 2 we get

(7.13)

= (dA(tγιldtΆ(f)(\I+A(t)Y1f,

(P(t}(\I+A(t}Γf,

-a(t

and so
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f\\ \\C\I + A(tΓY1g\\

f\ \\(*J+A(f)*)-lg\\} . (7. 14)

Next we notice that

\\(\I+A(i)Γf\\^C\\ - '/ '(/I, (7.15)

||(X/+Λ(f)*)-'£||^C|λ -w\g\. (7.16)

The inequality (7. 15) follows from

δ| | (λJ+Λ(f))-'/||' ̂  Re a(t QJ+A(t)Γf, (\I+A(t)Ylf)

= Re(A(t)(λI+A(t))-lf,

and similarly for (7. 16).
By (7. 14), (7. 15) and (7. 16), we obtain

which completes the proof of the theorem.
In order that dA(t)~1ldt be Holder continuous, we must make some

additional assumptions, which we state below.

(K.5) P(f) and $(*) are Holder continuous in /s[0, T] :

\\P(f)-P(s)\\^Mί\t-sΓ , \\U(f)-Q(s)\\^M,\t-s\«. (7.17)

(K. 6) ά(t u, v) is Holder continuous in 1 6 [0, T] for any u, υ 6 K :

\ά(t; u, v)-ά(s\ u, v) <M4|ί-5 α | | w | | | |t; | | .

In the remaining part of this section, we denote by C constants which
depend only on M0, Mι; M2, M3, M4, δ and oc.

Theorem 7.2. Under the assumptions (K. 1)~(K. 6) dA(tYlldt is
Holder continuous in 1 6 [0, T] :

\dA(tγιldt-dA(sY1lds\ £:C\t-s\ (7.18)

Proof. By (7. 13),

((dA(t)-1/dt-dA(sY1/ds)f,g)

= - {ά(t A(tYlf, A(tT~1g)-ά(s A(sY1f, A(s)*-lg)}

+ (P(t)A(tγιf-P(s)A(sYίf, g) + (f, Q(t)A(t

- (a(t A(tγιf, Q(t)A(t)*-lg)-a(s A(sYίf,

- {a(t; P(t)A(f)-*f,
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The absolute value of the first term is estimated by

\ά(t; Ad)'1/, A(t)*-lg)-ά(s A(sYlf, A(s)*~lg)\

^\ά(t; A(tΓf, A(t)*-1g)-d(s;A(tYif> A(t)*-lg)\

+ \ά(s;A(trιf-A(sΓf, A(f)*~1g)

+ \ά(s A(s)'1f, A(t)*-1g-A(Sr-1g)\^C\t-s'\f\ g .

Using

\\P(t)A(t)-1f-P(s)A(s)-1f\\

^ \\(P(t)-P(s))A(t)-1f\\ + \\P(s)(A(trιf-A(sΓ1f)\\^C\t-s\«\f\,

we can obtain similar estimates for the remaining terms. Thus, we get

\((dA(tΓ1ldt-dA(s)-1/ds)f,g)\^C\t-s\'t\f\\g\,

which completes the proof of the theorem.
Summing up, we have proved

Theorem 7. 3. Suppose that (K. 1)~(K. 4) hold. Then the assumptions
(E. 1)~(E. 3) are all satisfied for A(t). If we make the additional assump-
tions of (K. 5) and (K. 6), then (E. 4) is also satisfied. Thus, we can apply
all the results in § 3 or § 4 to the equation

du(t)/dt+A(t)u(t) =/(/)

under the assumptions (K. 1)~(K. 4) or (K. 1)~(K. 6).

REMARK. This theorem strengthens, in some respects, the results of
Lions [6], Chapter VII.

§ 8. Example of the spaces V(t)

In this section we continue to use the notations in Lions [6] as in
the last section. Let O be an open set in Rn whose boundary is a
sufficiently smooth (n — l)-dimensional manifold. Let L2(Ω) be the space
of all square integrable complex-valued functions in 12 provided with the
usual inner product. Let Hm(Ω) be the space of all complex-valued
functions which belong to L2(O) together with all of their distribution
derivatives of order up to m. We provide Hm(Ω) with the usual inner
product. Then L2(Ω) and Hm(Ω,) are both Hubert spaces.

For any v£Hm(Ω,)> we can determine the boundary values of its
normal derivatives of order up to m —1 in the usual manner. We denote
by ΎJU the value on Γ of the j-ih normal derivative of u

= (d/dnYu\Γ.
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jjU belongs to Hm~J~1/2(Γ) in the notations of Lions [6]. For any 0^y<
m — 1, 7y defines a linear bounded mapping on Hm(Ω,) into Hm~j~l/2(Γ\

As H and /f in the last section we choose L2(ίl) and Hm(Ω) respec-
tively, and as V(t) the space of all u in Hm(£ϊ) satisfiying

•= Σ */*(θ7*w , 0^&0<m-l, j 6/CtX + l, - ,w-l] , (8.2)

where each ajk(t) is assumed to satisfy

ajk(t) e L(Hm~k-l/\n Hm^-1/2(Γ)) (8. 3)

and

^s continuonusly differentiable Nι

in ίe[0,Γ] for each fixed φeHm-k~l/2(n and (8.4)

Theorem 8. 1 (Lions), ί/wrf^r ίAβ assumptions made above the ortho-
gonal projection P(t) on K onto V(f) satisfies :

( i ) P(f)u is continuous in the strong topology of K in [0, T~\ for
each fixed u G Hm(Ω,\

(ii) h~l(P(t+h)u-P(t)u)->P(t} weakly in K as A-*0,
(iii) P(ί)u is continuous in the weak topology of K in [0, T].

By examining the proof of the above theorem, we can easily prove

Theorem 8. 2. // in addition to the assumption in Theorem 8. 1 we
assume that each άjk(f) is Holder continuous in t :

then P(f) is Holder continuous in t :

\\P(t}-P(s}\\^C\t-s\«.

Using Theorem 8. 2, we can give a partial improvement to a result in
Lions [6], Chapter VIII.
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