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By complex multiplication of abelian varieties, we get certain class-
fields over a totally imaginary quadratic extension F of a totally real
algebraic number field F0. The corresponding ideal-groups are explicitly
given in Main Theorems of [3]. On this subject, one may ask how large
class-fields over F can be constructed by such a means. An answer to
the question is given in [4, 5], to a certain degree, in terms of local
characters attached to Grossen-characters. However, this does not give
any information, for example, about unramified class-fields over F so
obtained. The purpose of the present paper is to give some results
concerning this problem, which are almost directly derived from the
defining-relation for the ideal-groups mentioned above.

In general the ideal-class group $ of F is approximately decomposed
into the ideal-class group 5Ϊ0 of F0 and its complementary part ® l β

Adjoining the absolute class-field over F0 to F, we get the unramified
class-field over F corresponding to $/ff i l β Now, roughly speaking, the
unramified class-field over F corresponding to 3?/$0 is generated by the
fields of moduli of certain polarized abelian varieties. The ramified
class-fields over F are found in a similar situation, if we consider the
points of finite order on the varieties. In § 2, we show these facts under a
condition on F, which is satisfied whenever F is normal over the rational
number field. We shall prove that the class-fields over F0 and complex
multiplication yield at least a subfield B of the maximal abelian extension
A of Fsuch that Aζ^B(\/'x\xeB) (Theorem 1) B contains the absolute
class-field over F (Theorem 2). If F is an imaginary cyclotomic field,
the results are stated in a little preciser and simpler form, as we shall
see in § 3. The object of the final § 4 is the investigation of a special
kind of CM-types, by which we can prove, without any condition on F,
similar results for the class-fields over F obtained from complex multi-
plication of an abelian variety whose endomorphism-algebra contains a
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quadratic extension of F (Theorem 4). In all these cases, if the class-
number of F is odd, the absolute class-field over F is contained in the
composite of the absolute class- field over F0 and the fields of moduli of
certain polarized abelian varieties which we can specify in each case.

The author wishes to express his sincere thanks to Prof. M. Eichler
whose communications gave him a chance to consider the problem, and
also to Dr. Y. Akagawa, T. Honda, N. Nobusawa for their valuable dis-
cussions in particular, the paper [2] is noticed by Nobusawa.

NOTATION AND CONVENTION. Q and C denote respectively the field
of rational numbers and the field of complex numbers. For every x 6 C,
we denote by xp the complex conjugate of x. Any algebraic number
field will be considered as a subfield of C. If K is an algebraic number
field of finite degree and b is an integral ideal of K, h(K) denotes
the group of all ideals prime to b, and Pb(K) the subgroup of fo(K)
consisting of all principal ideals (a) such that aeK, ^^Imodb. For
every positive integer b, the ideal (b) generated by b (in some algebraic
number field) will be often denoted simply by 6. Further we denote by
CbCK") the class-field over K corresponding to the ideal-group Pb(K),
namely, the ray-class-field modulo b over K. In particular, C^K) is the
absolute class-field (Hubert's class-field) over K.

§ 1. Preliminaries. Let F0 be a totally real algebraic number field
of finite degree, and F a totally imaginary quadratic extension of F0.
Define, for every positive integer 6, a subgroup Ib(F/F0) of Ib(F) by

( 1 ) Ib(FIF0) = {α e Ib(F) \ α/αp = (a) for some a G F

such that aap = 1 , 0 = 1 mod (b)} .

We see easily that

( 2 ) Ib(F/FJ > P*(F) - {α 6 Ib(F) \ αp = α} >

Consider the case b = ί. If σ G I^F/F^, we have α/αp = (#) for some a£F
such that aa* = ϊ. By Hubert's lemma, there exists an element w of F
such that a = wp/w. Then (wa)p = wa. It follows that

( 3 ) UF/FJ = W> {α e UF) I αp = α} .

Let (F; K, ,<rw}) be a CM-type and (F* {ry}) be its dual (cf.
[3, §§ 5.2, 8.3]). Let b be an integral ideal of F*, and b the smallest
positive integer divisible by b. We denote by h(F; {σ f.}) the subgroup
of Ib(F) consisting of all ideals α such that there exists an element u
of F* for which we have
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(4) τiaσi = ( u ) , N(a) = uup , z^
ι = l

Further we denote by C6(F/F0) and Cΐ>(F; {σ-.}) the class-fields over F
corresponding to the ideal-groups 76(F/F0) and Λ(F; {σ f}), respectively.
If ae!b(F; {σ-.}), we have N(a) = lmod(b). It follows that Cb(F; K})
contains the cyclotomic field Q(ζ) for a primitive b-th root of unity ζ.

Now Main Theorems 1 and 2 of [3] assert that if (/£"* {ψΛ} ) is a
primitive CM-type, we get the class-fields Cκ(K* (ψ'J ) by means of
complex multiplication of an abelian variety belonging to the dual of
(/IT* {̂ }). This result holds in a little more general form:

Proposition 1. The assertions of Main Theorems 1 and 2 of [3] are
true even in case where (K* {ψ J ) is not primitive.

Proof. Let (/£"* {ψa}) be a CM-type which is not necessarily
primitive. Let (K; {φλ}) be the dual of (K* {ψ β}), and (KΫ {%J) be
the dual of (K; { λ̂}). Then (ίΓ; {<pλ}) and (Kf {%v}) are primitive;
and CfΓ; {<pλ}) is the dual of (Kί {%„}) (cf. [3, §8.3]). Let L be a
Galois extension of Q containing K*. Then K and /f * are subfields of
L. Let G be the Galois group of L over Q, and jf/*, if? be respectively
the subgroups of G corresponding to /£"*, /if by Galois theory. We have
K*~^K?> H*(^HΫ, in view of the result of [3, §8. 3]. Extend ψ Λ and
%v to elements of G and denote them again by the same letters. We
have then

(5) \JH*γa = \JH¥Xv.
cύ v

Let b be an integral ideal of K and b the smallest positive integer
divisible by b. Considering an abelian variety belonging to (K; {φ\})>
we get the class-field Cτ(K ϊ {%v}) over K%. The composite of K* and
Cb(/iΓf {%v}) is a class-field over /£"* and by the "theorem of translation "
of class-field theory, the corresponding ideal-group is the group of ideals
ae!b(K*) such that Nκ*/κ*(a) eh(Kf {%v}). By the relation (5), this
ideal-group is just h(K* {ψΛ}) so we get our proposition.

For convenience, we state here a part of [3, § 8. 3, Prop. 28] as

Proposition 2. Let ( F ; {σ-.}) be a CM-type and (F* {τy}) its dual.

Then F* is generated over Q by the elements j»] xσί for x^F.
ι = l

§ 2. Class-fields obtained from two CM-types. F and F0 being as
in §1, let ( F ; {σ19 ••• , σ-J ) be a CM-type such that ^ is the identity
mapping of F. Consider the condition :

(A) // (F* {τy}) i5 ίfe dual of (F; {σ-.}),
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This is satisfied whenever F is normal over Q. Now we observe that

(F I {p> σ2, " ><0 is a CM-type. Let (F?;{<pλ}) be the dual of this
CM type. If (F; {σ .}) satisfies the condition (A), we have F?<CF. In

fact, by Proposition 2, for every Λ GF, we see that 2 #*»• e F* C^ F, so
t = ln n

that #P + Σ x*ί = x* — x+^xσi ' G F ; this implies, again by Proposition 2,

Proposition 3. Notation being as above, suppose that the condition
(A) is satisfied. Then, for every positive integer b> we have

h(F K-}) A Ib(F {P, o-2, ... , σ Λ) C /*(F/F0) .

Proof. If αG/,(F; K })Λ^; {P> 0-2 >-,*•«}), we have αασ

2 ••• ασ« = (M),
αpασι ••• ασ«=φ), N(ά) = uup = υvp for an element w of F* and an element

v of Ff such that w = lmod(6), t> = lmod(ά). Put a = u/v. By our as-

sumption and by the above consideration, a is an element of F and we

have α/αp = (^), άap = l, <z = lmod(δ). This proves our proposition.

Theorem 1. Let F0 be a totally real algebraic number field of degree

n^>\y and F a totally imaginary quadratic extension of F0. Then, the
composite Db of Cb(F/F0) and C6(F0) contains the class- field over F corre-
sponding to the ideal-group {α G Ib(F) \ α2 G Pb(F}} . Let further (F fo, ••• ,

crn}) be a CM-type such that σ 1 is the identity mapping of F. Suppose

that the condition (A) is satisfied. Then, for every positive integer by the

composite of Cb(F {cr.}) and Cb(F\ {py σ2, ••• ,σ J) contains Cb(F/FQ).

In other words, if there exists a CM-type satisfying the condition (A),

then, adjoining the ray-class-field modulo (b) over F0, we get, by complex

multiplication of άbelian varieties, at least a subfield Db of the ray-class-

field Cb(F) modulo (b) over F such that the Galois group of Cb(F)/Db is

of exponent 1 or 2.

Proof. The composite of Q(F0) and F is the class-field over F

corresponding to the ideal-group {α G Ib(F) \ ααp G Pb(F0)\. If ααpGPfe(F0)

and α/αp G Pb(F)> we have α 2 G Pb(F). This proves the first assertion. The

second assertion is an immediate consequence of Proposition 3.

REMARK 1. If F is a non-abelian imaginary extension of Q of degree

4, the condition (A) is never satisfied by any CM-type (F; {σ /}). In §4,
we shall give an example of a primitive CM-type (F; {σ f.}) satisfying
(A) with an F which is not normal over Q.

The author is ignorant of the difference between the maximal abelian
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extension A = \JCt(F) and B = \J Cb(F,)Cb(F {<rt})Cb(F; {?,«•„-,«•,,})'>.
6=1 i=l

If we put D=\J Dby we have A^>B^D, and A C£(\/*Ί *££>)• We can
b-=l

at least prove :

Theorem 2. F, F0 and Db being as in Theorem 1, the absolute class-
field over F is contained in Db for a suitable b.

Proof. Let E19 ••• > Er be cyclic unramified extentions of F such that
the composite of them is the maximal one among the unramified abelian
extensions of F whose degrees are powers of 2. By [2, Satz Ib], we can
find, for each /, a cyclic extension E{ of F containing E{ such that
[_E/ : E^\ = 2. Let b be a positive integer such that the ideal- groups
corresponding to the E{ are all defined modulo (b). Now let E0 be the
maximal one among the unramified abelian extensions of F of odd degree.
Let ξ>, β, 8 denote respectively the subgroups of Ib(F) corresponding to
£,,£&••• E,, E&' Er'. We have clearly Ib(F)^^®^S>Pb(F).
If α 6 Ib(F) and α2 e Pft(F), then α2 e 8. As ξ>/8 is the 2-Sylow subgroup of
7fcCF)/8, we obtain αGξ). By our construction of the E/9 we must have
α e $. This shows that ffi contains the ideal- group {α e 7ft(F) | α2 e Pd(F)} .
It follows that Z^ contains the field EJEι Ery the absolute class-field
over F.

If either one or both of the groups

{α 6 Ib(F) ααp 6 Pb(F0}} /Pb(F), Ib(F/F0)/Pb(F)

have odd orders, then Db = Cb(F).

Lemma 1. F and F0 being as in Theorem 1, let h and h0 be respec-
tively the class-numbers of F and F0. Then h is a multiple of h0, and
h/h0 is the order of the group {α e I^F) | ααp G

Proof. Let K be the absolute class-field over F0. As the infinite
prime spots of F0 ramify in F, F is not contained in K, so that [FK : F]
= [K: F0~]=h0. Our lemma follows easily from this and class-field theory.

We call h/h0 the relative class-number of F. Then we can conclude
that, if the relative class-number of F is odd, Dl is the absolute class- field
over F. Further we obtain

Proposition 4. F and F0 being as in Theorem 1, let h and h0 be
respectively the class-numbers of F and F0. Suppose that every prime ideal
of F ramified in F/FQ is a principal ideal. Then we have

1) It would be meaningful to take account of the infinite prime spots of F0, though we
have not used them in the present investigation.
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: F] ̂  h/h0 .
Moreover, if h0 is odd, the composite Dλ of C^F/F^ and C^F^ is the absolute
class- field over F.

Proof. The equality I1(F/F0)=P1(F)I1(F0) follows easily from our
assumption and the relation (3) of § 1. Now the injection of I^F^) into
/XF) gives a homomorphism of I^F^/P^F^ onto I^F / F0) / P^F) so we
have [/ΛF/FO): P^F)]^, and hence [/t(F) : UF/F^h/h^ which
implies [C^F/F^ : F] ^ A / A 0 . If A0 is odd, the order of the group

must be odd; as remarked above, this implies Dί = C1(F).

§ 3. Class-fields over cyclotomic fields. Let F be an imaginary
cyclotomic field and F0 the maximal real subfield of F. As F is normal
over Qy we can apply to F the result of §2. In particular, we get
the following assertion. // the relative class-number of an imaginary
cyclotomic field F is odd, then the absolute class- field over F is generated
by the absolute class-field over the maximal real subfield of F and the
unramified class-fields over F obtained front the fields of moduli of certain
two polarized abelian varieties having subfields of F as endomorphism
algebras. Several criteria for the oddness of relative class- number of
imaginary cyclotomic fields are given in [1, Satz 38, 42, 46].

F being still an imaginary cyclotomic field, if (F {crz.} ) is primitive,
the dual of (F; {σ.}) is (F; K1}) in virtue of [3, §8.4, (1)]. By (1)
and (4) of § 1, we see easily

( 6 ) It(F/FJ Γ\ Jb(F K } ) = Ib(FIFϋ) f\ I*(F K } )

for any two primitive CM-types (F; {σ,.}) and (F; {τ, }). For every auto-
morphism γ of F and for- every (F; {σ, }), we have

( 7 ) h(F ,{o-i})=lb(F;{7σi}).

Theorem 3. Let F be an imaginary cyclic extension of Q of degree
2n and F0 the maximal real subfield of F let σ be a generator of the
Galois group of F over Q. Then we have

for every positive integer b and for every primitive CM-type (F; {T,.}).
Moreover, if every prime ideal of F ramified in F/F0 is a principal ideal,
then, we have, for every CM-type (F; {τf }),
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Proof. It is easy to see that (F; {1, σ, ••• ,σ M~1}) is a primitive CM-
type. By (7), we have Ib(F; {1, σ, ... , σ*-1}) = /,(F; K, σ, σ2, - , o*-1}).
Then by Proposition 3, we have 76(F; {1, σ, - , σ-M-1})C76(F/F0). This
proves the first inclusion. The second inclusion follows from this and
(6). Now assume that every prime ideal of F ramified in F/F0 is a
principal ideal. By Proposition 4, 71(F/F0)=P1(F)/1(F0). We can easily
verify that 71(F0)C/1(^; fo}) for every CM-type (F; {r,.}), so that I^F/F.)
CΛCF K }), which implies C1(F/F0)^C1(F; {T,}). Apply this to the
case {τf.} = {1, σ-, ••• , σn~1}. As we have already seen the inverse inclusion,
we must have C^F; {l,σ, ••• , σΛ-1}) = C1(F/F0).

In general, for every positive integer b, we see that

7,(F0) I N(a) = 1 mod (6)}

// (F; fo}) = (F; {1, σ, ... , o— *}), ffe factor group

= 1 mod

zs 0/ exponent 1 or 2. In fact, in this case, if α 6 Ib(F {σf} ), we have
αe/6(F/F0) by Theorem 3, so that α/αp <GP6(F) on the other hand, it is
clear that Λ^po/0(ααp) = 1 mod (b) therefore, we have

α2 = (α/αp)(ααp) e Pb(F) - {α 6 7,(F0) | N(ά) = 1 mod (b)} .

Let /v be a power of an odd prime number / and ζ a primitive /v-th
root of unity. Put F=Q(ζ\ F, = Q(ζ + ζ~l\ Then F is cyclic over Q and
every prime ideal of F ramified in F/F0 is a principal ideal. Therefore,
we can apply Proposition 4 and Theorem 3 to the present case. In
particular, if the class-number of F0 is odd, then, the field of moduli of
a certain polarized abelian variety having F as endomorphism-algebray

together with the absolute class- field over F0, generates the absolute class-
field over F. By a theorem of Kummer, the class-number of F=Q(ζ) is
odd if and only if the relative class-number of F is odd (cf. [1, Satz 45]).
Hence, the class-number of FQ = Q(ζJrζ~1) is odd whenever the relative
class-number of F is odd the table of [1] shows that the relative class-
number of Q(ζ) is odd for /v<100, /VΦ29.

Remark 2. In Theorem 3, it may happen that C^F/Fo) φ Cα(F {r,.})
for some {τz }. In fact, let / be a prime number ^5 and ζ a primitive
/-th root of unity. Choose as r. the automorphism of F defined by ξ"1"* = ζ1

for l^ί^« = (/-l)/2. As observed in [3, §8. 4, .(!)], (F; {r,.}) is primi-
tive further by [3, §15.4, Example 2)], we have C^F; {τf}) = F, so that
h(F\ {^}) = 71(F). Therefore, C1(F/F0)ΦC1(F; {r.}) if the relative class-
number of F is greater than 1 the latter is of course the case for many /.
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Now if we put {σ,.} = {r.σ, r2, >•• , rM}, we must have /^F fo}
in view of Proposition 3. We can prove that this CM-type (F; {σ"z.}) is
primitive. In fact, if /Φ17, the trick of [3, §8.4, (1)] is applicable;
and if 7 = 17, this is shown by means of [3, §8.2, Prop. 26]. Then, by
Theorem 3 and by what we have just proved, we get 7Ί(F; {σ'ί})=/1(F/F0),
which implies CΊ(F; {<τi}) = C1(F/F0). In general, it is not necessarily true
that there exists an automorphism 7 of F such that {γσj = {1, σ , ••• , σ-*-1}.

§ 4. A CM-type obtained from two CM-types. The argument of
§2 is powerless when F has no CM-type satisfying (A). In order to
treat such a case, we consider a special kind of CM-type. We begin
with an easy

Lemma 2. Let F be a totally imaginary quadratic extension of a
totally real algebraic number field F0. Let L be the smallest normal ex-
tension of Q containing F, and G the Galois group of L over Q. Then /o,
considered as an element of G, belongs to the center of G and L is a
totally imaginary quadratic extension of a totally real subfield.

Proof. We can find an element z of F such that F=F0(z} and z2 is
a totally negative element of F0. For every γeG, (z*)2 is a totally nega-
tive element of F0, so that z*iP=—zi = ( — z)Ί = z^. Further, for every
#GF 0 , we have xyp = xy = xpy. Therefore, for every 7, δ G G and for every
#eFo, we have (x8YP = (x8y*> (z8γp-=(zp)8'y = (z8yy. These relations imply
yyp=yγ for every y £ L, since L is generated by FO and z8 this proves
the first assertion. If we denote by L0 the set of elements y of L such
that yp=y, we have (yy)p=ypy=yy for every j y G L 0 It follows that L0 is
totally real this proves the last assertion.

Let FO be a totally real algebraic number field of degree »>1. Let
F and M be totally imaginary quadratic extensions of F0. We assume
FΦM. Let K be the composite of F and M. Obviously, K contains a
totally real algebraic number field K0 such that [K0: F0] =2. Let (F {σ,-})
and (M; {τ£}) be CM-types. We assume σ f. = τf on F0. This is not an
essential restriction, since for any {σ-z.} and {T,.}, we can reorder them
so that o i = ri on F0.

Now fix an integer r such that l<Jr5j?z, and define 2n isomorphisms
a19 βί9 ... , any βn of K into C by

( a:,. = σ 2. on F, ai •= Tf on M for 1 ̂  ί ̂  n ,

βj = o j on F, βj = Tjp on M f or 1 ̂  j ̂  r ,

x βk = σkp on F, βk = τk on M for r <^k^n .

It can be easily seen that (K; {̂ , ft, ••• , <*„, βj) is a CM-type. We
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assume henceforth that σ1 is the identity mapping of F and r1 is the
identity mapping of M, and consider only the case r = l.

Let (M*; {%μ}) be the dual of (M; {τ,}); let M** be the field

generated over Q by the elements Σ*TV f°r x^M. By Proposition 2,
V=2

M* is generated over Q by the elements XI #τ' f°r # £ M. It follows that
i = l

(9) M*M = M**M.

Proposition 5. Let (K* {φλ}) be the dual of (K; {«,., β{}). Then
we have K*=FM**.

Proof. Put £θ)=Σ (/*'+/'•) for yeK. By Proposition 2, K* is
i=l

generated over Q by the elements g( y) for y&K. For any jyS/f, we see
easily y^+y^=Ύΐκ/F(y\ y^+y^ = Trκ/M(y}^ for χ>l, so that

This implies K*<^FM**. Now take elements 2 and w so that F=F0(z),
M=Fo(w), z2eF0, w2eF0. If Λ Γ G ^ O , we have

g(x) = 2TrFo/Q(x\ g(xz) = 2xz,

These relations show that K* contains F and M** this completes the
proof.

Proposition 6. M** is a totally imaginary quadratic extension of a
totally real algebraic number field containing F0. Moreover, for every
xeM, we have xτ* ••• #T«GM** and for every ideal c of M, cT2 ••• cτ« is
an ideal of M**.

Proof. If x e FO, we have * = Tι>0/β(*) -J] *τv G M**, so that F0CM**.

Now let L be the smallest normal extension of Q containing K and
G the Galois group of L over Q. Denote by H the set of elements 7 e G
such that {τ2γ, ••• , τwγ} coincides with {τ2, ••• , rj on M as a whole.
Then, by the same argument as in the proof of [3, §8. 3, Prop. 28], we
can prove that H= {γ€G\x'* = x for every #6M**}. Using this fact, the
second and last assertions are proved in the same manner as in the
proof of [3, §8.3, Prop. 28]. Now, by the definition of CM-type, τ2p
does not coincide with any τ v on M so p is not contained in H. If we
put Hl = H\JHp, then Hl is a subgroup of G on account of Lemma 2.
Call M! the subfield of L corresponding to H1 by Galois theory. Then
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we see easily that Mί is totally real and M** is a totally imaginary
quadratic extension of Mx.

Consider a particular case where FQ is normal over Q. Take an
element w of M so that M=F0(tυ). Choose n — 1 elements x2> >xn of

FO in such a way that det(VX)μ v==2 ... MΦO. We have Σ VV
' ' V=2

for every μ, so that w^y ••• , zίΛ* are contained in M** since
This shows that M** is the composite of MT2, ••• , Mτ*. We can similarly
prove that F0M* is the composite of MTl, ••• , Mτ*. Now assume that
the composite of MTl, MT2, ••• , Mτ* is of degree 2n over F0. This is the
case for example, if there exists a prime ideal p of F0 of absolute degree
1 such that £ is inertial in M while the conjugates of \>, other than £
itself, decompose in M. Then, we have [F0M* : Q] =2n n> and hence
[M*:Q]^2M.2) This gives an example of CM-type (M: {r,.}) such that
[M* : Q]>[M: Q] for the dual (M* {%μ}) of (M; {T.}). This shows also
that the case \JK* : F~]^>2 may happen.

Coming back to the general case, we get

Proposition 7. Three CM-types (F; {σ.}), (M; {τ }), (K; K
being as above y let (K* {φλ}) be the dual of (K\ {ai9 βg}). Then, for every
positive integer b, the composite of Cb(M) and Cb(K {oίi , βf} ) contains the
class-field Hb over F corresponding to the ideal group Ib(F} f~\Pb(K*}.

Proof. Let α be an ideal of K. In the same way as in the proof
of Proposition 5, we see that

(10) α*ιcΛ - αβ«αp» - Nκ/F(a) Π Nκ/M(a)^ .
V=2

The composite of Cb(M) and Cb(K\ [otiy /βj) is a class-field over K denote
by § the corresponding ideal- group. If αeξ>, we have cΛcΛ ••• ααwαβ«

ePb(K*} and Nκ/M(a) e Pb(M} so we see that Π Λ^/M(α)τv G P&(M**) in
V=2

view of Proposition 6. By (10) and by Proposition 5, we have NK/F(a) G
Pb(K*\ This shows that § is contained in the ideal-group corresponding
to the composite of K and Hb our proposition is thereby proved.

If we put m = \_K*:F~}> we see easily that

W) C Ib(F) A /W) C {α e 7,(F) I α- e

Therefore, the exponent of the Galois group of Cb(F)/Hb is a divisor of

2) In reality we can show that [M*:Q]=2M.
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If we fix M (and hence FQ) and consider M and Cb(M] auxiliary,
Proposition 7 may be regarded as a statement concerning the class-fields
over the variant field F, which can be obtained by complex multiplication
of abelian varieties having a certain overfield K* of F as endomorphism-
algebra.3) In order to get a more transparent result, we consider a
restrictive case.

Proposition 8. (M : {τz }) satisfies the condition (A) if and only if
ΛOAΓ** and if this is satisfied, we have M=M**> K=K*.

Proof. The first assertion is a direct consequence of (9). If
we must have M=M** on account of Proposition 6, so that K* = FM=K
by Proposition 5.

In particular, if M is normal over Q, then (K {«,- , βf} ) satisfies (A)
in this case, K is normal over Q if and only if F is normal over Q
and if we take as F a non-abelian extension of Q of degree 4, we see
easily that (K\ {<**,&•}) is primitive.

For any totally real algebraic number field FQ, we can find a CM-type
(M; {r.}) such that [M:F0]=2 and ΛOM*. In fact, for any positive
integer s, put M=F0(v/-:s) and define τί9 ••• ,rn so that (^^5)τv=-v

/^Γ5.
Then it is easy to see

Theorem 4. Let F0 be a totally real algebraic number field of degree
Let F and M be distinct totally imaginary quadratic extensions of

FO, and K the composite of F and M. Let (F; {σ.}) and (M; {rf}) be
CM-types such that σ1 is the identity on F, τ1 is the identity on M, and
σi=τi on F0. Define a CM-type (K;'{ai9 βf}) by the relation (8) with r = l.
Suppose that (M {rj ) satisfies the condition (A) of § 2. Then, for every
positive integer b, Cb(K (a . , βt} ) contains the class- field Cb(F/F0) over F.

Proof. For every ideal α of K, the equality (10) is also written in
the form

(11) α"ιcΛ - α**αβ« - Nκ/F(ά)Nκ/M(aYl lΐ Nκ/M(φ .
ί = l

By our assumption and Proposition 8, we have K=K*. Hence, if αe
Ib(K; {aiy βt}}, there exists an element u of K such that

α^i ... α*«αβ» = (u) , N(ά) = uup , u = 1 mod (b) .

3) In fact, the abelian varieties belonging to (/£"; {«,- ,/3,}) are special members of an
analytic family of polarized abelian varieties whose moduli are given by certain automorphic
functions of one variable.
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Put v = NK/F(u), c = Nκ/F(ά). Now take NK/F of the both sides of (11).
We note that for any ideal e of M, NK/F(Ϊ) = NM/FO(Z) especially,

NK/F(NK/M(a)) = NM/Fo(NK/M(a)) = Nκ/Fo(a) = NF/FO(C) = ccp,

and

α)τO = NM/F(τiNκ/M(ayi} = Π Nκ/M(φNκ/M(κ) V
/ °\ί = l / ί = l

)) = Nκ/Q(ά) = (uu>}.

Therefore, we obtain from (11), (») = c2(ccp)~1(wMp). Put w = v(uup)'1. Then
w; is an element of Fy and c/cp = (w), wwp = ί, w=l mod (&). Thus we have
shown Nκ/F{Ib(K\ [aiy βt}}~\<^Ib(FIFQ\ This proves our theorem.

By means of Theorem 4, we obtain several assertions concerning the
class-fields over F similar to those given in §2. In particular, the
absolute class-field C^F) is contained in the composite Cb(K; {tf,-,/^-})
and Cb(FQ) for a suitable positive integer b. As another example of
specializations (or degenerations) of Theorem 4, we get the following
conclusion: F and F0 being as in Theorem 4, let s be a positive integer
such that x/^s £ F. Then the field of moduli of a certain polarized abelian
variety having F(\/~^s) as endomor'phi'sm-algebra, together with the absolute
class-field over FOJ generates a class-field over F(\/~::rs) containing the
absolute class-field over F, if the class-number of F is odd.
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