On the Geometry of Hopf Manifolds

By Mikio Ise

§ 1. Introduction

The purpose of the present note is to compute the cohomology groups $H^{q}\left(X, \Omega^{p}(F)\right),(0 \leqq q \leqq n)$ of an n-dimensional Hopf manifold X, where $\Omega^{p}(F)$ denotes the analytic sheaf of germs of holomorphic p-forms with values in a complex line bundle F over X. Throughout the arguments we make use of the fact that the Hopf manifold is a homogeneous compact complex manifold. Recently, R. Bott [3] and the author [7] have made some researches concerning the complex line bundles over a class of homogeneous compact complex manifolds ($=C$-manifolds in the sense of Wang). The essential difference between Hopf manifolds and Wang's C-manifolds lies in the non-triviality of the fundamental group of the former. But a Hopf manifold admits the so-called Hopf fibering, which plays the quite analogous role to the fundamental fiberings of non-kählerian C-manifolds (cf. [7]), and which allows us to have the similar results for them. Our principal tools are Leray's spectral sequences and the knowledge of the cohomology groups $H^{q}\left(P^{n}, \Omega^{p}(F)\right)$ of the n-dimensional complex projective space P^{n}, which have been computed by Bott [3] and Matsumura [10].

The author wishes to express here his hearty thanks to Prof. S. Murakami, who has read through the manuscript and has given kind criticisms.

§ 2. Hopf manifolds

We recall here the definition of Hopf manifolds (cf. [6]). Let C^{n} denote a complex n-dimensional euclidean space and W^{n} the complement of the origin $o=(0, \cdots, 0) \in C^{n}$, and take a non-zero complex number d with the absolute value $|d| \neq 1$. Let Δ_{d} be the cyclic group generated by d in the multiplicative group C^{*} of all non-zero complex numbers. We denote also by Δ_{d}, for brevity, the subgroup of $G L(n, C)$ generated by the scaler matrix $d \cdot I$ (I is the unit matrix of $G L(n, C))$:

$$
\Delta_{d}=\left\{d^{m} \cdot I \mid m \in Z\right\}
$$

(Z is the ring of all integers)

The group Δ_{d} being a properly discontinuous group of W^{n} without fixed points, the quotient manifold $W^{n} / \Delta_{d}=X$ has a natural complex analytic structure. The complex manifold X thus obtained is, by definition, an n-dimensional Hopf manifold (corresponding to the number $d)^{1)}$. As is well known, X is diffeomorphic to the product manifold $S^{1} \times S^{2 n-1}$ of two odd dimensional spheres, since the group Δ_{d} is isomorphic to Z. The complex general linear group $G L(n, C)$ operates on W^{n} effectively and transitively; as Δ_{d} is contained in the centre of $G L(n, C), G L(n, C)$ operates on X also transitively and holomorphically. Now we take the basic point $w_{0}=(1,0, \cdots, 0) \in W^{n}$ and the corresponding point $x_{0} \in X$ modulo Δ_{d}. Then the isotropy subgroup U_{d} of $G L(n, C)$ at x_{0} consists of the matrices of the form :

$$
u=\left(\begin{array}{c|c}
d^{m} & * \cdots \cdots * \\
\hline 0 & \\
\vdots & *
\end{array}\right), \quad d^{m} \in \Delta_{d}
$$

So we can identify X with the complex coset space:

$$
X=G L(n, C) / U_{d}
$$

Note that the action of $G L(n, C)$ is not effective; if we take the quotient groups $\widetilde{G}=G L(n, C) / \Delta_{d}$ and $\widetilde{U}_{d}=U_{d} / \Delta_{d}$, then \widetilde{G} acts on X effectively and we can put

$$
X=\widetilde{G} / \widetilde{U}_{d}
$$

The connected complex reductive Lie group \widetilde{G} is considered as a Lie subgroup of the connected analytic automorphism group $A(X)$ of X. As a matter of fact, we show the following

Theorem 1. $A(X)=\widetilde{G}$.
The proof is quite similar to the case of non-kählerian C-manifolds ([7], Proposition 6), but we state it here for the completeness sake and for the convenience in the later discussions. First we need some definitions :

Definition 1. Let $G(1, n-1 ; C)$ denote the subgroup of $G L(n, C)$ consisting of the matrices:

[^0]

Then we can identify $G L(n, C) / G L(1, n-1 ; C)$ with the $(n-1)$-dimensional complex projective space P^{n-1} and $G L(1, n-1 ; C) / U_{d}$ with an elliptic curve T^{1} respectively. Therefore we have a natural (holomorphic) principal fibering of X with P^{n-1} as base, T^{1} as group and the natural mapping ϕ of X onto P^{n-1} as projection; this fibering $X\left(P^{n-1}, T^{1}, \phi\right)$ is called the Hopf fibering of X.

Definition 2. Let $X=G / U$ be a complex homogeneous space with a connected complex Lie group G and a (not nec. connected) closed complex Lie subgroup U, and let ρ be a holomorphic homomorphism of U into another complex Lie group B. Then the coset bundle $G(X, U, \pi)$ (π is the canonical projection of G onto X) and ρ induce a new holomorphic principal bundle $P(X, B, \varpi)$ over X, which is called a homogeneous B-bundle over X with respect to the Klein form G / U. In particular, when $B=G L(m, C)$, we have the associated m-dimensional vector bundle $E\left(X, C^{m}, G L(m, C), \varpi\right)$ which is simply written as $E_{X}\left(\rho, C^{m}\right)$ and which is called a homogeneous vector bundle over X (with respect to the Klein form $G / U)$. This is the quotient space of $G \times C^{m}$ by the equivalence relation :

$$
(g, \xi) \sim\left(g u, \rho\left(u^{-1}\right) \xi\right)
$$

for $g \in G, u \in U$ and $\xi \in C^{m}$.
Now we denote the Lie algebras of $G L(n, C), G L(1, n-1 ; C)$ and U_{d} by \mathfrak{g}, $\hat{\mathfrak{t}}$ and \mathfrak{n} respectively. Then \mathfrak{u} is an ideal of $\hat{\mathfrak{t}}$ and the exact sequence of modules:

$$
\begin{equation*}
0 \rightarrow \hat{\mathfrak{t}} / \mathfrak{l} \rightarrow \mathfrak{g} / \mathfrak{u} \rightarrow \mathrm{g} / \hat{\mathfrak{t}} \rightarrow 0 \tag{1}
\end{equation*}
$$

is considered as an exact sequence of U_{d}-modules under the adjoint actions. Therefore we can construct the exact sequence of homogeneous vector bundles over X with respect to the Klein form $G L(n, C) / U_{d}$:

$$
0 \rightarrow E_{X}(A d, \hat{\mathfrak{u}} / \mathfrak{\mathfrak { t }}) \rightarrow E_{X}(A d, \mathrm{~g} / \mathfrak{n}) \rightarrow E_{X}(A d, \mathfrak{g} / \hat{\mathfrak{t}}) \rightarrow 0
$$

If we denote here by Θ and $\hat{\Theta}$ the tangential vector bundles over X and $\hat{X}=P^{n-1}$ respectively, then, as is easily verified,

$$
E_{X}(A d, \mathfrak{g} / \mathfrak{\mathfrak { t }})=\Theta, \quad E_{X}(A d, \mathfrak{g} / \hat{\mathfrak{t}})=\phi^{*} \hat{\Theta}
$$

and $E_{\mathrm{X}}(A d, \hat{\mathfrak{t}} / \mathfrak{\mathfrak { t }})$ is the trivial line bundle (which is denoted by I).

Therefore we have the exact sequence:

$$
\begin{equation*}
0 \rightarrow I \rightarrow \Theta \rightarrow \phi^{*} \hat{\Theta} \rightarrow 0 . \tag{2}
\end{equation*}
$$

This induces the corresponding exact sequence of the complex vector spaces of cross sections :

$$
0 \rightarrow \Gamma_{X}(I) \rightarrow \Gamma_{X}(\Theta) \rightarrow \Gamma_{X}\left(\phi^{*} \hat{\Theta}\right) .
$$

Here, $\Gamma_{X}(\Theta)$ may be identified with the Lie algebra $\mathfrak{a}(X)$ of all holomorphic vector fields on X, and $\Gamma_{X}(I)$ is then identified with the $1-$ dimensional ideal C of $\mathfrak{a}(X)$. Moreover $\Gamma_{X}\left(\phi^{*} \hat{\Theta}\right)$ is isomorphic with $\Gamma_{\hat{X}}(\hat{\Theta})$ or with the Lie algebra $\mathfrak{a}\left(P^{n-1}\right)$ of all holomorphic vector fields on P^{n-1}, since the fibres of $\phi: X \rightarrow P^{n-1}$ are compact, connected. Hence, we obtain the exact sequence of Lie algebras:

$$
0 \rightarrow C \rightarrow \mathfrak{a}(X) \xrightarrow{\dot{\phi}} \mathfrak{a}\left(P^{n-1}\right),
$$

where the homomorphism $\dot{\phi}$ means that every holomorphic vector field on X is constant on each fibre and that it induces a vector field over P^{n-1} (This fact has been recognized by Blanchard [2] in general case; see [2], Proposition 1.1). Now we know that $\mathfrak{a}\left(P^{n-1}\right)$ is isomorphic to the Lie algebra $\mathfrak{H l}(n, C)$ of $S L(n, C)$ and that $\mathfrak{a}(X)$ contains the Lie algebra $\tilde{\mathfrak{g}}$ of \tilde{G} which is clearly isomorphic to that of $G L(n, C)$. Therefore $\dot{\phi}$ is surjective and $\mathfrak{a}(X)=\tilde{\mathrm{g}}$. Hence $A(X)=\widetilde{G}$. This proves Theorem 1.

Here we add the following theorem which can be proved in the same way as in [7], Proposition 7 (see, also Remark 2 in §6).

Theorem 2. $\left.\operatorname{dim} H^{1}(X, \Theta)\right)=n^{2}$ and $H^{q}(X, \Theta)=\{0\}$ for $q \geqq 2$.
The first result is known by Kodaira-Spencer [8] in the case $n=2$. The discussions in [8], $\S 15$ about deformations of complex analytic structures of a 2-dimensional Hopf manifold might be immediately extended to the case $n>2$.

§3. Complex line bundles

In this section we shall concern ourselves with the homogeneous line bundles over a Hopf manifold X. For this sake, it is more appropriate to take the Klein form $G L(n, C) / U_{d}$ rather than to take G / U_{d}. We call, from now on, a homogeneous bundle with respect to the Klein form $G L(n, C) / U_{d}$ simply a homogeneous bundle. Then we have

Theorem 3. Every complex line bundle over a Hopf manifold X is
homogeneous and has an integrable holomorphic connection. Moreover the group $H^{1}\left(X, C^{*}\right)$ of all complex line bundles over X is isomorphic to C^{*}.

Proof. First consider the sheaf exact sequence over X :

$$
\begin{equation*}
0 \rightarrow Z \rightarrow \boldsymbol{C}_{\rightarrow}^{\varepsilon} \boldsymbol{C}^{*} \rightarrow 0 \tag{1}
\end{equation*}
$$

where $\boldsymbol{C}\left(\text { resp. } \boldsymbol{C}^{*}\right)^{2)}$ denotes the sheaf of germs of holomorphic (resp. non-vanishing holomorphic) functions on X, Z the constant sheaf of integers and ε the homomorphism induced from the homomorphism ε of C onto C^{*} defined by $\varepsilon(\xi)=\exp 2 \pi \sqrt{-1} \xi$ for any $\xi \in C$. Because $H^{2}(X, Z)=\{0\}$, we have from (1) the following exact sequence:

$$
0 \rightarrow H^{1}(X, Z) \rightarrow H^{1}(X, \boldsymbol{C}) \xrightarrow{\varepsilon} H^{1}\left(X, \boldsymbol{C}^{*}\right) \rightarrow 0
$$

On the other hand, we consider the exact sequence of the abelian groups :

$$
\begin{equation*}
0 \rightarrow \operatorname{Hom}\left(U_{d}, Z\right) \rightarrow \operatorname{Hom}\left(U_{d}, C\right) \xrightarrow{\varepsilon} \operatorname{Hom}\left(U_{d}, C^{*}\right), \tag{2}
\end{equation*}
$$

where $\operatorname{Hom}\left(U_{d}, B\right)$ means the abelian group of all holomorphic homomorphisms of U_{d} into the complex abelian Lie group B (If B is discrete, then holomorphic homomorphims should be understood as abstract ones). We see readily that $\operatorname{Hom}\left(U_{d}, B\right) \cong \operatorname{Hom}\left(\Delta_{d} \times G L(n-1, C), B\right) \cong \operatorname{Hom}\left(\Delta_{d} \times\right.$ $\left.C^{*}, B\right) \cong \operatorname{Hom}\left(\Delta_{d}, B\right) \times \operatorname{Hom}\left(C^{*}, B\right)$; hence we have

$$
\left\{\begin{array}{l}
\operatorname{Hom}\left(U_{d}, Z\right) \cong \operatorname{Hom}\left(\Delta_{d}, Z\right) \cong Z \tag{3}\\
\operatorname{Hom}\left(U_{d}, C\right) \cong \operatorname{Hom}\left(\Delta_{d}, C\right) \cong C, \\
\operatorname{Hom}\left(U_{d}, C^{*}\right) \cong \operatorname{Hom}\left(\Delta_{d}, C^{*}\right) \times \operatorname{Hom}\left(C^{*}, C^{*}\right) \cong C^{*} \times Z
\end{array}\right.
$$

Now there is a natural homomorphism η_{B} of the group $\operatorname{Hom}\left(U_{d}, B\right)$ into the group $H^{1}(X, \boldsymbol{B})$ of all holomorphic B-bundles over X by assigning to every $\rho \in \operatorname{Hom}\left(U_{d}, B\right)$ the corresponding homogeneous B-bundle over X defined by ρ. Then we have the commutative diagram :

On the other hand, the universal covering manifold \tilde{X} of X is given by

[^1]$\tilde{X}=G L(n, C) / U_{1}$ where U_{1} is the subgroup of $G L(n, C)$ consisting of matrices of the form :

$\left(\begin{array}{c|c}1 & * \cdots \cdots * \\ \hline 0 & \\ \vdots & * \\ 0 & .\end{array}\right)$
and $U_{d} / U_{1} \cong \Delta_{d}$ is the covering transformation group of the covering $\psi: \tilde{X} \rightarrow X$. The bundle $\tilde{X}\left(X, \Delta_{d}, \psi\right)$ is obtained from the coset bundle $G L(n, C)\left(X, U_{d}, \pi\right)$ by the natural bundle homomorphism $\tau: G L(n, C) \rightarrow$ $G L(n, C) / U_{1}=\tilde{X}$, and is therefore the homogeneous Δ_{d}-bundle defined by the natural homomorphism $\tau: U_{d} \rightarrow U_{d} / U_{1}=\Delta_{d}$. Now we say a holomorphic B-bundle over X is defined by an (abstract) representation of the fundamental group if it is induced from the bundle $\tilde{X}\left(X, \Delta_{d}, \psi\right)$ by a group homomorphism of Δ_{d} into B, and the homomorphism of $\operatorname{Hom}\left(\Delta_{d}, B\right)$ into $H^{1}(X, \boldsymbol{B})$ which is obtained in this procedure is denoted by ζ_{B}.

We know that a holomorphic B-bundle has an integrable holomorphic connection if and only if it is defined by a representation of the fundamental group [1]. On the other hand, the homomorphism $U_{d} \rightarrow \Delta_{d}$ induces naturally a homomorphism τ_{B} of $\operatorname{Hom}\left(\Delta_{d}, B\right)$ into $\operatorname{Hom}\left(U_{d}, B\right)$ and the following diagram is commuative.

Returning to the diagram (4), if we show that η_{C} is bijective, the theorem will be proved. In fact, in this case, it is obvious that $\eta_{C^{*}}$ is surjective and this means that every line bundle is homogeneous. Moreover, $H^{1}\left(X, C^{*}\right) \cong \operatorname{Hom}\left(U_{d}, C\right) / \operatorname{Hom}\left(U_{d}, Z\right) \cong C / Z \cong C^{*}$, and the first isomorphism implies that $\zeta_{C^{*}}: \operatorname{Hom}\left(\Delta_{d}, C^{*}\right) \rightarrow H^{1}\left(X, C^{*}\right)$ is bijective. Therefore, every line bundle is defined by a representation of the fundamental group Δ_{d} of X. Now we show first that η_{C} is injective. In fact, if we take the element $\rho_{0} \in \operatorname{Hom}\left(\Delta_{d}, Z\right)$ which is defined by $\rho_{0}\left(d^{m}\right)=m$ for every $m \in Z$, then the bundle $\zeta_{Z}\left(\rho_{0}\right)$ is isomorphic with the bundle $\tilde{X}\left(X, \Delta_{d}, \psi\right)$ and so is not trivial, which implies that η_{Z} is injective. Then η_{C} being a linear homomorphism, η_{C} must be also injective. Next we shall prove that $H^{1}(X, \boldsymbol{C}) \cong C$. For this sake we employ the spectral sequence associated to the Hopf fibering $X\left(P^{n-1}, T^{1}, \phi\right)$ and the sheaf C. That is to say, there exists a spectral sequence $\left\{E_{k}\right\}$ with $E_{2}^{r, s}=H^{r}\left(P^{n-1}\right.$, $\phi^{s}(\boldsymbol{C})$) and with the final term E_{∞}^{q} associated to $H^{q}(X, \boldsymbol{C})$, where $\phi^{s}(\boldsymbol{C})$
is the sheaf defined by the presheaf $\phi^{s}(\boldsymbol{C})_{N}=H^{s}\left(\phi^{-1}(N), \boldsymbol{C}\right)$ (for every open set $N \subset P^{n-1}$). In our discussion, it needs only the case $q=1$; so we are concerned only with $E_{2}^{1}=E_{2}^{1.0}+E_{2}^{0.1}$ and with $\phi^{s}(\boldsymbol{C})(s=0.1)$. If we choose N as a Stein open set on which the bundle $\phi^{-1}(N)$ is trivial, then $\phi^{-1}(N)=N \times T^{1}$ and so by the Künneth relation we have:

$$
\begin{aligned}
& H^{\circ}\left(\phi^{-1}(N), \boldsymbol{C}\right) \cong H^{\circ}(N, \boldsymbol{C}) \\
& H^{1}\left(\phi^{-1}(N), \boldsymbol{C}\right) \cong H^{1}(N, \boldsymbol{C}) \otimes H^{\circ}\left(T^{1}, \boldsymbol{C}\right)+H^{\circ}(N, \boldsymbol{C}) \otimes H^{1}\left(T^{1}, \boldsymbol{C}\right)
\end{aligned}
$$

Because $H^{1}(N, \boldsymbol{C})=\{0\}, H^{s}\left(T^{1}, \boldsymbol{C}\right) \cong C(s=0,1)$, it follows that $\phi^{0}(\boldsymbol{C})=\boldsymbol{C}$, $\phi^{1}(\boldsymbol{C})=\boldsymbol{C}$. Therefore $E_{2}^{1.0}=H^{1}\left(P^{n-1}, \boldsymbol{C}\right)=\{0\}, E_{2}^{0.1}=H^{0}\left(P^{n-1}, \boldsymbol{C}\right) \cong C$. While, the d_{2}-differential operator sends $E_{2}^{0,1}$ into $E_{2}^{2,0}=H^{2}\left(P^{n-1}, \boldsymbol{C}\right)=\{0\}$. This implies that $E_{2}^{0,1}=E_{3}^{0,1}=E_{\infty}^{0,1}=E_{\infty}^{1}$, and consequently that $H^{1}(X, \boldsymbol{C}) \cong C$. The proof is now completed.

\S 4. The cohomology groups $H^{q}\left(X, \Omega^{p}(F)\right)$

By Theorem 3 we can write every complex line bundle over a Hopf manifold X as $F_{\lambda} ; \lambda \in C^{*}=\operatorname{Hom}\left(\Delta_{d}, C^{*}\right)$. Our next step is to compute the cohomology groups $H^{q}\left(X, \Omega^{p}\left(F_{\lambda}\right)\right),(0 \leqq q \leqq n)$ with coefficients in the analytic sheaf $\Omega^{p}\left(F_{\lambda}\right)(0 \leqq p \leqq n)$ of germs of holomorphic p-forms with values in F_{λ}.

To state our results of computations, we remark first the following situation. As to the Hopf fibering $X\left(P^{n-1}, T^{1}, \phi\right)$, we have the following commutative diagram :

where σ is the restriction mapping of homomorphisms and η is the assignment of the defining homogeneous line bundle to each homomorphism belonging to $\operatorname{Hom}\left(G L(1, n-1 ; C), C^{*}\right)(c f .[7], \S 4)$. Now by the proof of Theorem 3 and Theorem 1 in [7], the above diagram yields the following one:

where each row is an exact sequence. Furthermore we shall identify, in the sequel, $\operatorname{Hom}\left(\Delta_{d}, C^{*}\right)$ with C^{*} and $\operatorname{Hom}\left(C^{*}, C^{*}\right)=\{\mu \in \operatorname{Hom}(C, C) \mid \mu(Z)$ $\subset Z\}$ with Z respectively by means of the correspondences:

$$
\begin{aligned}
& \operatorname{Hom}\left(\Delta_{d}, C^{*}\right) \ni \lambda \leftrightarrow \lambda(d) \in C^{*}, \\
& \operatorname{Hom}\left(C^{*}, C^{*}\right) \ni \mu \leftrightarrow \mu(1) \in Z .
\end{aligned}
$$

Under these identifications, the mapping σ is given by $\sigma(m)=d^{m}$ for $m \in Z$, so that σ is an isomorphism of Z into C^{*} and its image is nothing but Δ_{d}. The mapping ϕ^{*} is, therefore, injective.

Thus we can state our main result.
Theorem 4. Set $h^{p, q}(\lambda)=\operatorname{dim} H^{q}\left(X, \Omega^{p}\left(F_{\lambda}\right)\right)$. Then $h^{p, q}(\lambda)=0$ for any p and q if $\lambda \notin \Delta_{d}$, and in the case $\lambda \in \Delta_{d}$ we have:
(A) if $\lambda=d^{m}, m \neq 0, p>0$, ($n>2$)
(i) $h^{p, q}(\lambda)=0$, if $2 \leqq q \leqq n-2$
(ii) $h^{p, 0}(\lambda)=h^{p, 1}(\lambda)$

$$
=\left\{\begin{array}{l}
0, \text { if } m<p \\
\binom{n}{p}, \quad \text { if } m=p \\
\binom{n+m-p-1}{n-p-1}\binom{m-1}{p}+\binom{n+m-p}{n-p}\binom{m-1}{p-1}^{3)}, \quad \text { if } m>p .
\end{array}\right.
$$

(iii) $h^{p, n-1}(\lambda)=h^{p, n}(\lambda)$

$$
=\left\{\begin{array}{l}
0, \text { if } m>p-n \\
\binom{n}{p}, \text { if } m=p-n \\
\binom{-m+p}{p}\binom{-m-1}{n-p-1}+\binom{-m+p-1}{p-1}\binom{-m-1}{n-p}, \text { if } m<p-n .
\end{array}\right.
$$

($n=2$)
In this case $h^{p, 0}(\lambda)$ and $h^{p, 2}(\lambda)$ are given by the same formula as the case $n>2$, setting $n=2$; but $h^{p, 1}(\lambda)$ is not, and $h^{p, 1}(\lambda)=h^{p, 0}(\lambda)+h^{p, 2}(\lambda)$.

[^2](B) if $\lambda=d^{m}, p=0$,
(i) $h^{0, q}(\lambda)=0$, if $2 \leqq q \leqq n-2$
(ii) $\quad(n>2), h^{0,0}(\lambda)=h^{0,1}(\lambda)=\binom{n+m-1}{m}$
$$
h^{0, n-1}(\lambda)=h^{0, n}(\lambda)=\binom{-m-1}{-m-n}
$$
(iii) $\quad(n=2), h^{0,0}(\lambda)=\binom{m+1}{m}$
\[

$$
\begin{aligned}
& h^{0,1}(\lambda)=\binom{-m-1}{1}+\binom{m+1}{m} \\
& h^{0,2}(\lambda)=\binom{-m-1}{1}
\end{aligned}
$$
\]

(C) if $\lambda=1$,
(i) $\quad h^{n, q}(1)= \begin{cases}0, & \text { if } q \leqq n-2 \\ 1, & \text { if } q=n-1, n\end{cases}$
(ii) $h^{p, q}(1)=0$, if $1 \leqq p \leqq n-1$,
(iii) $h^{0 . q}(1)=\left\{\begin{array}{lll}0, & \text { if } & q \geqq 2 \\ 1, & \text { if } & q=0,1\end{array}\right.$

§ 5. Summary of some known results.

Let $X\left(P^{n-1}, T^{1}, \phi\right)$ be the Hopf fibering of X and let $E=E_{X}\left(\rho, C^{m}\right)$ be the homogeneous vector bundle over X defined by the representation (ρ, C^{m}) of U_{d} and let \boldsymbol{E} be the sheaf of germs of holomorphic sections of E. The restriction E / T^{1} of E on $T^{1}=G L(1, n-1, C) / U_{d}$ is also homogeneous with respect to the Klein form $G L(1, n-1 ; C) / U_{d}$. Therefore every element of $G L(1, n-1 ; C)$ induces a bundle automorphism of $E \mid T^{1}$, and so a linear isomorphism of the cohomology group $H^{s}\left(T^{1}, \boldsymbol{E} \mid T^{1}\right)$, $(s=0,1)$. The holomorphic representation of $G L(1, n-1 ; C)$ thus obtained will be denoted by $\rho^{s}(s=0,1)^{4}$, and the corresponding homogeneous vector bundle $E_{P^{n-1}}\left(\rho^{s}, H^{s}\left(T^{1}, \boldsymbol{E} \mid T^{1}\right)\right.$) over P^{n-1} will be denoted simply by $\phi^{s}(E)$.

Now we take a spectral sequence $\left\{E_{k}\right\}$ whose final term E_{∞} is associated to $H^{*}(X, \boldsymbol{E})$ and the second term E_{2} is given by $E_{2}^{r, s}=$ $H^{r}\left(P^{n-1}, \phi^{s}(\boldsymbol{E})\right)$, where $\phi^{s}(\boldsymbol{E})$ is the so-called s-dimensional direct image sheaf of \boldsymbol{E} by ϕ. While, in our case, it is known the following result of Bott (cf. [3], Theorem VI).

[^3]Lemma 1. $\phi^{s}(\boldsymbol{E})$ coincides with the sheaf of germs of holomorphic sections of $\phi^{s}(E)$; therefore $\phi^{s}(\boldsymbol{E})$ are zero sheaves for $s \geqq 2$.

In particular, let E be a (homogeneous) line bundle. Then as to the restriction $E \mid T^{1}$ we know the following lemma (cf. [9], Proposition 3.6).

Lemma 2. The 0-dimensional cohomology group $H^{0}\left(T^{1}, \boldsymbol{E} \mid T^{1}\right)$ does not vanish if and only if $E \mid T^{1}$ is the trivial line bundle; therefore $\phi^{\circ}(E)$ is the zero sheaf unless $E \mid T^{1}$ is trivial.

Now, for the computations in the next section, we need to know the cohomology groups $H^{q}\left(P^{n-1}, \Omega^{p}(\hat{F})\right)$, where $\Omega^{p}(\hat{F})$ is the sheaf of germs of holomorphic p-forms with values in the line bundle \hat{F} over P^{n-1}; the dimensions of these cohomology groups have been computed by Bott [3] and by Matsumura [10] independently. That is,

Lemma 3. Let $\hat{F}_{m}(m \in Z)$ be the line bundle over P^{n-1} corresponding to $m \in \operatorname{Hom}\left(C^{*}, C^{*}\right)(c f . \S 4,(1))$, and set $\hat{h}^{p, q}(m)=\operatorname{dim} H^{q}\left(P^{n-1}, \Omega^{p}\left(\hat{F}_{m}\right)\right)$. Then we have,
(i) $\quad \hat{h}^{p, p}(0)=1 \quad(0 \leqq p \leqq n-1)$
(ii) $\quad \hat{h}^{p, 0}(m)=\binom{n+m-p-1}{n-p-1}\binom{m-1}{p} \quad(m>p)$
(iii) $\quad \hat{h}^{p, n-1}(m)=\binom{-m+p}{p}\binom{-m-1}{n-p-1} \quad(p-n+1>m)$
(iv) $\hat{h}^{p, q}(m)=0$ for other cases.

§ 6. The proof of the main theorem.

For the proof of our Theorem 4, we need the following extension of vector bundles over P^{n-1} :

$$
\begin{equation*}
0 \rightarrow I \rightarrow Q(X) \rightarrow \hat{\Theta} \rightarrow 0 \tag{1}
\end{equation*}
$$

which are the homogeneous vector bundles over P^{n-1} induced by the exact sequence (1) in $\S 2$ of $G L(1, n-1 ; C)$-modules. For instance $Q(X)=E_{P^{n-1}}(A d, \mathfrak{g} / \mathfrak{t})$; and we note that $\Theta=\phi^{*} Q(X)$. By Ω and $\hat{\Omega}$ are meant the analytic sheaves of germs of holomorphic sections of Θ^{*} and $\hat{\Theta}^{*}$ respectively ($*$ means the dual vector bundle). Moreover we denote by Ξ the sheaf of germs of holomorphic sections of $Q(X)^{*}$. From (1) we have the exact sequence of analytic sheaves on P^{n-1} :

$$
0 \rightarrow \hat{\Omega} \rightarrow \text { 日 } \rightarrow \boldsymbol{C} \rightarrow 0 .
$$

From this we can construct the following exact sequences :

$$
\begin{equation*}
0 \rightarrow \widehat{\Omega}^{p} \rightarrow \Xi^{p} \rightarrow \hat{\Omega}^{p-1} \rightarrow 0 \quad(1 \leqq p \leqq n), \tag{2}
\end{equation*}
$$

where Ξ^{p} is the sheaf of germs of holomorphic sections of the vector bundle $Q(X)^{* p}$ which is the p-exterior product of $Q(X)^{*}$ (see, for detail, [5], Satz 4.1.3*) and $\hat{\Omega}^{p}$ denotes the sheaf of germs of holomorphic p-forms on P^{n-1}.

Now we consider the spectral sequence $\left\{E_{k}\right\}$ associated to the Hopf fibering and the sheaf $\Omega^{p}\left(F_{\lambda}\right)$ over X. Then, the sheaf $\phi^{s}\left(\Omega^{p}\left(F_{\lambda}\right)\right)=0$ except for $s=0,1$ by Lemma 1 and $\phi^{s}\left(\Omega^{p}\left(F_{\lambda}\right)\right)=\phi^{s}\left(\boldsymbol{F}_{\lambda}\right) \otimes \Xi^{p}$, as is known by an easy argument on the induced representation, since $\Theta^{* p}=\phi^{*}\left(\Xi^{p}\right)$. On the other hand, the theorem of Riemann-Roch concerning the elliptic curve T^{1} and the line bundle $F_{\lambda} \mid T^{1}$ ($=$ the restriction of F_{λ} on T^{1}) implies that

$$
\operatorname{dim} \phi^{0}\left(F_{\lambda}\right)-\operatorname{dim} \phi^{1}\left(F_{\lambda}\right)=0,
$$

because $F_{\lambda} \mid T^{1}$ has a holomorphic connection by a theorem of Matsushima [9] and so has the vanishing Chern class (cf. Atiyah [1]). Moreover, by Lemma $2, \operatorname{dim} \phi^{0}\left(F_{\lambda}\right)>0$ if and only if $F_{\lambda} \mid T^{1}$ is trivial. The latter condition means that F_{λ} is induced from a line bundle \hat{F}_{m} over P^{n-1} by ϕ; therefore in this case $\lambda=d^{m}$ (cf. (1) in §4). Hence, if $\lambda \notin \Delta_{d}$ then $\phi^{s}\left(\Omega^{p}\left(F_{\lambda}\right)\right)=0$ for all s (and p), which implies $E_{2}=E_{\infty}=H^{*}\left(X, \Omega^{p}\left(F_{\lambda}\right)\right)=\{0\}$.

We assume hereafter that $\lambda=d^{m} \in \Delta_{d}$, and that $F_{\lambda}=\phi^{*} \hat{F}_{m}$. Then $F_{\lambda} \mid T^{1}$ is trivial and $\phi^{s}\left(\Theta^{* p} \otimes F_{\lambda}\right) \cong Q(X)^{* p} \otimes \hat{F}_{m}$ for $s=0,1$ by an easy argument on the induced representations; hence we have $E_{2}^{r, s}=H^{r}\left(P^{n-1}\right.$, $\left.\Xi^{p} \otimes \hat{\boldsymbol{F}}_{m}\right)(s=0,1)$ and $E_{2}^{r, s}=\{0\}(s \geqq 2)$, which implies that

$$
\begin{equation*}
E_{2}^{\alpha}=E_{2}^{q, 0}+E_{2}^{q-1,1}=H^{q}\left(P^{n-1}, \Xi^{p} \otimes \hat{\boldsymbol{F}}_{m}\right)+H^{q-1}\left(P^{n-1}, \Xi^{p} \otimes \hat{\boldsymbol{F}}_{m}\right) \tag{3}
\end{equation*}
$$

for $0 \leqq q \leqq n$. Now we shall devide the subsequent discussions into three cases.
(A) The case $m \neq 0, p>0$.

The sequence (2) implies the following sheaf exact sequences:

$$
\begin{equation*}
0 \rightarrow \hat{\Omega}^{p}\left(\hat{F}_{m}\right) \rightarrow \boldsymbol{\Xi}^{p} \otimes \hat{\boldsymbol{F}}_{m} \rightarrow \hat{\Omega}^{p-1}\left(\hat{F}_{m}\right) \rightarrow 0 \quad(1 \leqq p \leqq n) . \tag{4}
\end{equation*}
$$

The corresponding cohomology exact sequence is

$$
\begin{aligned}
& \rightarrow H^{q-1}\left(P^{n-1}, \hat{\Omega}^{p}\left(\hat{F}_{m}\right)\right) \rightarrow H^{q-1}\left(P^{n-1}, \Xi^{p} \otimes \hat{\boldsymbol{F}}_{m}\right) \rightarrow H^{q-1}\left(P^{n-1} \hat{\Omega}^{p-1}\left(\hat{F}_{m}\right)\right) \\
& \rightarrow H^{q}\left(P^{n-1}, \hat{\Omega}^{p}\left(\hat{F}_{m}\right)\right) \rightarrow H^{q}\left(P^{n-1}, \Xi^{p} \otimes \hat{\boldsymbol{F}}_{m}\right) \rightarrow H^{q}\left(P^{n-1}, \hat{\Omega}^{p-1}\left(\hat{F}_{m}\right)\right) \rightarrow
\end{aligned}
$$

Therefore, if $1 \leqq q \leqq n-2$, then $H^{q}\left(P^{n-1}, \hat{\Omega}^{p}\left(\hat{F}_{m}\right)\right)=\{0\}$ for any p by Lemma 3, so that $E_{2}^{q, 0}=\{0\}$, and $E_{2}^{q-1,1}=\{0\}$ also for the case $q>1$. Let $n>2$. If $q=0, E_{2}^{0}=E_{\infty}^{0}$ and $E_{2}^{0}=E_{2}^{0,1}=H^{0}\left(P^{n-1}, \Xi^{p} \otimes \hat{\boldsymbol{F}}_{m}\right)$ is given by

$$
0 \rightarrow H^{0}\left(P^{n-1}, \hat{\Omega}^{p}\left(\hat{F}_{m}\right)\right) \rightarrow E_{2}^{0} \rightarrow H^{0}\left(P^{n-1}, \hat{\Omega}^{p-1}\left(\hat{F}_{m}\right)\right) \rightarrow 0 ;
$$

hence $\operatorname{dim} E_{2}^{0}=\hat{h}^{p, 0}(m)+\hat{h}^{p-1,0}(m)$. If $q=n-1, E_{2}^{n-2,1}=E_{2}^{n-2,0}=\{0\}$ and $E_{2}^{n-1,0}=E_{2}^{n-1}$ is given by

$$
0 \rightarrow H^{n-1}\left(P^{n-1}, \hat{\Omega}^{p}\left(\hat{F}_{m}\right)\right) \rightarrow E_{2}^{n-1} \rightarrow H^{n-1}\left(P^{n-1}, \hat{\Omega}^{p-1}\left(\hat{F}_{m}\right)\right) \rightarrow 0 ;
$$

hence $\operatorname{dim} E_{2}^{n-1}=\hat{h}^{p, n-1}(m)+\hat{h}^{p-1, n-1}(m)$. If $q=n, E_{2}^{n, 0}=H^{n}\left(P^{n-1}\right.$, 目 $\left.p \otimes \hat{\boldsymbol{F}}_{m}\right)$ $=\{0\}$ and $E_{2}^{n-1,1}=E_{2}^{n-1,0}$. Thus the spectral sequence is trivial and we obtain
(i) $h^{p, q}(\lambda)=0$ for $2 \leqq q \leqq n-2$
(ii) $h^{p, 0}(\lambda)=h^{p, 1}(\lambda)=\hat{h}^{p, 0}(m)+\hat{h}^{p-1,0}(m)$
(iii) $h^{p, n}(\lambda)=h^{p, n}(\lambda)=\hat{h}^{p, n-1}(m)+\hat{h}^{p-1, n-1}(m)$.

In case $n=2$, from (3), (4) and Lemma 3 , we can deduce readily the following results:
(i) $\quad h^{p, 0}(\lambda)=\left\{\begin{array}{l}\hat{h}^{p, 0}(m)+\hat{h}^{p-1.0}(m), \quad \text { if } m \geqq p-1 \\ \hat{h}^{p, 0}(m), \quad \text { if } m \leqq p-1 .\end{array}\right.$
(ii) $\quad h^{p, 2}(\lambda)=\left\{\begin{array}{l}\hat{h}^{p-1,1}(m), \quad \text { if } m \geqq p-1 \\ \hat{h}^{p, 1}(m)+\hat{h}^{p-1,1}(m), \quad \text { if } \quad m \leqq p-1 .\end{array}\right.$
(iii) $h^{p, 1}(\lambda)=h^{p, 0}(\lambda)+h^{p, 2}(\lambda)$.
(B) The case $p=0$.

By Lemma 3 and (3), we have $E_{2}^{q}=\{0\}$ for $2 \leqq q \leqq n-2$. Furthermore, if $n>2$, we have $E_{2}^{0}=E_{2}^{1}=H^{0}\left(P^{n-1}, \hat{\boldsymbol{F}}_{m}\right), E_{2}^{n-1}=E_{2}^{n}=H^{n-1}\left(P^{n-1}, \hat{\boldsymbol{F}}_{m}\right)$, and if $n=2$, we have $E_{2}^{0}=H^{0}\left(P^{1}, \hat{\boldsymbol{F}}_{m}\right), E_{2}^{1}=H^{0}\left(P^{1}, \hat{\boldsymbol{F}}_{m}\right)+H^{1}\left(P^{1}, \hat{\boldsymbol{F}}_{m}\right)$ and $E_{2}^{2}=H^{1}\left(P^{1}, \hat{\boldsymbol{F}}_{m}\right)$. Moreover the spectral sequence is trivial, and we obtain :
(i) $h^{0, q}(\lambda)=0, \quad$ for $2 \leqq q \leqq n-2$
(ii) $\quad(n>2)\left\{\begin{array}{l}h^{0,0}(\lambda)=h^{0,1}(\lambda)=\hat{h}^{0,0}(m) \\ h^{0, n_{-1}}(\lambda)=h^{0, n}(\lambda)=\hat{h}^{0, n_{-1}}(m)\end{array}\right.$
(iii) $\quad(n=2)\left\{\begin{array}{l}h^{0,0}(\lambda)=\hat{h}^{0,0}(m), \\ h^{0,1}(\lambda)=\hat{h}^{0,0}(m)+\hat{h}^{0,1}(m) \\ h^{0,2}(\lambda)=\hat{h}^{0,1}(m) .\end{array}\right.$
(C) The case $m=0, p>0$.

From (2) and (3) we have
$\rightarrow H^{q-1}\left(P^{n-1}, \hat{\Omega}^{p}\right) \rightarrow E_{2}^{q-1,0}=E_{2}^{q-1,1} \rightarrow H^{q-1}\left(P^{n-1}, \hat{\Omega}^{p-1}\right)$
$\rightarrow H^{q}\left(P^{n-1}, \hat{\Omega}^{p}\right) \rightarrow E_{2}^{q, 0}=E_{2}^{q, 1} \rightarrow H^{q}\left(P^{n-1}, \hat{\Omega}^{p-1}\right)$

If $p=n$, then $H^{q}\left(P^{n-1}, \hat{\Omega}^{n}\right)=\{0\}$ and so $E_{2}^{q}=E_{2}^{\alpha}{ }^{0}+E_{2}^{q-1,1}=H^{q}\left(P^{n-1}, \hat{\Omega}^{n-1}\right)$ $+H^{q-1}\left(P^{n-1}, \hat{\Omega}^{n-1}\right)$; hence by Lemma 3 we have

$$
h^{n, q}(1)= \begin{cases}0, & \text { if } \quad q \leqq n-2 \\ 1, & \text { if } \quad q=n-1, n\end{cases}
$$

We assume hereafter that $1 \leqq p \leqq n-1$. If $q \neq p \pm 1, p$, then we have $E_{2}^{q, 0}=\{0\}, E_{2}^{q-1,1}=\{0\}$; hence $h^{p, q}(1)=0$. If $q=p-1$, then $E_{2}^{p-2,1}=\{0\}$, $E_{2}^{n-1,0}=E_{\infty}^{p-1}$. If $q=p+1$, then $E_{2}^{p+1,0}=\{0\}, E_{2}^{p, 1}=E_{\infty}^{p+1}$. If $q=p$, then we have

$$
\begin{equation*}
0 \rightarrow E_{2}^{p-1,0} \rightarrow H^{p-1}\left(P^{n-1}, \hat{\Omega}^{p-1}\right) \xrightarrow{\delta^{*}} H^{p}\left(P^{n-1}, \hat{\Omega}^{p}\right) \rightarrow E_{2}^{p, 0} \rightarrow 0 . \tag{5}
\end{equation*}
$$

We remark here that $\operatorname{dim} H^{p-1}\left(P^{n-1}, \hat{\Omega}^{p-1}\right)=\operatorname{dim} H^{p}\left(P^{n-1}, \hat{\Omega}^{p}\right)=1$ and that $E_{2}^{p-1,0}=E_{2}^{p, 0}=\{0\}$ if and only if δ^{*} is not the zero homomorphism (i.e. bijective). While by the following Lemma 4, we have in reality $E_{2}^{p-1,0}=$ $E_{2}^{p-1,1}=E_{2}^{p, 0}=E_{2}^{p, 1}=\{0\}$ for $1 \leqq p \leqq n-2$; hence we have then $h^{p, q}(1)=0$ also for $q=p \pm 1, p$. It remains only the case $p=n-1$; in this case we have $h^{n-1, q}(1)=h^{1, n-q}(1)=0$ by Serre's duality for $n>2$ (The case $n=2$ is contained in the proof of Lemma 4).

Lemma 4. In the above exact sequence (5), if $1 \leqq p \leqq n-2, \delta^{*}$ is bijective; hence $E_{2}^{n-1,0}=E_{2}^{n, 0}=\{0\}$.

Proof. First we shall consider the case $p=1$ (in (2) we set $\hat{\Omega}^{0}=\boldsymbol{C}$). In this case, $\delta^{*}: H^{0}\left(P^{n-1}, \boldsymbol{C}\right) \rightarrow H^{1}\left(P^{n-1}, \widehat{\Omega}\right)$ is not the zero homomorphism; in fact, if otherwise, the extension: $0 \rightarrow \hat{\Omega} \rightarrow \boldsymbol{\Xi} \rightarrow \boldsymbol{C} \rightarrow 0$ is splittable by a lemma of Atiyah (Proc. London Math. Soc., 7 (1957), p. 429, Lemma 13), and then, by the same argument as in our previous paper [7] (cf. the foot-note 7)), the Hopf fibering must be trivial ; however $S^{1} \times S^{2 n-1}$ and $T^{1} \times P^{n-1}$ are clearly not homeomorphic. This proves the lemma in our case.

In general case we prove the lemma by induction on n. In case $n=2$, it must be $p=1$; therefore the lemma has been proved by the above discussions. We assume $n>2$ and consider the exact sequence (2) over the base space P^{n-2}, which will be written as:

$$
\begin{equation*}
0 \rightarrow \hat{\Omega}_{*}^{p} \rightarrow \Xi_{*}^{p} \rightarrow \hat{\Omega}_{*}^{p-1} \rightarrow 0 \text { over } P^{n-2} \tag{*}
\end{equation*}
$$

On the other hand, the imbedding of $G L(n-1, C)$ into $G L(n, C)$, defined by $g \rightarrow\left(\begin{array}{ll}g & 0 \\ 0 & 1\end{array}\right)$ for $g \in G L(n-1, C)$, induces an imbedding of P^{n-2} into P^{n-1} as a hyperplane, which we shall fix once for all. The sheaves in (2_{*}) are naturally extendable to the sheaves over P^{n-1} by assuming that the fibres on the complement of P^{n-1} vanish, and they shall be denoted with the
same letters as in $\left(2_{*}\right)$. Now we shall show that there are natural sheaf homomorphisms $\alpha_{p}: \Xi^{p} \rightarrow \Xi_{*}^{p}$ and $\beta_{p}: \hat{\Omega}^{p} \rightarrow \widehat{\Omega}_{*}^{p}$ which yield the following commutative diagram :

For this sake, we identity the exact sequence of \hat{U}-modules (1) in $\S 2$ with the one:

$$
0 \rightarrow C^{1} \rightarrow C^{n} \rightarrow C^{n-1} \rightarrow 0
$$

where \hat{U} acts on each module as the identity representation on C^{1}, as $\frac{1}{b} \hat{u}=\left(\begin{array}{ll}1 & \frac{1}{b} * \\ 0 & \frac{1}{b} B\end{array}\right)$ on C^{n} and as $\frac{1}{b} B$ on C^{n-1} respectively, for every element $\hat{u}=\left(\begin{array}{ll}b & * \\ 0 & B\end{array}\right) \in \hat{U}$. Then the restrictions of $\hat{\Theta}^{* \phi}$ and $Q(X)^{* \phi}$ on P^{n-2} are given by $G L(n-1, C) \times{\hat{U_{*}}}^{(}\left(C^{n-1}\right)^{* p}{ }^{5)}$ and $G L(n-1, C) \times{\hat{U_{*}}}_{*}\left(C^{n}\right)^{* p}$ respectively where $\hat{U}_{*}=G L(1, n-2 ; C)$ acts on $\left(C^{n}\right)^{* p}$ and $\left(C^{n-1}\right)^{* p}$ as defined above. Then we have the commutative diagram of modules:
where $\tilde{\alpha}_{p}$ and $\tilde{\beta}_{p}$ denote the restriction mappings of alternating p-forms. This diagram, considered as the one of \hat{U}_{*}-modules, is commutative as is easily seen. Therefore it induces the commutative diagram of homogeneous vector bundles over P^{n-2}; this implies that there are corresponding sheaf homomorphisms α_{p}, β_{p} and β_{p-1} as in (6). Thus we have the following commutative diagram :

$$
\begin{gathered}
H^{p-1}\left(P^{n-1}, \hat{\Omega}^{p-1}\right) \xrightarrow{\delta^{*}} H^{p}\left(P^{n-1}, \hat{\Omega}^{p}\right) \\
\downarrow \beta_{p-1} \quad \downarrow \beta_{p} \\
H^{p-1}\left(P^{n-2}, \hat{\Omega}_{*}^{p-1}\right) \xrightarrow{\delta^{*}} H^{p}\left(P^{n-2}, \hat{\Omega}_{*}^{p}\right)
\end{gathered}
$$

where the mappings β_{p-1} and β_{p} are bijective for $1 \leqq p \leqq n-2$ since they coincide with the restriction mappings of harmonic forms via the

[^4]Dolbealt isomorphisms. While, δ^{*} in the under column is bijective by induction assumption, so our δ^{*} must be bijective.

Remark 1. Theorem 4 tells us that both Riemann-Roch's theorem with respect to any line bundle and Hodge's index theorem are valid for Hopf manifolds (cf. [8]). In fact, for any line bundle F_{λ} over a Hopf manifold X, we can readily check that

$$
\chi\left(X, \boldsymbol{F}_{\lambda}\right)=\sum_{q=0}^{n}(-1)^{q} \operatorname{dim} H^{q}\left(X, \boldsymbol{F}_{\lambda}\right)=\sum_{q=0}^{n}(-1)^{q} h^{0, q}(\lambda)=0 ;
$$

while the Todd genus $T\left(X, \boldsymbol{F}_{\lambda}\right)=0$ since $H^{2}(X, Z)=\{0\}$. Furthermore, the index $\tau(X)$ of X is clearly 0 , since X is homeomorphic to $S^{1} \times S^{2 n-1}$; while we see immediately, from (C) in Theorem 4, that

$$
\sum_{p, q}(-1)^{q} h^{p, q}(1)=0 .
$$

Remark 2. Theorem 1 and Theorem 2 can be readily derived from Theorem 4. In fact, by Serre's duality theorem, we have $H^{q}(X, \Theta) \cong$ $H^{n-q}\left(X, \Omega^{1}(K)\right)$ where K denotes the canonical line bundle of X. While, from the exact sequence (2) in $\S 2$, we get immediately $K=\phi^{*} \hat{K}$, where \hat{K} is the canonical bundle of P^{n-1} and coincides with \hat{F}_{-n}. Therefore, Theorem $4,(A)$ yields that $\operatorname{dim} H^{0}(X, \Theta)=\operatorname{dim} H^{1}(X, \Theta)=n^{2}, H^{q}(X, \Theta)=\{0\}$ for $q \geqq 2$.

Remark 3. The proof of Theorem 4 suggests us the possibilities of computing the cohomology groups $H^{p}\left(X, \Omega^{p}(F)\right)$ for other class of C-manifolds with the fundamental fibering $X\left(X, T^{1}, \phi\right)$ (cf. [7]) provided that the cohomology groups $H^{q}(\hat{X}, \Omega(\hat{F}))$ are known. For instance, Calabi-Eckmann's example (cf. [4], [7]) or $S U(3)$ with a left invariant complex structure is such a manifold. However, for them $\ddot{X}=P^{p} \times P^{q}$ or $\hat{X}=F(3)$ (=the 3 -dimensional flag manifold) respectively and the corresponding cohomology groups $H^{q}\left(\hat{X}, \Omega^{p}(\hat{F})\right)$ are rather complicated; consequently the computations of $H^{q}\left(X, \Omega^{p}(F)\right)$ might be more difficult than for Hopf manifolds.

But we shall exhibit here the number $h^{p, q}=h^{p, q}(1)$ for $S U(3)$, since Bott's computations in [3] for then are incorrect.

$$
\begin{aligned}
& h^{0.0}=h^{0.1}=h^{1.1}=h^{1.2}=1, \\
& h^{4.4}=h^{4.3}=h^{3.3}=h^{3.2}=1, \\
& h^{p, 9}=0 \quad \text { otherwise } .
\end{aligned}
$$

References

[1] M. F. Atiyah: Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181-207.
[2] A. Blanchard: Sur les variétés analytiques complexes, Ann. Ecol. Norm. Sup. 73 (1956), 157-202.
[3] R. Bott: Homogeneous vector bundles, Ann. of Math. 66 (1957), 203-248.
[4] E. Calabi and B. Eckmann: A class of compact complex manifolds which are not algebraic, Ann. of Math. 98 (1953), 494-500.
[5] F. Hirzebruch: Neue topologische Methoden in der algebraischen Geometrie, Erg. de Math. 9, 1956.
[6] H. Hopf: Zur Topologie der komplexen Mannigfaltigkeiten, in Studies and Essays presented to R. Courant, New York, 1948.
[7] M. Ise: Some properties of complex analytic vector bundles over compact complex homogeneous spaces, Osaka Math. J. 12 (1960), 217-252.
[8] K. Kodaira and D. C. Spencer: On deformations of complex analytic structures, I-II, Ann. of Math. 67 (1958), 328-466.
[9] Y. Matsushima: Fibrés holomorphes sur un tore complexe, Nagoya Math. J. 14 (1958), 1-24.
[10] H. Matsumura: Geometric structure of the cohomology rings in abstract algebraic geometry, Mem. Coll. Sci. Univ. Kyoto, Ser. A Math. 32 (1959), 33-84.

[^0]: 1) The 1 -dimensional Hopf manifold in this definition is nothing but an elliptic curve T^{1}. We shall exclude this trivial case in the sequel ; therefore assume $n \geqq 2$.
[^1]: 2) Hereafter, for a given complex Lie group B, we denote by \boldsymbol{B} the sheaf (of group) of holomorphic mappings of a certain complex manifold X into B. Similary, for a given complex analytic vector bundle E over X, we denote by \boldsymbol{E} the sheaf of germs of holomorphic sections of E.
[^2]: 3) For any given two integers r and $s,\binom{r}{s}$ means the usual combination if $r, s>0$ and, otherwise we shall understand it as follow ; $\binom{r}{s}=0$ if r or s is negative and $\binom{r}{s}=1$ if $r, s \geqq 0$, $r s=0$.
[^3]: 4) This representation ρ^{s} is called, according to Bott, the s-dimensional induced representation of ρ.
[^4]: 5) $\left(C^{n-1}\right)^{* p}$ denotes the vector space of all alternating p-forms on C^{n-1}.
