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Decompositions of a Completely Simple Semigroup

By Takayuki TAMURA

§1. Introduction.

In this paper we shall study the method of finding all the decom-
positions of a completely simple semigroup and shall apply the result
to the two special cases: an indecomposable completely simple semigroup
[2] and a $-semigroup [4]. By a decomposition of a semigroup S we
mean a classification of the elements of S due to a congruence relation
in S. Let S be a completely simple semigroup throughout this paper.
According to Rees [1], it is faithfully represented as a regular matrix
semigroup whose ground group is G and whose defining matrix semi-
group is P=(pu), # €L, M€ M, that is, either S={(x; Mp)|x€G, peL,
MeM} or S with a two-sided zero 0, where the multiplication is defined
as

(3 ) (35 ) = [P0 DD
\ if p.t =0 and hence S has 0.

For the sake of simplicity S is denoted as
Simp. (G, 0; P) or Simp.(G; P)

according as S has 0 or not. L and M may be considered as a right-
singular semigroup and a left-singular semigroup respectively [5].

§2. Normal Form of Defining Matrix.

We define two equivalence relations 4 and 4 in M and L respec-

tively : we mean by Ao that p,,==0 if and only if p,,=0 for all € L;
by w47 that p.=0 if and only if p.=40 for all £ M. Let L=3Li,
i

and M=>3) Mn be the classifications of the elements of L and M due to
m

0

the relations 4+ and 4 respectively.

Lemma 1. A defining matrix is equivalent to one which satisfies the
following two conditions. Let e be a unit of G.

(1) For any m, there is a(m)€ L such that pyu.:=e for all £ € Mn.

(2) For any 1, there is B(\)€ M such that p.,eqy=e for all n€ Ly.
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Proof. First, for any m, we can easily choose a(m)€ L such that
(3) p,,(m),g=%=0 for all EEMm,
(4) If a(m)+4a(m,), then a(m,)=a(m,).

Next, for a mapping m—a(m), B({)e M is determined such that
the following conditions are satisfied :

®B) p,em=0 for all € L;

(6) if there is m such that a(m)e€ Ly, then we let B8(I) € Mm, and
a(m,) € Ly for one m, among m.

Consider the matrices

Q= (4)\1)\2) A, M €M

and R = (ruu,) Moy iy € L
where
dan, = { Dt ¢ i.f AM=N=E€EMn
0 if A==,
le if w, = p, = a(m) for some m

Yy = | Dutur o Brlsn if a(m)==mw, = p, =5 for all m, and we
| let € Ly and B(1) € Mw

0 if =
Then, setting R(PQ)=(¢.,), we have

; {Pmﬁ;"%mm if w=a(m”) for some m”, and A€ Mu
- Ducwry, 8D Dare@ DurDatmy,n  if p==a(m”) for all m”, we let N € Mn,
/‘be L[, B(I)e Mm’,

and it is easily shown that RPQ satisfies (1) and (2). The conditions
(4) and (6) are available for the proof of (2) in the case that s=a(m)e L
for some m. Thus the proof of the Lemma is completed.

The form, RPQ, which satisfies (1) and (2), is called a normal form
of P.

§3. Decompositions.

Hereafter we shall assume that S has a matrix of normal form as
the defining matrix. Let ~ denote a congruence relation in S. ~ is
said to be trivial if either x~y for all x, y or x~y for only x=y.

Lemma 2. Let ~ be a non-trivial congruence velation. (x; Ay)~
: o) implies ANio, pw~T and hence there are & and B such that
(J’ ’ ) D o M7
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Dur="Dac=20, Dus=Dprp=e Where ¢ is a unit of G.

Proof. Suppose p,,=+0 as well as p, =0 for some 7,, and take any
element («; £5), then, for certain ppg =0,

(u; &) = (wxpai; Eno) (x5 M) (Dag, 5 Eom)
~ (ux"pak; Eno) (35 o) (Bady; Em) = 0.
This shows that the relation ~ is a trivial congruence relation, con-
tradicting the assumption. The remaining part is similarly proved. The
existence of « and B is clear by a normal form of the defining matrix,
q.e. d.

Now we derive the relations =~ in G, 5 in M, and 5 in L from

the congruence relation ~ in S as defined in the following way.

x =~y if there are A,c €M, u, 7€ L such that (x; Au)~(y; o7),
Ao if there are x,y€G, u, 7€ L such that (x; Au)~(y; o7) ,
w1 T if there are x,y€G, A, o€ M such that (x; Ap)~(y; o7).

Lemma 3. The relations ~, 5 and ~ are all congruence relations.

Proof. Reflexivity and symmetry are evident. Let us prove transi-
tivity. By x~py and y~z there are A, u, o, 7, o/, 7/, ¥ and » such that
#x, M)~ (y; a7), (¥; 'T)~(2; wv).

According to Lemma 2,
Dar = Dus = €, Dus = p.s = e for certain @ and B,
so that we get
(¢; o’@) (x5 M) (e; Br')~(e; o’a)(y; o) (e; BT)

and hence (x; )~ (2; wv).
Thus we have proved r=z.

Transitivity of < is proved from (x; Au)~(y; o7), (¥ ;07 )~
(z;0v) and (x; Aw) (37 BT )~(y;07) (¥ ; Br) where pus=pp=-c.

We get transitivity of + analogously.
Next, x~y implies xz~yz and zx=~zy because

(x; M) (25 Bw)~(y; o7)(2; Bp)
(z; M) (x5 Mp)~(2; M) (y; o)

under the assumption (x ; M)~ (y; o) where pus=p.s=pPor=pus=€. The
proof for 4 and ~- is clear.
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Lemma 4. If Ao and p,,==0, then pp=~p,.=+=0 for all n. If pT
and pu0, then pu~p.e=+0 for all &.

Proof. By Lemma 2, it is evident that p,,==0, p.+==0. Find 8 such
that pus=p.s=e. Multiplying each of (x;Au) and (y; o7) by (x7*; Bu)
from right, we get

1

(e; Mp)~(yx~'; ou) whence e~yx™'.

1

Moreover, from (e¢; Ap)(e; Au)~ (e ;) 5)(yx™"; o)

we have DA = Duo X' = Py

completing the proof. Similarly pu.t~p,¢ is proved, q.e.d.
Conversely, consider congruence relations <, %, =~ in M, L, G
respectively such that

A5ro implies Aro,
w57 implies p~T,
~ makes Lemma 4 hold.
For these congruence relations, a relation ~ in S is defined as
(x; Mp)~(y; or) if x~y, N30, and p3 7.
Then it is easily shown that the relation is a congruence relation.

Theorem 1. We obtain, as follows, every congruence relation in a
completely simple semigroup S with a ground group G and with a defining
matrix P=(pu), MeM, p€ L. First, for a pair of the congruence relations
~ and - taken arbitrarvily, independently each other, there is at least one
congruence. velation ~ in G which satisfies

Ao implies pop=~p,. for all n,
w3 T implies  pu=~p.e for all £.

By a triplet of the three congruence relations %, -, =, a congruence
velation ~ in S is determined as

(x; M)~ (y; or) means that x=~y, N3o, and p~57.

§4. Examples.

We shall arrange a few examples which follow from Theorem 1.
First, we can easily determine the structure of an indecomposable
completely simple semigroup, which was obtained in [2].
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Example 1. A completely simple semigroup S is indecomposable if
and only if the following three conditions are satisfied.

(7) The ground group is G= {e} .

(8) A% o if and only if AM=o.

(9) p+7 if and only if pw=r.

Example 2. Consider a finite simple semigroup S with a ground
group G and with the defining matrix <2> or (ee).

Let x— f(x) be a homomorphism of G to certain group G’ : G'=£(G),
¢’=f(e). Then any homomorphism of S is given as either (10) or (11).

(10) (x5 M) = (f(x): Ma)

where the homomorphic image S’ of S is also a completely simple semi-

group in which G’ is the ground group and P’=(f(pu)) is the defining
matrix.

11) (x; Aw)— f(x) where S'=G".

Example 3. A finite simple semigroup S with a ground group G

and with the defining matrix <2 2) where a=0. Any homomorphic
image of S is given as one of

(x; Ag) — (f(x); Mz) where S = Simp. ( A6 (i ;'(a)»,

(x; Ap) = (f(x); A1) where S'=Simp. (£(G); (¢’ €)) and f(e)=f(a)=¢,

(X3 Ma) = (F(x); 1) where S'=Simp. ( F(G); (g)) and £(¢)=f(a)=¢'.
(x; Ap) = f(x) where S'=£(G).

§5. $£-Semigroups.

In this paragraph S denotes a finite simple semigroup. If a decom-
position of S classifies the elements into some classes composed of equal
number of elements, then the decomposition is called homogeneous. We
term by 9-semigroup a finite semigroup S with ©-property, i.e., the
property that every decomposition of S is homogeneous [4]. It goes
without saying that any semigroup of order 2 and any indecomposable
finite semigroup are $-semigroups. We assume that the order of S is

>2.

Lemma 5. A D-semigroup is simple.
Proof. If a $-semigroup S is not simple, a proper ideal I exists so
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that the difference semigroup (S:7) of S modulo 7/ would result in a
non-homogeneous decomposition of S, q.e.d.

Lemma 6. If a ©-semigroup S has zero 0, then S is indecomposable.

Proof. Let ~ be a congruence relation in S. From Lemma 5
follows that there is nothing but the trivial decompositions, i.e., either
O~zx for all x€S or O~x for only x=0. In the latter case, by homo-
geneity, x==y implies x<y for every x, y, q.e.d.

Corollary 1. If a D-semigroup S has a non-trivial decomposition,
then S is a simple semigroup without zero.

Accordingly a ©-semigroup S may be considered as a semigroup
S=Simp. (G; (p;;)) where let G be a group of order g, let P=(p;;) be
a matrix of (/, m) type ie. i=1, -, m; j=1, .-+, [

Lemma 7. If S is a ©-semigroup which has no zero, then m=2,
/1< 2.

Proof. Suppose, for example, m =3. Consider a congruence relation
~ in S as follows.

(x; kj)~(y; kj’) for any k_>2, any j, and any j,
(x; ki) (y; kj) for any k>>2, B~ >2, k==F' any j, and any j’,
(x5 1j)~(y; 2j) for any j, and any j’,
where x and y run independently throughout G.
Then we have a non-homogeneous decomposition
S =S8VS, VS,V ...
where S={x;i)lx€G, i=12;1<;<1},
Sp={(x; k)lxeG, 1=}, k=34,
and the order of S is 2g/, that of S,is g/. This contradicts the assump-

tion of . Hence m<2. Similarly /< 2 is proved.
Therefore a -semigroup which has no zero must have a structure

of the following four.

' s (61 ().
Simp. (G; (e e)),
simp. (G5 (£5))
Group.

, On the other hand, Examples 2, 2’ and 3 show that every decom-
position of them is homogeneous, At last we have arrived at
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Theorem 2. A finite semigroup is a O -semigroup of order =2 if
and only if it is one of the following six cases.

(C) a z-semigroup of order 2 or a semilattice of order 2

(C,) a finite group of order =2

(C,) an tndecomposable finite semigroup of order >1

(C) Simp. <G : @)

(C) Simp. (G: (¢ e) where f:‘isoa finite group of order =1,
() Simp. (G; (g 2))

§ 6. Relations between S-property and $-property.

In the paper [3, 4] we defined &-property of a finite semigroup and
proved that an &-semigroup is one of the above cases except (C,).
Immediately we have

Theorem 3. ©&-property implies O-property. Though the converse is
not true, it is true that a O-semigroup which has a proper decomposition
is an S-semigroup.

By the way we give a few theorems.

Theorem 4. A unipotent S-semigroup of order “>2 is a group. A
unipotent O-semigroup of order ~>2 is so also.

Theorem 5. A subsemigroup of an S-semigroup is an S-semigroup.
A subsemigroup of an indecomposable semigroup is not always a O-semi-
group, but O-property, in the other cases, is preserved in a subsemigroup.
&- property and D-property are both preserved in a homomorphic image.

(Received July 8, 1960)
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