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Remarks on the Equations of Evolution in a Banach Space

By Hiroki TANABE

§ 0. Introduction. The contents of this paper consist of a slight
extension of the previous paper [5] and some supplements to it. As in
[5], we consider a certain type of the equations of evolution in a Banach
space X :

(0.1) dx(t)ldt = (A(t) + B(t))x(t)+f(t)

and the associated homogeneous equation

(0.17) dx(t)ldt = (A(t) + B(t))x(t).

Here, A(ΐ) and B(t] satisfy all the assumptions in [5] only replacing
||exp(£A(s))||^l by || exp(£A(s))||^M, where M is a positive constant
which is independent of t or 5 and generally greater than one. A
necessary and sufficient condition that a closed operator generates a semi-
group of bounded operators satisfying such an inequality was given by
R. S. Phillips [3]. In [5], we assumed M=l so that we were assured of
the uniqueness of the solution of (0.1) by Theorem 1 of T. Kato [1].
But, we shall show the uniqueness in this paper without making such
an assumption by examining the property of the fundamental solution
U(t, s) constructed in [5] a little closely. Note that it was unnecessary
to assume M=l in constructing U(t, s) in p5].

In [5], we constructed the fundamental solution U(t, s) first for the
equation with B(t) = Q, and then for the equation with B(t) φO by a
perturbation method. In this paper, we shall construct U(t, s) directly
even when B(t)^pO without using a perturbation method and show the
further differentiability of the solution of (0.1) under the assumption
that A(t\ B(t) and f ( t ) are sufficiently smooth, which was done only
when 500=0 and f(t)=Q in [5]. In §5, we shall give some remarks
on generalized solutions in the sense of Solomiak £4], and finally in § 6,
the case will be considered in which ®(A(t)) changes smoothly with t
in the sense of T. Kato [2].

§ 1. The uniqueness of the solution and some remarks.

Throughout this paper except in § 6, we assume that the operators
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A(t) and B(t) satisfy the hypotheses in [5] with one replacement men-
tioned in § 0. To make sure, we write them down here.

Hypotheses 1.1°. A(t] is defined for a^t^b and is an infinitesimal
generator of a semi-group of bounded operators with the norm not exceed-
ing some positive constant M independent of t.

1.2° 1) The domain ® of A(t) is independent of t, 2) the bounded
operator B(t, s) = \_I— A(tY\{J— A(s)']'1 is uniformly bounded for a^sy

t^b. 3) B(t, s) satisfies Lipschitz condition in t for every 5 in the uni-
form operator topology.

1.3°. B(t, s) is strongly continuously differentiate in t for every 5.
1.4°. For each 5 and t with a<s^b and f>0, (d/dt) exp (tA(s)) is

a bounded operator and there exist positive constants C and tQ such that

(1. 1) \\(d/dt) exp (tA(s))\\ = \\A(s) exp (tA(s))\\ ^ C/t

for any 5 and
2.1°. B(t) is closed and defined for a^t^b and has a domain

(which, may be dependent on t) containing the domain ® of A(t).
2.2°. A bounded operotor B(t)A(s}~1 is continuous in a^t^b for

every 5 in the uniform operator topology.
2.3°. There exist positive constants ClfC2J p<^landλ<Jl such that

(1. 2) \\B(t] exp (τA(s))\\ ^ C^1^ ,

(1.3)

for a^t, t', s^b and
As in [J5], we shall write A(t) instead of A(t) — L Then, there exist

positive constants L and Λf such that for every t, s and r,

(1.4) \\A(t)A(sΓ*\\^L, \\(A(t)-A(r))A(sY*\\^N\t-r\

Throughout this paper, the constant K will be used to denote positive
constants depending only on the constants appearing in the above
Hypotheses and (1.4), and it is not necessarily equal in every occurrence.
And we use KΛ, KBy ••• to denote constants depending also on oίy βy •••
besides the constants mentioned above.

First, we consider the equation with Z?{/) = 0:

(1.5) dx(t)ldt = A ( t ) x ( t ) + f ( t ) .

Let an operator- valued function V(ty s) be such that
i) it is strongly continuous

ii) V(s, s) = I for each 5,
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iii) for x 6 S), V(t, s)x is strongly continuously differentiate in 5
and satisfies

(1. 6) - (d/ds) V(t, s)x = V(t, s)A(s)xy a^s^t^b.

Then for any solution x(t) of the homogeneous equation of (1.5),
we have

0 = ΓJL (V(t, <r)x(σ))dσ = x(t)-V(ty s}x(s),
Js OCΓ

which implies the uniqueness of the solution of (1.5). Hence, in order
to prove the uniqueness for (1.5), we have only to show the existence
of such an operator V(t, s).

Let us write V(ty s) in the form

(1. 7) V(t, s) = exp ((t-s)A(s))+{' Q(t, r) exp ((r-s)A(s))dr .
J s

By formal calculation,

JL V(t,s) = ~exp((t-s)A(s))-Q(t,s)+\t Q(tyτ)^-ex^)((t-s)A(s))dτ

V(t, s)A(s) = exp ((t-s)A(s))A(s)+[* Q(t, r) exp ((r-s)A(s))A(s)dr
Js

= 2- exp ((t-s)A(s)) + Γ Q(ί, T) -̂ exp ((τ-s)A(s))dτ .
at Js oτ

Hence, putting Qtf, s) = (3/3ί + 3/3s) exp ((t — s)A(s)), we obtain

-— V(t, s)+V(t, s)A(s) = Qι(t, s)-Q(t, s)+\* Q(t, T^T, s)dr .
dS J s

So, let us determine Q(t, s) as the solution of

(1. 8) Q(t, s)-^Q(t, TjQ^r, s)dτ = Q,(t, s)

By Lemma 1.4. in [5], we can solve the above integral equation by a
successive approximation method :

(1. 9) Q(t, s) = Σ«=αGm(ί, s)y

where Qm(t, 5) = Qm-1(ί, ̂ Q^ s)dr, m = 2y 3, ... .
Js

It is easy to see that V(t, s) obtained by inserting the above Q(t, s)
in (1.7) really satisfies i), ii) and iii). Hence, the uniqueness in question
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is obtained. Incidentally, V(t, s) = U(t, s) is also proved. But, we can also
prove this fact directly by showing

['$„(/, T) exp ((r-s)A(s))dr = Γexp ((t-r)A(r))Rm(r, s)dr
J S Js

for each m by induction. As to the meaning of Rm(t, s), see [5].
Next, we consider the equation with β(/)φO. The fundamental

solution of (0.10 was constructed by perturbation method in [5] : U(ty s)
= Έlm=0Um(t9 s), where ί/0(ί, s) is the fundamental solution of (1.5) and

(1. 10) Um(t, S) = Γt/oί/, σ W(σ)Um^σy s]dσ = Γ Um-Jf, σ)B(σ}U,(σy s}dσ .
Js Js

Let x be any element in ®. —@/ds)U0(t, s)x= C/0(ί, s)A(s)x was
shown above. For general my

— Um(t, S)X = — I Um^l(tJ σ)B(<r)U0(σ, s)xdσ
3s dsL m

= -Um-tf, S)B(S)X- Um^(t, σ)B(σ)U,(σ, s)A(s)xdσ
J S

= - Um^(t, s}B(s}x~Um(t, s)A(s)x ,

where we used the easily verified fact that (d/ds)B(σ)Un(σ, s)x = B(σ )(d/3$)
U0(σ , s)x. Hence,

-| U(t, s^x = a

c Σ Um(t, s}x
OS OSm^Q

= - U,(t, s)A(s)x- Σ (£/»-ι(ί, s)B(s)x + Um(t, s)A(s)x)
m = \

= - U(t, s)A(s)x-U(t, s)B(s}x .

Consequently, the uniqueness for (0.1) is also proved.

Theorem 1.1. Under Hypotheses 1.1° 2.3°, the solution of (0.1) is
uniquely determined in s^t^b by the initial condition at t = s and the
right member f ( t ) . The fundamental solution U(t, s} whose existence was
shown in [5] satisfies

(1. 11) - f C7(ί, s)x = U(t, s)A(s)x+ U(t, s)B(s)x ,.
OS

for any J t r G ® in a^s<^t^b.
Next, we also assume that (d/3t)B(t, s) is Holder continuous in t :

(1. 12)
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and we will show the boundedness of (d/ds)U(t, s), s<^t, for the equation
(1.5) (B(t)=Q) under this additional assumption. We denote by K'
constants which depend also on H and a besides the constants appearing
in Hypotheses 1.1°-2.3°.

Lemma 1.1. The following inequalities hold :

(1.13)
dt ds

(m-2)! iw " —

Proof. The first one is a direct consequence of

exp ((/-s)A(s)) + (A(t) - A(s)) - + - exp ((t- s)A(s))

and the assumption (1.12) and the uniform boundedness of the second
term on the right member which can be easily shown. Further, taking
into consideration that

for

(1. 15)

tf, ξ}dξ ^ K

R2(t, S) = ί/, σ}-Rl(t, S)) - R,(σy S)dσ

= K log =

> we may write

Noting that log
term is bounded by

for , we see that the norm of the first

S t 1 /— ς fU4sy2 ι τζ f t f—τ
--- log f-^ dσ = K\ j±- dσ + -A- log ̂  dσ < K .

scr — S t~σ Js t — σ t—SJct+s^/2 t — σ

Clearly, the remaining terms of the right member of (1.15) are uniformly
bounded. Hence, we find that (d/ds)R2(t, s) is uniformly bounded. For
general m^>2, we have

Rm(t, S) - Rm^(t9 σ) R2(σ, S)do .
OS Js OS

If (1.13) has been proved for m— 1, we have
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S
t

* (f»-3)! """ ~ z x z x (m-2)! *

Thus, the lemma is proved.

Theorem 1.2. Under the assumption (1.12), (3/3s)U(t, s) is bounded
for

(1.16)

and it satisfies

Kf

't-s

Proof. Let us estimate the derivative of each term of the right
member of

U(t, s) = exp ((t - s)A(s)) + Γ exp ((t-r)A(r))R,(r, s)dr
Js

exp ((t-r)A(τ)) Σ ̂ >, s)rfτ .

Estimating as in the preceding lemma, we can show that the derivative
of the second term is uniformly bounded. That of the last term is seen
to be bounded by K'(t — s) in norm by Lemma 1.1. (1.16) is a direct
consequence of these facts.

The above theorem implies

Theorem 1.3. U(ty 5)* is weakly dίfferentiable in s and satisfies in

-j-U(t,s)* = A(s)
3s

3 TJίf 0^*v\i> o;
II 95

*£7(ί, s)*

<; ^— ί-5

If p + λ^>l we can obtain the same results for the equation (O.I7) in
which J5(ί)φO.

§ 2. The construction of the fundamental solution for (l.l7) by
the second method. In this section, we construct the fundamental
solution U(t, s) for (0.10 by a more direct method without using a per-
turbation theory as in [5~], Those two fundamental solutions are identical
to each other due to the uniqueness theorem proved in the preceding
section. As before, we determine an operator R(t, s) so that

(2. 1) U(t, s) = exp ((t-s)A(s))+ Γ exp ((t-r)A(r))R(r9 s)dr
J s

should be the fundamental solution of (O.Γ). Let us determine R(t, s)
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as the solution of

(2. 2) /?(/, *)- Γ (4(f) + β(f)-4(τ)) exp ((f-
Js

We put Rι(t,s)

Lemma 2.1. /^(J, 5) is strongly continuous in s and t in a^s<^t^b
and satisfies

(2.3) \\Rtf, s)\\^K(t-s)'-\

Proof. By Lemma 1.1 in [5], we have only to show the continuity
of B(t)exp(t — s)A(s))> but it is clear.

The integral equation (2.2) can be solved by a successive approxim-
ation method :

(2. 4) R(t, s) = Σ Rm(t, s),
m=l

where Rm(t, s) = (' R,(t, σtf^σ, s)dσ, m=2, 3, - .
Js

Lemma 2.2. The series (2.4) converges uniformly in a^s<^t^b in
the uniform operator topology in the wider sense, and the sum is strongly
continuous in the same region and satisfies

(2.5)

Proof. The lemma follows immediately from

which is easily seen by induction.

Lemma 2.3. For s<^r<^t, we have

(2.6) \\R(t,s)-R(r,s)\\

t~τ + tf~τ)P i (/~r)λ

- - -

where <#^>0 is an arbitrary constant less than p.

Proof. We begin with the estimation of

Rtf, s)-Rl(τy s) = (A(t)-A(s))exp((t~s)A(s))-(A(r)-A(s))exp((τ-s)A(s))

Λ-B(t) exp ((t-s)A(s))-B(τ) exp ((τ-
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In [5], the norm of the first difference of the right member was
proved to be bounded by K(t — τ}(t — s)~l. By hypotheses,

\\(B(t)-B(r)) exp ((t-s)A(s))\\ ^ C'(t-r^

\\B(r){exv((t-s)A(s))-exv((r-s)A(s))}\\ =

= B(r)\'~* A(s) exp (σA(s))d
Jr-s

< '"* B(r) e x p - exp dσ =

where we used that (r — s)/(t — s)<^l. Thus, we obtain

(2.7) Ill^s}-/?^,*)!!^^

Noting that R(t, s) = Rtf, s) + \ Rtf, σ}R(σy s}dσy we have only to estimate
J s

('Rat, <r)R(σ, S)dσ— ^R£r, σ}R(σ, s)dσ = Γ Rtf, σ)R(σ, s)dσ
s Js Jr

tf, o J-^ί Γ, σ))R(σ, S)dσ ,

in order to complete the proof. As for the first term of the right member,

Γ Rtfy σ)R(σ, S)dσ II < K^(t-σY^σ-sY~ldσ
Jr II Jr

t-σ )p-1dσ < K(t-r}*^-s)1"1 .

As for the second term, using (2.7) we have
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Summing up the above results, we obtain (2.6).
We denote by W(t, s) the second term of the right member of (2.1):

W(t, S) = Γ exp ((t-r)A(r))R(r, s)dτ .
Js

By Lemma 2.3 and the uniform boundedness of (d/dt + d/ds)exp((t—s)
A(s)) which was proved in [5], we obtain as in [5] :

(2. 8) j- U(t, s) = A(s) exp ((t-s)A(s))

+ Γ A(r) exp ((t-r)A(τ))(R(r, s)-R(t, s))dr
Js

~hf (Jί+Jr)exp (^-r)^τ))^> s)dτ

+ exp((t-s)A(s))R(t,s).

The following inequalities are easily obtained using Lemmas 2.2 and
2.3:

(2.9)

A(τ) exp ((t-r)A(r))(R(r, s}-R(t, S))dr

\*(iϊ + §-) 6XP ((t-r)A(r))R(t, S)drJs\dt 3τ/

|| exp ((t-s)A(s))R(t, s)|| ̂  K(t-s)p~l.

Hence, we have

(2.10) \\(d/dt)W(t, s)\\ < Kd-sγ-1,

(2. 11) ||O/3ί)C7(ί, 5)|| ̂  /fα-5)-1.

The similar results hold for A(t)U(ty s) and it is easily verified as in
that U(ty s) constructed above is a fundamental solution of (O.lx).

Theorem 2.1. There exists a unique fundamental solution U(t, s) of
(O.Γ), which satisfies

^ -f- , \\A(t)U(t, 5)|| ̂  4

K , ||5tf)£/(/, 5}|| ̂  TT^ΰ^P

§ 3. Holder continuity of the derivative of the solution.

In this section, we consider about the Holder continuity of the
derivative of a solution of (0.1). For the sake of simplicity, we assume
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that B(t)s=Q throughout this section. Hence, (2.5) and (2.6) reduce to

(3.1) \\R(t,s)\\^Kexp(K(t-s)).

(3. 2) \\R(t, s)-R(r, s)\\ ^κ( + (t-r) log

We begin with the Holder continuity of (d/dt)U(t, s). The result
about the first and last terms of the right member of (2.8) are easily
obtained, i.e.

(3. 3) \\A(s) exp ((t - s)A(s)) - A(s) exp ((r-s)^(s))|| ̂  K
'(t-s)(τ-s)'

(3. 4) 1 1 exp ((t-s)A(s))R(t, s)- exp ((r-s)A(s))R(r, s)\\

As for the second term,

Γ A(σ) exp ((t-σ)A(σ))(R(σ, s)-R(t, s))dσ
Js

- Γ A(σ) exp ((r-a )A(σ))(R(σ, s) - R(r ,s))d<r
J s

= Γ A(σ) exp ((t-σ)A(σ))(R(σ, s)-R(t
y
 s))dσ

J r

- (
T
 A(σ) exp ((t-σ)A(σ))(R(t, s)-R(r, s))dσ

(σ) exp ((t-σ)A(σ))-A(σ) exp ((r-t

(R(σ,s)-R(r,s))dσ.

It is easy to see that

σ, s)-R(t, s))d ^
II {.ΐ o

|Γ A(σ) exp ((t-σ)A(σ))(R(t, s)-R(r, s))dσ

Using logx^xμ/μ for 0<^<O and x^>l, we get

(GΓ) exp ((t — σ)A(σ)) — A(σ) exp ((τ — σ)A(σ))}(R(σ> s) — R(r, s))d<r



Equations of Evolution 155

with an arbitrary constant μ such that
Finally, we estimate the difference of the third term of (2.8) :

y

 s]d

(3. 5) = 4-

J *Q^ 4 j

9 S)dσ

- σ)A(σ))R(t, s)dσ

\3τ 3σy )

r - σ}A(σ))dσ(R(tys] - R(r, s)).

Using the easily verified fact that (3/3r4-3/3σ)exp((r — σ)A(σ)) has a
strongly continuous first derivative in r satisfying

. K
— 4- >t— σ

we see that the norm of the second term of the right member of (3.5)
is bounded by K{ — (t — τ)log(t — r) + (t — τ)log(t — s) + (t — T}}. Estimating
remaining terms in (3.5) in a obvious way, we find that the norm of
the left member of (3.5) is bounded by K(t-r){l+log(t-s)(t-r)-1}.
Summing up, we obtain

(3.6) -
at

W(t, s)-

for 5 < T

, S) ̂

t ,

where μ is an arbitrary constant such that
to

Thus, we are led

Theorem 3.1. The first derivative in t of the fundamental solution
U(t,s) of (0.10 with B(t) = Q satisfies in a^s^t^b

(3.7) K t-τ
(t-s)(r-s) T — S

where μ is an arbitrary constant such that
We proceed to the solution of the inhomogeneous equation (0.1) with

a right member f(t) satisfying

(3.8) sup sup
\t-s



156 H. TANABE

First, we note that we can estimate the difference of each term of
the right member of

(3. 9) j-[ exp ((t-σ)A(σ))f(σ)dσ = (' A(σ) exp ((t-σ )A(σ))(f(<r)-f(t))dσ
σtJs Js

-s)A(s))f(t)ίΓ eχP ((t-

S t
exp((ί — σ)A(σ))R(σ, s)dσy US-

5

ing (2.8) instead of (3.2), and the result is

exp ((t- -£\ exp((r-σ)A(σ))f(σ)dσ

ll/H.+/MI/Hγ(*-'» )τ',

where γ' is an arbitrary positive number less than 7. It is easy to see
that

9.1
dtj

{'W(t, σ)f(σ)dσ-^-(TW(r, σ)f(σ)ά
Js OTJs

with 0<^/ί<^l. Hence, we obtain

Theorem 3.2. For f ( t ) satisfying (3.8), we have

τ)f(σ )dσ—^—\ U(r, σ)f(σ)dσ
dth

where y is an arbitrary constant such that

§ 4. Higher derivatives of the solution. In this section, we assume
also that

4.1°. A(t)A(s)~l is twice and B(t)A(s)~l is once continuously differen-
tiate in t for each 5.

4.2°. B'(t)A(s)-l = ®l'dt)(B(t)A(s)-1) is Holder- continuous in t in the
uniform operator topology :

(4.1) \\

4.3°. B'(t) satisfies the following inequalities :

(4.2)
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(4.3) \\(B'(t)-ι

where p is the same constant as in (1.2).
In this section, we denote by K constants which depend on the con-

stants appearing in (4.1)-(4.3) besides the ones in Hypotheses l.l°-2.3°
and (1.4). The meaning of KΛ etc. would be clear.

Lemma 4.1. For a^s<^t^b and m = l,2,

(4.4)
3t 1 ' ~~

Proof. The first inequality follows immediately from

J^/?ι(f, s) = (A(t) + B(t)-A(s))A(s)exp((t — s)A(s))

4-O4'(ί)+ #'(/)) exp((t — s)A(s)).

The second one for m = \ is a direct consequence of

B'(t) - A(s)) exp <(/ - s)A(s)).

For general m, it can be proved by induction noting

4-

Lemma 4.2. For a^.s<^t^b, we have

(4.5) Rm(t, σ}dσ

Proof. For sufficiently small positive h, we have

~ ~ Rm(t, σ)dσ = Rm(t, t-

Letting h | 0, we get

Rm(t,

t, S).

(4. 6) = + Rm(t^ ° )d<τ + Rm(t, s),
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The inequality (4.5) follows immediately from (4.6) and the preceding
lemma.

Lemma 4.3. For a^s<^t^b, and m = l,2, ••-, we have

(4.7) 97 Rm(t,

Proof. The above inequality can be proved by induction using

^j.Rm(t, S) = \ ^lRm-i(ty σ)(Rι(σ, s) — R1(t, s))dσ

+ o7\ Rm_1(t> σ)dσRl(ty s) for m not very large,

c? Γ ^ 9
^ιRm(t, s) = \ ^Rn-άt, σ)Rl(σ, s)dσ for m sufficiently large.
σι Jsσι

Lemma 4.4. For a^,s<^b, we have with any a,

(4.8)

(4.9)

(4.10)

(4.11)

t-τ

(t-s)(τ-s} (2-PJ .

"

κ: **-
i

o 1̂

t-τ

(t-s)(τ-s)l

Proof. (4.8) and (4.10) are easily obtained. (4.9) follows from

_
dt

Rm(t, s)--Rm(τ, s) =
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for not very large ra, and

^ Rm(r> s) = \ \^ι Rm-i(t, σ) — ̂ - Rm-i(Ty σ)\Rι(σj $}dσ^r m^ > / J s \3£ m 8τ m 1 ' /y iv > /

i t 3
^ιRm-ι(ty σ)Rl(σ, s}dσ, for sufficiently large m.

rσΐ

159

Rm(t,

t 3

(4.11) can be shown similary.
Under the assumption 4.1° 4.3°, (3/3/)E7(f, s) can be expressed as

follows :

U(t, s) = A(s) exp ((t-s)A(s)) +

(4. 12)

+ exp((ί - sl)A(sl})R(sl , 5), (5 < s, < ί).

exp ((t-r)A(r))R(r,

The derivatives in t of the first, second and last terms of the right
member can be obtained easily. As for those of the remaining terms,
we can write them down in a form similar to (2.8) noticing Lemma 4.4.
We can estimate all those derivatives using the above lemmas. Thus,
we obtain

Theorem 4.1. Under the assumptions 4.1° -4.3°, the fundamental solu-
tion U(ty s) has a second derivative in t satisfying

K(4. 13)

Next, we consider the differentiability of the solution of the inhomo-
geneous equation. Let us assume that

4.4°. /(/) has a Holder continuous first derivative in a^t^b.

Lemma 4.5. Tfe following inequalities hold:

(4. 14)

Proof. The first one is a direct consequence of

\3/"l"3s)^ί> ^ = ) (a7 + 3τ) exp ((t — ̂ AWRfr, s)der

+ \ exp ((t — r)A(er))( ^- + ̂ - )/?(τ, ,sWτ .
Js \dτ d5/

Using Lemma 4.4, we can express (d/3t)(d/dt + d/ds)W(t, s) explicitly
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and obtain the second inequality of (4.14).
Now, we show the existence of the second derivatives of both terms

of the right member of

Γ U(t, σ)f(σ)dσ = Γ exp ((t-σ)A(σ))f(σ)dσ+ {V(ί, σ) f(σ) dσ .
Js Js Js

As for the first term, we can express the derivative explicitly as we did

for I exp((ί — σ)A(σ))R(σ, s)dσ. But, in the present case we need not
Js

divide the interval [s, t~\ into two parts as we did for the latter, so the
computation is a little simpler this time. As for the second term, we
rewrite its first derivative in the following form:

'W(t, σ)f(σ}dσ = ' + W(t, <r)f(σ)d<r+W(t, s)f(s)

Hence, by Lemma 4.6 we get

W(t, σ}f(σ}dσ = + W(t, <r)f(a )dσ + - W(t, s)f(s)

Theorem 4.2. Under the assumption 4.1°-4.4°, the solution x(t] of the
inhomogeneous equation (0.1) is twice continuously differentiate. Further-
more, for each t, dx(t)/dt^^ and A(t)dx(t}jdt is continuous.

Proof. The first half of the theorem has already been proved. The
last half is a direct consequence of

A
' dt

and the closedness of A(t).

Theorem 4.3. In addition to the assumption of the preceding theorem,
if we assume that for each t, f ( t ] G ® and for some r, A(r)f(t) is continuous
in ty then the solution x(t) of the inhomogeneous equation (0.1) satisfies
that A(t)x(t) £ ® for each t and A(t}2x(t] is continuous in t.

Proof. Under the assumption of the theorem, A(t)f(t) = A(t)A(r)~^
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A ( r ) f ( t ) is also continuous in t and the right member of A(t)x(t) = dx(t)/dt
—f(t) belongs to ® by the preceding theorem. By applying the above
theorem to U(ty s), we obtain

Theorem 4.4. Under the assumption 4.1°-4.3°, the range of (3/dt)
U(t,s)( = A(t)U(t,s)) is contained in ® for each s and t and A(t)(d/dt)
U(t, s)( = A(t)2U(t, s)) is strongly continuous in t in s<^t^b. Furthermore,
it satisfies

\\A(t)2U(t, 5)||- \\A(t)(d/c>t)U(t, s)\\ < ,.K v -
(t — s)

§ 5. Generalized solution. We denote by ^[tf, ft] the set of all
strongly measurable X-valued functions whose norms are L^-summable
in O, δ].

After Solomiak [4], we give the following definition.

DEFINITION. x(t) is said to be a generalized solution of (0.1) of class

33 (̂1 <^p<^°°) if it satisfies the following conditions:
1. For a<^t<^by x(t) is absolutely continuous and belongs to ®.
2. x(t) is strongly differentiate almost everywhere.
3. dx(t)ldt and A(t)x(t) belongs to 58p[_a, ft].

For a given /(/) in ^&p{_ay ft], we put

Theorem 5.1. // /(O € S3 Jα, δ] and if dσ<^ ̂  for any

S
t Jo σ

U(ty σ)f(σ)dσ gives the solution of (0.1) of class
s

$8p in s<^t<^b with vanishing initial value for any s.

Proof. We have only to estimate each term of the right member

of (3.9) and Γ J^ W(t, σ)f(σ)dσ for a smooth f(t). We begin with the

first term of (3.9). Let φ(t) be any element in 93£/|>, 6] where 1/p + l/p'
= 1 and ϊ is replaced by its conjugate space X7.

((t-<r)A(σ ))(f(<r)-f(t))d<r,

-σ ) exp (σA(t-σ))(f(t-σ)-f(t))>

\A(t-σ) exp (σA(t-σ))(f(t-σ)-f(t))> φ(t)\dtdσ .
s I )

Hence, the absolute value of the left member is not larger than
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ΓT -||/(/-« )-/)ί)|| \\φ(t)\\dtdσ
Jo Jσ +s <Γ

S b~sC/Cb \ V / » / f * , \1/P'
-( \\f(t-a)-f(t)\\"dt) \\φ(t)\\p dt) dσ

0 CΓ \Jσ+s I \Jσ +s I

Thus, we obtain

p
[W) exp ((t-σ)A(σ))(f(σ)-f(t))dσ
J S

dt

J o σ

In a similar way, we get

P

The estimation of the remaining terms is trivially obtained.

§ 6. The equation in which A(t) has a variable domain.

Let us weaken slightly the assumption of the independence of
of t and assume that ®CA(/)) changes smoothly with t in the sense of
T. Kato [2]. Namely, we assume that A(t) satisfies Hypotheses 1.1°
and 1.4° in §1 and the following slightly weaker Hypotheses than 1.2°
and 1.3°.

Hypoteses 6.1°. There exists a bounded operator-valued function
R(t) with a bounded inverse and with a Holder continuous first derivative

R(t) in a^t^b such that the operator A(t) = R(t)A(t)R(t)~1 has a domain
© independent of /.

6.2°. The bounded operator B(t, s) = [I-Ά(t)'][I-Ά(s)~]-1 is uniformly
bounded and satisfies Lipschitz condition in t for each 5 in the uniform
operator topology.

6.3°. B(ty s) is strongly continuously differentiate in t for each 5.
Next, we assume that B(t) satisfies
6.4°. ®(J3(0) contains ©C4(f)) for each t.
6.5°. B(t)R(t)~1R(s)A(s)~1 is continuous in a^t^b for each 5 in the

uniform operator topology.
6.6°. There exist positive constants C3, C4, p^Ll and λ^l such

that

(6.1) UBWRVΓWs) exp (rA(s))\\ < C9r~«-» ,

(6. 2) \\(B(t')R'(tT-B(t}R(tDR(s) exp (τ^))|| < C,\tf-t\
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for a<t, /', s^b and τ>0.
Evidently, R(t) maps ^)(A(t)) onto 3) in a one-to-one fashion. If we

transform #(/) into x(t)=R(t)x(t) in (O.Γ), we obtain

(6. 3) dx(t)/dt = A(ί)JP(ί) + β(ί)jp(ί),

where

(6. 4) B(t) = R(t)B(t)R(tΓl+R(t)R(tΓl .

B(t) is closed because it is the sum of a closed operator and a bounded
one. By exp(tΆ(s)) = R(s)exp(tA(s))R(s)~l and the uniform boundedness

of R(t), R(t) and R(t) ~\ it is easily seen that Hypotheses 1.1°~2.3° are
all satisfied by A(t) and B(t) instead of A(t) and B(t) respectively replac-
ing the constants Af, C etc. by other suitable ones if necessary. Hence,
there is a unique fundamental solution U(t, s) of (6.3) :

U(t, s) = (Ά(t) + B(t))U(t, s)9(b. 5)

satisfying

(6. 6) ||O/3/)t7(f, 5)|| < KV-

(6. 7) 3(t7(ί, s)x)/ds = - U(t, s)(Ά(s) + B(s))x for any x G 3) .

[7(£, 5) has the following form

(6. 8) ϋ(t, s) = exp ((t-s)A(s)) + W(t, s),

where W(ty s) satisfies

\\W(t, s)\\ < K(t-s)p ,

\\A(t)W(t, 5)|| < Kd-

The fundamental solution Z7(f, 5) of the original solution (O.lx) is
easily seen to be given by

(6. 9) U(t, s) = R(tΓ*U(t, s)R(s).

Let x by any element in ®(>1(5)). Then,

-U(t, s)R(s)}x
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By R(s)xe<S), (6.7) and (6.4), we get

Ό(t, s)R(s)x-R(tΓlU(t,

= -U(t,s)(A(s) + B(s))x.

Thus, we obtain

B(s))R(s)x

Theorem 6.1. Under Hypotheses 1.1°, 1.4° and 6.1°~6.6°, there exists
a unique fundamental solution U(t, s) of (O.Γ), defined in a^s^t^b with
the following properties :

(6.10) U(ty s) is strongly continuous in a^s^t^b,

(d/dt)U(t, s), A(t)U(t, s) and B(t)U(t, s) are bounded for

(6.11) a f£ 5 <^ t ̂  b and they satisfy

. K
t-sy ' < -K- , \\B(t)U(t, s)\\ < ,, VP,

ί — 5 \f ^)

(6.12)

if we set C7(ί, s) = R(tΓlR(s) exp ((t-s)A(s)) + W(t, s),

then W(t, s) satisfies

, s)\\ ^ Kd-sγ-1 ,\\W(t, s)\\ ^ κ(t-sγ, \\
and

(6.13)

if x e ®(-A(5», then U(t, r)x is strongly differentiate

in r at r = s and

^ £/(/, 5)^ = - U(t, s)(A(s) + B(s))x .

Theorem 6.2. // f(t) satisfies one of the following conditions :

(6.14) f ( t ) is Holder continuous ,

or

(6. 15) f(t) e ^S>(A(t))9 and A(t)f(t) and f ( t ) are strongly cotinuous,

then the solution x(t) of the inhomogeneous equation (0.1) corresponding to
the initial data x(s) = x is given by

(6.16) X(t) = U(t, S)X+ \ U(t, σ)f(σ)dσ .
J s

Proof. In fact, the replacement x(t) =R(t)x(t) and f(t) = R(t)f(t)
transforms (0.1) into
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(6.17) dx(t)fdt = (A(t) + B(t))x(t) + /(/).

As f(t) satisfies one of the following conditions : f(t) is Holder continuous
or /(ί)€®, and A(t)f(t) and f(t) are strongly continuous, in accordance
with the assumption about /(/), x(t) is given by

X(t) = U(t, S)R(S)X+ Γt7(ί, σ)f(σ)dσ.

If we return to the original notation, we obtain (6.16).
For the solution of the equation considered in this section, we could

easily deduce those results similar to the ones proved in the previous
sections under Hypotheses 1.1°~2.3°.

(Received March 13, 1960)
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